File: Rtest.out.save

package info (click to toggle)
survival 2.29-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 3,204 kB
  • ctags: 1,077
  • sloc: asm: 8,713; ansic: 6,928; sh: 22; makefile: 2
file content (1310 lines) | stat: -rw-r--r-- 51,447 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

R version 2.4.0 Under development (unstable) (2006-05-18 r38118)
Copyright (C) 2006 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

  Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> #
> # Set up for the test
> #
> #dyn.load("../loadmod.o")
> #attach("../.Data")
> #options(na.action="na.omit", contrasts='contr.treatment')
> library(survival)
Loading required package: splines
> #library(date)
> #
> # Test the logic of the new program, by fitting some no-frailty models
> #  (theta=0).  It should give exactly the same answers as 'ordinary' coxph.
> # By default frailty models run with eps=1e-7, ordinary with 1e-4.  I match
> #   these to get the same number of iterations.
> #
> test1 <- data.frame(time=  c(4, 3,1,1,2,2,3),
+                     status=c(1,NA,1,0,1,1,0),
+                     x=     c(0, 2,1,1,1,0,0))
> 
> test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8),
+                     stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17),
+                     event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0),
+                     x    =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) )
> 
> zz <- rep(0, nrow(test1))
> tfit1 <- coxph(Surv(time,status) ~x, test1, eps=1e-7)
> tfit2 <- coxph(Surv(time,status) ~x + frailty(zz, theta=0, sparse=T), test1)
> tfit3 <- coxph(Surv(zz,time,status) ~x + frailty(zz, theta=0,sparse=T), test1)
> 
> temp <- c('coefficients', 'var', 'loglik', 'linear.predictors',
+ 	  'means', 'n')
> 
> all.equal(tfit1[temp], tfit2[temp])
[1] TRUE
> all.equal(tfit1[temp], tfit3[temp])
[1] TRUE
> 
> zz <- rep(0, nrow(test2))
> tfit1 <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-7)
> tfit2 <- coxph(Surv(start, stop, event) ~ x + frailty(zz, theta=0, sparse=T), 
+ 	       test2)
> all.equal(tfit1[temp], tfit2[temp])
[1] TRUE
> 
> 
> 
> # Tests using the rats data
> #
> #  (Female rats, from Mantel et al, Cancer Research 37,
> #    3863-3868, November 77)
> 
> rats <- read.table('data.rats', col.names=c('litter', 'rx', 'time',
+ 				  'status'))
> 
> rfit <- coxph(Surv(time,status) ~ rx + frailty(litter), rats,
+ 	     method='breslow')
> names(rfit)
 [1] "coefficients"      "var"               "var2"             
 [4] "loglik"            "iter"              "linear.predictors"
 [7] "residuals"         "means"             "method"           
[10] "frail"             "fvar"              "df"               
[13] "df2"               "penalty"           "pterms"           
[16] "assign2"           "history"           "coxlist1"         
[19] "printfun"          "n"                 "terms"            
[22] "assign"            "wald.test"         "y"                
[25] "formula"           "call"             
> rfit
Call:
coxph(formula = Surv(time, status) ~ rx + frailty(litter), data = rats, 
    method = "breslow")

                coef  se(coef) se2   Chisq DF   p    
rx              0.906 0.323    0.319  7.88  1.0 0.005
frailty(litter)                      16.89 13.8 0.250

Iterations: 6 outer, 20 Newton-Raphson
     Variance of random effect= 0.474   I-likelihood = -181.1 
Degrees of freedom for terms=  1.0 13.9 
Likelihood ratio test=36.3  on 14.8 df, p=0.00145  n= 150 
> 
> rfit$iter
[1]  6 20
> rfit$df
[1]  0.9759431 13.8548423
> rfit$history[[1]]
$theta
[1] 0.4742848

$done
[1] TRUE

$history
         theta    loglik  c.loglik
[1,] 0.0000000 -181.8451 -181.8451
[2,] 1.0000000 -168.3683 -181.5458
[3,] 0.5000000 -173.3117 -181.0788
[4,] 0.3090061 -175.9446 -181.1490
[5,] 0.4645720 -173.7590 -181.0775
[6,] 0.4736209 -173.6431 -181.0773

$c.loglik
[1] -181.0773

> 
> rfit1 <- coxph(Surv(time,status) ~ rx + frailty(litter, theta=1), rats,
+ 	     method='breslow')
> rfit1
Call:
coxph(formula = Surv(time, status) ~ rx + frailty(litter, theta = 1), 
    data = rats, method = "breslow")

                          coef  se(coef) se2   Chisq DF   p     
rx                        0.918 0.327    0.321  7.85  1.0 0.0051
frailty(litter, theta = 1                      27.25 22.7 0.2300

Iterations: 1 outer, 5 Newton-Raphson
     Variance of random effect= 1   I-likelihood = -181.5 
Degrees of freedom for terms=  1.0 22.7 
Likelihood ratio test=50.7  on 23.7 df, p=0.00100  n= 150 
> 
> rfit2 <- coxph(Surv(time,status) ~ frailty(litter), rats)
> rfit2
Call:
coxph(formula = Surv(time, status) ~ frailty(litter), data = rats)

                coef se(coef) se2 Chisq DF   p   
frailty(litter)                   18.0  14.6 0.24

Iterations: 6 outer, 17 Newton-Raphson
     Variance of random effect= 0.504   I-likelihood = -184.8 
Degrees of freedom for terms= 14.6 
Likelihood ratio test=30  on 14.6 df, p=0.0101  n= 150 
> #
> # Here is a test case with multiple smoothing terms
> #
> data(lung)
> fit0 <- coxph(Surv(time, status) ~ ph.ecog + age, lung)
> fit1 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,3), lung)
> fit2 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,4), lung)
> fit3 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,8), lung)
> 
> 
> 
> fit4 <- coxph(Surv(time, status) ~ ph.ecog + pspline(wt.loss,3), lung)
> 
> fit5 <-coxph(Surv(time, status) ~ ph.ecog + pspline(age,3) + 
+ 	     pspline(wt.loss,3), lung)
> 
> fit1
Call:
coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 3), 
    data = lung)

                        coef   se(coef) se2     Chisq DF   p      
ph.ecog                 0.4480 0.11707  0.11678 14.64 1.00 0.00013
pspline(age, 3), linear 0.0113 0.00928  0.00928  1.47 1.00 0.22000
pspline(age, 3), nonlin                          2.08 2.08 0.37000

Iterations: 4 outer, 10 Newton-Raphson
     Theta= 0.861 
Degrees of freedom for terms= 1.0 3.1 
Likelihood ratio test=21.9  on 4.08 df, p=0.000227
  n=227 (1 observation deleted due to missingness)
> fit2
Call:
coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 4), 
    data = lung)

                        coef   se(coef) se2     Chisq DF   p      
ph.ecog                 0.4505 0.11766  0.11723 14.66 1.00 0.00013
pspline(age, 4), linear 0.0112 0.00927  0.00927  1.45 1.00 0.23000
pspline(age, 4), nonlin                          2.96 3.08 0.41000

Iterations: 4 outer, 10 Newton-Raphson
     Theta= 0.797 
Degrees of freedom for terms= 1.0 4.1 
Likelihood ratio test=22.7  on 5.07 df, p=0.000412
  n=227 (1 observation deleted due to missingness)
> fit3
Call:
coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 8), 
    data = lung)

                        coef   se(coef) se2     Chisq DF   p      
ph.ecog                 0.4764 0.12024  0.11925 15.70 1.00 7.4e-05
pspline(age, 8), linear 0.0117 0.00923  0.00923  1.61 1.00 2.0e-01
pspline(age, 8), nonlin                          6.93 6.99 4.3e-01

Iterations: 5 outer, 13 Newton-Raphson
     Theta= 0.69 
Degrees of freedom for terms= 1 8 
Likelihood ratio test=27.6  on 8.97 df, p=0.00108
  n=227 (1 observation deleted due to missingness)
> fit4
Call:
coxph(formula = Surv(time, status) ~ ph.ecog + pspline(wt.loss, 
    3), data = lung)

                          coef     se(coef) se2     Chisq DF   p      
ph.ecog                    0.51545 0.12960  0.12737 15.82 1.00 0.00007
pspline(wt.loss, 3), line -0.00702 0.00655  0.00655  1.15 1.00 0.28000
pspline(wt.loss, 3), nonl                            2.45 2.09 0.31000

Iterations: 3 outer, 8 Newton-Raphson
     Theta= 0.776 
Degrees of freedom for terms= 1.0 3.1 
Likelihood ratio test=21.1  on 4.06 df, p=0.000326
  n=213 (15 observations deleted due to missingness)
> fit5
Call:
coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 3) + 
    pspline(wt.loss, 3), data = lung)

                          coef     se(coef) se2     Chisq DF   p      
ph.ecog                    0.47422 0.13495  0.13206 12.35 1.00 0.00044
pspline(age, 3), linear    0.01368 0.00976  0.00974  1.96 1.00 0.16000
pspline(age, 3), nonlin                              1.90 2.07 0.40000
pspline(wt.loss, 3), line -0.00717 0.00661  0.00660  1.18 1.00 0.28000
pspline(wt.loss, 3), nonl                            2.08 2.03 0.36000

Iterations: 4 outer, 10 Newton-Raphson
     Theta= 0.85 
     Theta= 0.78 
Degrees of freedom for terms= 1.0 3.1 3.0 
Likelihood ratio test=25.2  on 7.06 df, p=0.000726
  n=213 (15 observations deleted due to missingness)
> 
> rm(fit1, fit2, fit3, fit4, fit5)
> #
> # Test on the ovarian data
> data(ovarian)
> fit1 <- coxph(Surv(futime, fustat) ~ rx + age, ovarian)
> fit2 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=2), 
+ 		data=ovarian)
> fit2$iter
[1] 2 7
> 
> fit2$df
[1] 0.9426611 1.9293052
> 
> fit2$history
$`pspline(age, df = 2)`
$`pspline(age, df = 2)`$theta
[1] 0.4468868

$`pspline(age, df = 2)`$done
[1] TRUE

$`pspline(age, df = 2)`$history
        thetas      dfs
[1,] 1.0000000 1.000000
[2,] 0.0000000 5.000000
[3,] 0.6000000 1.734267
[4,] 0.4845205 1.929305

$`pspline(age, df = 2)`$half
[1] 0


> 
> fit4 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=4), 
+ 		data=ovarian)
> fit4
Call:
coxph(formula = Surv(futime, fustat) ~ rx + pspline(age, df = 4), 
    data = ovarian)

                          coef   se(coef) se2    Chisq DF   p     
rx                        -0.373 0.761    0.7485 0.24  1.00 0.6200
pspline(age, df = 4), lin  0.139 0.044    0.0440 9.98  1.00 0.0016
pspline(age, df = 4), non                        2.59  2.93 0.4500

Iterations: 3 outer, 13 Newton-Raphson
     Theta= 0.242 
Degrees of freedom for terms= 1.0 3.9 
Likelihood ratio test=19.4  on 4.9 df, p=0.00149  n= 26 
> 
> 
> # Simulation for the ovarian data set
> #
> fit1 <- coxph(Surv(futime, fustat) ~ rx + ridge(age, ecog.ps, theta=1),
+ 	      ovarian)
> 
> dfs <- eigen(solve(fit1$var, fit1$var2))$values
> 
> if (gc()[2,1]>60000){
+ set.seed(42)
+ temp <- matrix(rnorm(30000), ncol=3)
+ temp2 <- apply((temp^2) %*% dfs, 1, sum)
+ 
+ round(rbind(quantile(temp2, c(.8, .9, .95, .99)), 
+ 	     qchisq( c(.8, .9, .95, .99), sum(fit1$df))), 3)
+ }
       80%   90%   95%    99%
[1,] 4.372 5.859 7.300 10.520
[2,] 4.313 5.874 7.399 10.861
> # From:	McGilchrist and Aisbett, Biometrics 47, 461-66, 1991
> # Data on the recurrence times to infection, at the point of insertion of
> #  the catheter, for kidney patients using portable dialysis equipment.
> #  Catheters may be removed for reasons other than infection, in which case
> #  the observation is censored.  Each patient has exactly 2 observations.
> 
> # Variables: patient, time, status, age, 
> #	   sex (1=male, 2=female),
> #	   disease type (0=GN, 1=AN, 2=PKD, 3=Other)
> #	   author's estimate of the frailty
> 
> # I don't match their answers, and I think that I'm right
> 
> kidney <- read.table('data.kidney', col.names=c("id", "time", "status",
+ 				      "age", "sex", "disease", "frail"))
> kidney$disease <- factor(kidney$disease, levels=c(3, 0:2),
+ 			 labels=c('Other', 'GN', 'AN', "PKD"))
> 
> kfit <- coxph(Surv(time, status)~ age + sex + disease + frailty(id), kidney)
> kfit1<- coxph(Surv(time, status) ~age + sex + disease +
+ 	      frailty(id, theta=1), kidney, iter=20)
> kfit0 <- coxph(Surv(time, status)~ age + sex + disease, kidney)
> temp <-  coxph(Surv(time, status) ~age + sex + disease +
+ 	      frailty(id, theta=1, sparse=F), kidney)
> 
> 
> # Check out the EM based score equations
> #  temp1 and kfit1 should have essentially the same coefficients
> #  temp2 should equal kfit1$frail
> # equality won't be exact because of the different iteration paths
> temp1 <- coxph(Surv(time, status) ~ age + sex + disease +
+ 	       offset(kfit1$frail[id]), kidney)
> rr <- tapply(resid(temp1), kidney$id, sum)
> temp2 <- log(rr/1 +1)
> all.equal(temp1$coef, kfit1$coef) ##FAILS in S-PLUS
[1] "Mean relative  difference: 4.724822e-08"
> all.equal(as.vector(temp2), kfit1$frail) ##FAILS in S-PLUS
[1] "Mean relative  difference: 0.002377598"
> 
> kfit
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id), 
    data = kidney)

            coef     se(coef) se2    Chisq DF p      
age          0.00318 0.0111   0.0111  0.08 1  7.8e-01
sex         -1.48314 0.3582   0.3582 17.14 1  3.5e-05
diseaseGN    0.08796 0.4064   0.4064  0.05 1  8.3e-01
diseaseAN    0.35079 0.3997   0.3997  0.77 1  3.8e-01
diseasePKD  -1.43111 0.6311   0.6311  5.14 1  2.3e-02
frailty(id)                           0.00 0  9.3e-01

Iterations: 6 outer, 28 Newton-Raphson
     Variance of random effect= 5e-07   I-likelihood = -179.1 
Degrees of freedom for terms= 1 1 3 0 
Likelihood ratio test=17.6  on 5 df, p=0.00342  n= 76 
> kfit1
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, 
    theta = 1), data = kidney, iter = 20)

                       coef     se(coef) se2     Chisq DF   p      
age                     0.00389 0.0196   0.00943  0.04  1.0 0.84000
sex                    -2.00788 0.5910   0.41061 11.54  1.0 0.00068
diseaseGN               0.35334 0.7165   0.38015  0.24  1.0 0.62000
diseaseAN               0.52363 0.7229   0.40462  0.52  1.0 0.47000
diseasePKD             -0.45980 1.0898   0.66091  0.18  1.0 0.67000
frailty(id, theta = 1)                           28.48 18.8 0.06900

Iterations: 1 outer, 10 Newton-Raphson
     Variance of random effect= 1   I-likelihood = -182.5 
Degrees of freedom for terms=  0.2  0.5  1.1 18.8 
Likelihood ratio test=63.8  on 20.6 df, p=2.55e-06  n= 76 
> kfit0
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease, data = kidney)


               coef exp(coef) se(coef)      z       p
age         0.00318     1.003   0.0111  0.285 7.8e-01
sex        -1.48314     0.227   0.3582 -4.140 3.5e-05
diseaseGN   0.08796     1.092   0.4064  0.216 8.3e-01
diseaseAN   0.35079     1.420   0.3997  0.878 3.8e-01
diseasePKD -1.43111     0.239   0.6311 -2.268 2.3e-02

Likelihood ratio test=17.6  on 5 df, p=0.00342  n= 76 
> temp 
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, 
    theta = 1, sparse = F), data = kidney)

                          coef     se(coef) se2    Chisq DF   p      
age                        0.00389 0.0186   0.0112  0.04  1.0 0.83000
sex                       -2.00763 0.5762   0.4080 12.14  1.0 0.00049
diseaseGN                  0.35335 0.6786   0.4315  0.27  1.0 0.60000
diseaseAN                  0.52340 0.6891   0.4404  0.58  1.0 0.45000
diseasePKD                -0.45934 1.0139   0.7130  0.21  1.0 0.65000
frailty(id, theta = 1, sp                          26.23 18.7 0.12000

Iterations: 1 outer, 5 Newton-Raphson
     Variance of random effect= 1   I-likelihood = -182.5 
Degrees of freedom for terms=  0.4  0.5  1.4 18.7 
Likelihood ratio test=63.8  on 21.0 df, p=3.27e-06  n= 76 
> 
> #
> # Now fit the data using REML
> #
> kfitm1 <- coxph(Surv(time,status) ~ age + sex + disease + 
+ 		frailty(id, dist='gauss'), kidney)
> kfitm2 <- coxph(Surv(time,status) ~ age + sex + disease + 
+ 		      frailty(id, dist='gauss', sparse=F), kidney)
> kfitm1
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, 
    dist = "gauss"), data = kidney)

                          coef     se(coef) se2    Chisq DF   p      
age                        0.00489 0.0150   0.0106  0.11  1.0 0.74000
sex                       -1.69703 0.4609   0.3617 13.56  1.0 0.00023
diseaseGN                  0.17980 0.5447   0.3927  0.11  1.0 0.74000
diseaseAN                  0.39283 0.5447   0.3982  0.52  1.0 0.47000
diseasePKD                -1.13630 0.8250   0.6173  1.90  1.0 0.17000
frailty(id, dist = "gauss                          17.89 12.1 0.12000

Iterations: 6 outer, 30 Newton-Raphson
     Variance of random effect= 0.493 
Degrees of freedom for terms=  0.5  0.6  1.7 12.1 
Likelihood ratio test=47.5  on 14.9 df, p=2.82e-05  n= 76 
> summary(kfitm2)
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, 
    dist = "gauss", sparse = F), data = kidney)

  n= 76 
                          coef     se(coef) se2    Chisq DF   p      
age                        0.00492 0.0149   0.0108  0.11  1.0 0.74000
sex                       -1.70204 0.4631   0.3613 13.51  1.0 0.00024
diseaseGN                  0.18173 0.5413   0.4017  0.11  1.0 0.74000
diseaseAN                  0.39442 0.5428   0.4052  0.53  1.0 0.47000
diseasePKD                -1.13160 0.8175   0.6298  1.92  1.0 0.17000
frailty(id, dist = "gauss                          18.13 12.3 0.12000

           exp(coef) exp(-coef) lower .95 upper .95
age            1.005      0.995    0.9760     1.035
sex            0.182      5.485    0.0736     0.452
diseaseGN      1.199      0.834    0.4151     3.465
diseaseAN      1.484      0.674    0.5120     4.299
diseasePKD     0.323      3.101    0.0650     1.601
gauss:1        1.701      0.588    0.5181     5.586
gauss:2        1.424      0.702    0.3851     5.266
gauss:3        1.159      0.863    0.3828     3.511
gauss:4        0.623      1.606    0.2340     1.657
gauss:5        1.254      0.797    0.3981     3.953
gauss:6        1.135      0.881    0.3834     3.360
gauss:7        1.973      0.507    0.5694     6.834
gauss:8        0.620      1.614    0.2166     1.772
gauss:9        0.823      1.215    0.2888     2.346
gauss:10       0.503      1.988    0.1747     1.448
gauss:11       0.757      1.322    0.2708     2.113
gauss:12       1.105      0.905    0.3343     3.651
gauss:13       1.302      0.768    0.4275     3.967
gauss:14       0.591      1.691    0.1854     1.885
gauss:15       0.545      1.835    0.1858     1.598
gauss:16       1.044      0.958    0.3142     3.470
gauss:17       0.914      1.095    0.3000     2.782
gauss:18       0.918      1.089    0.3248     2.597
gauss:19       0.643      1.556    0.1951     2.117
gauss:20       1.170      0.855    0.3453     3.963
gauss:21       0.334      2.997    0.1020     1.091
gauss:22       0.687      1.455    0.2353     2.006
gauss:23       1.478      0.677    0.4756     4.592
gauss:24       1.017      0.983    0.3156     3.278
gauss:25       0.810      1.235    0.2749     2.384
gauss:26       0.614      1.627    0.2149     1.757
gauss:27       1.088      0.919    0.3282     3.610
gauss:28       1.542      0.649    0.4923     4.829
gauss:29       1.379      0.725    0.4377     4.342
gauss:30       1.375      0.727    0.4444     4.253
gauss:31       1.445      0.692    0.4703     4.438
gauss:32       1.199      0.834    0.3521     4.085
gauss:33       1.945      0.514    0.5523     6.849
gauss:34       0.862      1.161    0.2769     2.682
gauss:35       1.703      0.587    0.5266     5.508
gauss:36       0.827      1.209    0.2281     3.002
gauss:37       1.471      0.680    0.3894     5.555
gauss:38       1.048      0.954    0.3068     3.579

Iterations: 6 outer, 17 Newton-Raphson
     Variance of random effect= 0.509 
Degrees of freedom for terms=  0.5  0.6  1.7 12.3 
Rsquare= 0.788   (max possible= 0.997 )
Likelihood ratio test= 118  on 15.1 df,   p=0
Wald test            = 37.4  on 15.1 df,   p=0.00119
> #
> # Fit the kidney data using AIC
> #
> 
> # gamma, corrected aic
> coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=T), 
+       kidney)
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    method = "aic", caic = T), data = kidney)

                          coef     se(coef) se2     Chisq DF  p      
age                        0.00364 0.0105   0.00891  0.12 1.0 0.73000
sex                       -1.31907 0.3955   0.32493 11.13 1.0 0.00085
frailty(id, method = "aic                           13.54 7.8 0.08700

Iterations: 9 outer, 47 Newton-Raphson
     Variance of random effect= 0.202   I-likelihood = -182.1 
Degrees of freedom for terms= 0.7 0.7 7.8 
Likelihood ratio test=33.3  on 9.2 df, p=0.000137  n= 76 
> 
> coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t'), kidney)
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    dist = "t"), data = kidney)

                        coef     se(coef) se2     Chisq DF   p     
age                      0.00558 0.0120   0.00873  0.22  1.0 0.6400
sex                     -1.65036 0.4810   0.38545 11.77  1.0 0.0006
frailty(id, dist = "t")                           20.05 13.8 0.1200

Iterations: 9 outer, 44 Newton-Raphson
     Variance of random effect= 0.807 
Degrees of freedom for terms=  0.5  0.6 13.8 
Likelihood ratio test=48.2  on 14.9 df, p=2.24e-05  n= 76 
> coxph(Surv(time, status) ~ age + sex + frailty(id, dist='gauss', method='aic',
+ 					       caic=T), kidney)
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    dist = "gauss", method = "aic", caic = T), data = kidney)

                          coef     se(coef) se2     Chisq DF   p     
age                        0.00303 0.0103   0.00895  0.09 1.00 0.7700
sex                       -1.15153 0.3637   0.30556 10.03 1.00 0.0015
frailty(id, dist = "gauss                           12.36 6.76 0.0800

Iterations: 7 outer, 30 Newton-Raphson
     Variance of random effect= 0.185 
Degrees of freedom for terms= 0.8 0.7 6.8 
Likelihood ratio test=28.4  on 8.22 df, p=0.000476  n= 76 
> 
> 
> # uncorrected aic
> coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=F), 
+       kidney)
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    method = "aic", caic = F), data = kidney)

                          coef     se(coef) se2     Chisq DF   p      
age                        0.00758 0.0146   0.00836  0.27  1.0 0.60000
sex                       -1.86230 0.5503   0.39401 11.45  1.0 0.00071
frailty(id, method = "aic                           35.99 19.1 0.01100

Iterations: 10 outer, 74 Newton-Raphson
     Variance of random effect= 0.824   I-likelihood = -182.6 
Degrees of freedom for terms=  0.3  0.5 19.1 
Likelihood ratio test=60  on 19.9 df, p=6.83e-06  n= 76 
> 
> coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t', caic=F), kidney)
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    dist = "t", caic = F), data = kidney)

                          coef     se(coef) se2     Chisq DF   p     
age                        0.00558 0.0120   0.00873  0.22  1.0 0.6400
sex                       -1.65036 0.4810   0.38545 11.77  1.0 0.0006
frailty(id, dist = "t", c                           20.05 13.8 0.1200

Iterations: 9 outer, 44 Newton-Raphson
     Variance of random effect= 0.807 
Degrees of freedom for terms=  0.5  0.6 13.8 
Likelihood ratio test=48.2  on 14.9 df, p=2.24e-05  n= 76 
> #temp <- sas.get("../../../../data/moertel/sasdata", "anal")
> #colon <- temp[temp$study==1,]
> #rm(temp)
> #colon$rx <- factor(colon$rx, levels=1:3, labels=c("Obs", "Lev", "Lev+5FU"))
> data(colon)
> #data.restore('data.colon')
> #
> # Fit models to the Colon cancer data used in Lin
> #
> fitc1 <- coxph(Surv(time, status) ~ rx + extent + node4 + cluster(id)
+ 	        + strata(etype), colon)
> fitc1
Call:
coxph(formula = Surv(time, status) ~ rx + extent + node4 + cluster(id) + 
    strata(etype), data = colon)


             coef exp(coef) se(coef) robust se      z       p
rxLev     -0.0362     0.964   0.0768     0.106 -0.343 7.3e-01
rxLev+5FU -0.4488     0.638   0.0840     0.117 -3.842 1.2e-04
extent     0.5155     1.674   0.0796     0.110  4.701 2.6e-06
node4      0.8799     2.411   0.0681     0.096  9.160 0.0e+00

Likelihood ratio test=248  on 4 df, p=0  n= 1858 
> 
> fitc2 <- coxph(Surv(time, status) ~ rx + extent + node4 + 
+ 	       frailty(id, dist='gauss', trace=T)
+ 	        + strata(etype), colon)
     theta     resid      fsum    trace
[1,]     1 0.5721865  677.2472 498.2323
[2,]     3 0.8244916 2430.3958 880.5538
    new theta= 6 

     theta     resid      fsum     trace
[1,]     1 0.5721865  677.2472  498.2323
[2,]     3 0.8244916 2430.3958  880.5538
[3,]     6 0.3152272 4520.0041 1279.6138
    new theta= 12 

     theta      resid      fsum     trace
[1,]     1  0.5721865  677.2472  498.2323
[2,]     3  0.8244916 2430.3958  880.5538
[3,]     6  0.3152272 4520.0041 1279.6138
[4,]    12 -2.1486199 7550.5646 1950.6313
    new theta= 7.554873 

         theta      resid      fsum     trace
[1,]  1.000000  0.5721865  677.2472  498.2323
[2,]  3.000000  0.8244916 2430.3958  880.5538
[3,]  6.000000  0.3152272 4520.0041 1279.6138
[4,] 12.000000 -2.1486199 7550.5646 1950.6313
[5,]  7.554873 -0.1827268 5420.8778 1463.2371
    new theta= 7.004443 

         theta       resid      fsum     trace
[1,]  1.000000  0.57218652  677.2472  498.2323
[2,]  3.000000  0.82449159 2430.3958  880.5538
[3,]  6.000000  0.31522725 4520.0041 1279.6138
[4,] 12.000000 -2.14861992 7550.5646 1950.6313
[5,]  7.554873 -0.18272677 5420.8778 1463.2371
[6,]  7.004443  0.02102504 5123.0634 1399.3956
    new theta= 7.06674 

         theta       resid      fsum     trace
[1,]  1.000000  0.57218652  677.2472  498.2323
[2,]  3.000000  0.82449159 2430.3958  880.5538
[3,]  6.000000  0.31522725 4520.0041 1279.6138
[4,] 12.000000 -2.14861992 7550.5646 1950.6313
[5,]  7.554873 -0.18272677 5420.8778 1463.2371
[6,]  7.004443  0.02102504 5123.0634 1399.3956
[7,]  7.066740 -0.01293658 5148.9076 1406.6504
    new theta= 7.04162 

         theta        resid      fsum     trace
[1,]  1.000000  0.572186518  677.2472  498.2323
[2,]  3.000000  0.824491593 2430.3958  880.5538
[3,]  6.000000  0.315227245 4520.0041 1279.6138
[4,] 12.000000 -2.148619920 7550.5646 1950.6313
[5,]  7.554873 -0.182726773 5420.8778 1463.2371
[6,]  7.004443  0.021025043 5123.0634 1399.3956
[7,]  7.066740 -0.012936579 5148.9076 1406.6504
[8,]  7.041620  0.003463959 5140.3971 1403.7958
    new theta= 7.047698 

          theta        resid      fsum     trace
 [1,]  1.000000  0.572186518  677.2472  498.2323
 [2,]  3.000000  0.824491593 2430.3958  880.5538
 [3,]  6.000000  0.315227245 4520.0041 1279.6138
 [4,] 12.000000 -2.148619920 7550.5646 1950.6313
 [5,]  7.554873 -0.182726773 5420.8778 1463.2371
 [6,]  7.004443  0.021025043 5123.0634 1399.3956
 [7,]  7.066740 -0.012936579 5148.9076 1406.6504
 [8,]  7.041620  0.003463959 5140.3971 1403.7958
 [9,]  7.047698 -0.001163083 5142.0167 1404.4463
    new theta= 7.046096 

          theta         resid      fsum     trace
 [1,]  1.000000  5.721865e-01  677.2472  498.2323
 [2,]  3.000000  8.244916e-01 2430.3958  880.5538
 [3,]  6.000000  3.152272e-01 4520.0041 1279.6138
 [4,] 12.000000 -2.148620e+00 7550.5646 1950.6313
 [5,]  7.554873 -1.827268e-01 5420.8778 1463.2371
 [6,]  7.004443  2.102504e-02 5123.0634 1399.3956
 [7,]  7.066740 -1.293658e-02 5148.9076 1406.6504
 [8,]  7.041620  3.463959e-03 5140.3971 1403.7958
 [9,]  7.047698 -1.163083e-03 5142.0167 1404.4463
[10,]  7.046096 -1.820316e-05 5141.5307 1404.2792
    new theta= 7.046071 

> fitc2
Call:
coxph(formula = Surv(time, status) ~ rx + extent + node4 + frailty(id, 
    dist = "gauss", trace = T) + strata(etype), data = colon)

                          coef    se(coef) se2    Chisq   DF  p      
rxLev                     -0.0267 0.241    0.0824    0.01   1 9.1e-01
rxLev+5FU                 -0.7880 0.243    0.1071   10.50   1 1.2e-03
extent                     1.1305 0.218    0.1068   26.81   1 2.2e-07
node4                      2.1266 0.210    0.0984  102.56   1 0.0e+00
frailty(id, dist = "gauss                         5464.64 730 0.0e+00

Iterations: 10 outer, 77 Newton-Raphson
     Variance of random effect= 7.05 
Degrees of freedom for terms=   0.3   0.2   0.2 729.7 
Likelihood ratio test=3544  on 730 df, p=0  n= 1858 
> 
> fitc3 <- coxph(Surv(time, status) ~ rx + extent + node4 + frailty(id, trace=T)
+ 	        + strata(etype), colon)
     theta    loglik  c.loglik
[1,]     0 -5846.216 -5846.216
[2,]     1 -5305.049 -5590.102
    new theta= 2 

     theta    loglik  c.loglik
[1,]     0 -5846.216 -5846.216
[2,]     1 -5305.049 -5590.102
[3,]     2 -5036.927 -5479.479
    new theta= 4 

     theta    loglik  c.loglik
[1,]     0 -5846.216 -5846.216
[2,]     1 -5305.049 -5590.102
[3,]     2 -5036.927 -5479.479
[4,]     4 -4740.394 -5385.887
    new theta= 8 

     theta    loglik  c.loglik
[1,]     0 -5846.216 -5846.216
[2,]     1 -5305.049 -5590.102
[3,]     2 -5036.927 -5479.479
[4,]     4 -4740.394 -5385.887
[5,]     8 -4457.094 -5347.375
    new theta= 16 

     theta    loglik  c.loglik
[1,]     0 -5846.216 -5846.216
[2,]     1 -5305.049 -5590.102
[3,]     2 -5036.927 -5479.479
[4,]     4 -4740.394 -5385.887
[5,]     8 -4457.094 -5347.375
[6,]    16 -4223.785 -5393.362
    new theta= 8.740343 

         theta    loglik  c.loglik
[1,]  0.000000 -5846.216 -5846.216
[2,]  1.000000 -5305.049 -5590.102
[3,]  2.000000 -5036.927 -5479.479
[4,]  4.000000 -4740.394 -5385.887
[5,]  8.000000 -4457.094 -5347.375
[6,] 16.000000 -4223.785 -5393.362
[7,]  8.740343 -4423.925 -5348.128
    new theta= 8.058 

         theta    loglik  c.loglik
[1,]  0.000000 -5846.216 -5846.216
[2,]  1.000000 -5305.049 -5590.102
[3,]  2.000000 -5036.927 -5479.479
[4,]  4.000000 -4740.394 -5385.887
[5,]  8.000000 -4457.094 -5347.375
[6,] 16.000000 -4223.785 -5393.362
[7,]  8.740343 -4423.925 -5348.128
[8,]  8.058000 -4454.347 -5347.375
    new theta= 8.025556 

          theta    loglik  c.loglik
 [1,]  0.000000 -5846.216 -5846.216
 [2,]  1.000000 -5305.049 -5590.102
 [3,]  2.000000 -5036.927 -5479.479
 [4,]  4.000000 -4740.394 -5385.887
 [5,]  8.000000 -4457.094 -5347.375
 [6,] 16.000000 -4223.785 -5393.362
 [7,]  8.740343 -4423.925 -5348.128
 [8,]  8.058000 -4454.347 -5347.375
 [9,]  8.025556 -4455.875 -5347.369
    new theta= 8.028123 

> fitc3
Call:
coxph(formula = Surv(time, status) ~ rx + extent + node4 + frailty(id, 
    trace = T) + strata(etype), data = colon)

                       coef    se(coef) se2   Chisq   DF  p      
rxLev                   0.0434 0.305    0.140    0.02   1 8.9e-01
rxLev+5FU              -0.5125 0.310    0.170    2.73   1 9.8e-02
extent                  1.3373 0.251    0.137   28.45   1 9.6e-08
node4                   2.3381 0.233    0.156  100.81   1 0.0e+00
frailty(id, trace = T)                        5939.97 867 0.0e+00

Iterations: 9 outer, 112 Newton-Raphson
     Variance of random effect= 8.03   I-likelihood = -5347.4 
Degrees of freedom for terms=   0.5   0.3   0.4 866.7 
Likelihood ratio test=3787  on 868 df, p=0  n= 1858 
> 
> fitc4 <- coxph(Surv(time, status) ~ rx + extent + node4 + frailty(id, df=30)
+ 	        + strata(etype), colon)
> fitc4
Call:
coxph(formula = Surv(time, status) ~ rx + extent + node4 + frailty(id, 
    df = 30) + strata(etype), data = colon)

                     coef    se(coef) se2    Chisq  DF p      
rxLev                -0.0374 0.0789   0.0769   0.22  1 6.4e-01
rxLev+5FU            -0.4565 0.0859   0.0840  28.27  1 1.1e-07
extent                0.5289 0.0815   0.0798  42.13  1 8.5e-11
node4                 0.9078 0.0701   0.0681 167.85  1 0.0e+00
frailty(id, df = 30)                          58.56 30 1.4e-03

Iterations: 3 outer, 9 Newton-Raphson
     Variance of random effect= 0.0337   I-likelihood = -5832.4 
Degrees of freedom for terms=  1.9  1.0  0.9 30.0 
Likelihood ratio test=363  on 33.8 df, p=0  n= 1858 
> 
> # Do a fit, removing the no-event people
> temp <- tapply(colon$status, colon$id, sum)
> keep <- !(is.na(match(colon$id, names(temp[temp>0])))) 
> fitc5 <- coxph(Surv(time, status) ~ rx + extent + node4 +cluster(id)
+ 	       + strata(etype), colon, subset=keep)
> 
> #
> # Do the factor fit, but first remove the no-event people
> #
> #  Ha!  This routine has a factor with 506 levels.  It uses all available
> #    memory, and can't finish in my patience window.  Commented out.
> 
> #fitc4 <- coxph(Surv(time, status) ~ rx + extent + node4 + factor(id), colon,
> #	       subset=keep)
> 
> 
> 
> 
> 
> 
> #
> # The residual methods treat a sparse frailty as a fixed offset with
> #   no variance
> #
> 
> kfit1 <- coxph(Surv(time, status) ~ age + sex + 
+ 	           frailty(id, dist='gauss'), kidney)
> tempf <- predict(kfit1, type='terms')[,3]  
> temp  <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))]
>  all.equal(unclass(tempf), unclass(temp))
[1] "names for target but not for current"
>  all.equal(as.vector(tempf), as.vector(temp))
[1] TRUE
> 
> # Now fit a model with explicit offset
>  kfitx <- coxph(Surv(time, status) ~ age + sex + offset(tempf),kidney,
+ 	       eps=1e-7)
> 
> # These are not precisely the same, due to different iteration paths
>  all.equal(kfitx$coef, kfit1$coef)
[1] TRUE
> 
> # This will make them identical
> kfitx <- coxph(Surv(time, status) ~ age + sex  + offset(temp),kidney,
+ 	       iter=0, init=kfit1$coef)
> all.equal(resid(kfit1), resid(kfitx))
[1] TRUE
> all.equal(resid(kfit1, type='score'), resid(kfitx, type='score'))
[1] TRUE
> all.equal(resid(kfit1, type='schoe'), resid(kfitx, type='schoe'))
[1] TRUE
> 
> # These are not the same, due to a different variance matrix
> #  The frailty model's variance is about 2x the naive "assume an offset" var
> # The score residuals are equal, however.
> all.equal(resid(kfit1, type='dfbeta'), resid(kfitx, type='dfbeta'))
[1] "Mean relative  difference: 0.5214642"
> zed <- kfitx
> zed$var <- kfit1$var
> all.equal(resid(kfit1, type='dfbeta'), resid(zed, type='dfbeta'))
[1] TRUE
> 
> 
> temp1 <- resid(kfit1, type='score')
> temp2 <- resid(kfitx, type='score')
> all.equal(temp1, temp2)
[1] TRUE
> 
> #
> # Now for some tests of predicted values
> #
> all.equal(predict(kfit1, type='expected'), predict(kfitx, type='expected'))
[1] TRUE
> all.equal(predict(kfit1, type='lp'), predict(kfitx, type='lp'))
[1] TRUE
> 
> temp1 <- predict(kfit1, type='terms', se.fit=T)
> temp2 <- predict(kfitx, type='terms', se.fit=T)
> all.equal(temp1$fit[,1:2], temp2$fit)
[1] TRUE
> all.equal(temp1$se.fit[,1:2], temp2$se.fit)  #should be false
[1] "Mean relative  difference: 0.3023202"
> mean(temp1$se.fit[,1:2]/ temp2$se.fit)
[1] 1.432742
> all.equal(as.vector(temp1$se.fit[,3])^2, 
+ 	  as.vector(kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))]))
[1] TRUE
> 
> print(temp1)
$fit
            age        sex frailty(id, dist = "gauss")
1  -0.073958502  1.0394106                  0.59786111
2  -0.073958502  1.0394106                  0.59786111
3   0.020271945 -0.3712181                  0.38485832
4   0.020271945 -0.3712181                  0.38485832
5  -0.055112412  1.0394106                  0.20207583
6  -0.055112412  1.0394106                  0.20207583
7  -0.059823935 -0.3712181                 -0.55911485
8  -0.055112412 -0.3712181                 -0.55911485
9  -0.158765904  1.0394106                  0.28549873
10 -0.158765904  1.0394106                  0.28549873
11 -0.130496770 -0.3712181                  0.06626061
12 -0.125785247 -0.3712181                  0.06626061
13  0.034406512  1.0394106                  0.80459000
14  0.034406512  1.0394106                  0.80459000
15  0.053252601 -0.3712181                 -0.43812823
16  0.057964123 -0.3712181                 -0.43812823
17  0.119213914 -0.3712181                 -0.05626582
18  0.119213914 -0.3712181                 -0.05626582
19  0.034406512  1.0394106                 -0.49952683
20  0.039118034  1.0394106                 -0.49952683
21  0.001425855 -0.3712181                 -0.13020461
22  0.001425855 -0.3712181                 -0.13020461
23 -0.045689368 -0.3712181                  0.06374081
24 -0.045689368 -0.3712181                  0.06374081
25 -0.040977845 -0.3712181                  0.38796289
26 -0.040977845 -0.3712181                  0.38796289
27 -0.007997189 -0.3712181                 -0.47624190
28 -0.007997189 -0.3712181                 -0.47624190
29 -0.125785247 -0.3712181                 -0.66954879
30 -0.125785247 -0.3712181                 -0.66954879
31  0.076810213  1.0394106                  0.19352414
32  0.076810213  1.0394106                  0.19352414
33  0.076810213 -0.3712181                 -0.16474469
34  0.076810213 -0.3712181                 -0.16474469
35 -0.003285667 -0.3712181                 -0.15787841
36  0.001425855 -0.3712181                 -0.15787841
37  0.043829556 -0.3712181                 -0.46209283
38  0.043829556 -0.3712181                 -0.46209283
39  0.001425855 -0.3712181                  0.12596115
40  0.001425855 -0.3712181                  0.12596115
41  0.010848900  1.0394106                 -1.74241816
42  0.015560422  1.0394106                 -1.74241816
43 -0.064535457 -0.3712181                 -0.45191179
44 -0.064535457 -0.3712181                 -0.45191179
45  0.086233257 -0.3712181                  0.51548896
46  0.090944780 -0.3712181                  0.51548896
47 -0.007997189 -0.3712181                  0.09469348
48 -0.003285667 -0.3712181                  0.09469348
49 -0.003285667  1.0394106                  0.05795548
50 -0.003285667  1.0394106                  0.05795548
51  0.062675646 -0.3712181                 -0.37915463
52  0.067387168 -0.3712181                 -0.37915463
53 -0.158765904 -0.3712181                  0.11243130
54 -0.158765904 -0.3712181                  0.11243130
55  0.039118034 -0.3712181                  0.54762574
56  0.039118034 -0.3712181                  0.54762574
57  0.043829556  1.0394106                  0.45856914
58  0.043829556  1.0394106                  0.45856914
59  0.048541079 -0.3712181                  0.35623967
60  0.048541079 -0.3712181                  0.35623967
61  0.057964123 -0.3712181                  0.48779202
62  0.057964123 -0.3712181                  0.48779202
63  0.029694989 -0.3712181                  0.25581783
64  0.034406512 -0.3712181                  0.25581783
65  0.062675646 -0.3712181                  0.23046401
66  0.062675646 -0.3712181                  0.23046401
67  0.001425855 -0.3712181                 -0.13672108
68  0.006137378 -0.3712181                 -0.13672108
69 -0.102227636 -0.3712181                  0.51950930
70 -0.102227636 -0.3712181                  0.51950930
71 -0.007997189 -0.3712181                 -0.23862674
72 -0.007997189 -0.3712181                 -0.23862674
73  0.039118034 -0.3712181                  0.17164824
74  0.039118034 -0.3712181                  0.17164824
75  0.076810213  1.0394106                 -0.35798941
76  0.076810213  1.0394106                 -0.35798941

$se.fit
           age       sex frailty(id, dist = "gauss")
1  0.195822035 0.3279661                   0.6244919
2  0.195822035 0.3279661                   0.6244919
3  0.053674606 0.1171308                   0.6952595
4  0.053674606 0.1171308                   0.6952595
5  0.145922707 0.3279661                   0.5704061
6  0.145922707 0.3279661                   0.5704061
7  0.158397539 0.1171308                   0.4893554
8  0.145922707 0.1171308                   0.4893554
9  0.420369012 0.3279661                   0.6069822
10 0.420369012 0.3279661                   0.6069822
11 0.345520020 0.1171308                   0.5632659
12 0.333045188 0.1171308                   0.5632659
13 0.091099103 0.3279661                   0.6639923
14 0.091099103 0.3279661                   0.6639923
15 0.140998431 0.1171308                   0.5100815
16 0.153473263 0.1171308                   0.5100815
17 0.315646080 0.1171308                   0.5490307
18 0.315646080 0.1171308                   0.5490307
19 0.091099103 0.3279661                   0.5262813
20 0.103573935 0.3279661                   0.5262813
21 0.003775278 0.1171308                   0.5179992
22 0.003775278 0.1171308                   0.5179992
23 0.120973042 0.1171308                   0.6207106
24 0.120973042 0.1171308                   0.6207106
25 0.108498210 0.1171308                   0.5810134
26 0.108498210 0.1171308                   0.5810134
27 0.021174386 0.1171308                   0.6245776
28 0.021174386 0.1171308                   0.6245776
29 0.333045188 0.1171308                   0.5614453
30 0.333045188 0.1171308                   0.5614453
31 0.203372591 0.3279661                   0.6530508
32 0.203372591 0.3279661                   0.6530508
33 0.203372591 0.1171308                   0.5246117
34 0.203372591 0.1171308                   0.5246117
35 0.008699554 0.1171308                   0.5105633
36 0.003775278 0.1171308                   0.5105633
37 0.116048767 0.1171308                   0.6282338
38 0.116048767 0.1171308                   0.6282338
39 0.003775278 0.1171308                   0.6318230
40 0.003775278 0.1171308                   0.6318230
41 0.028724942 0.3279661                   0.5233805
42 0.041199774 0.3279661                   0.5233805
43 0.170872371 0.1171308                   0.5490773
44 0.170872371 0.1171308                   0.5490773
45 0.228322255 0.1171308                   0.6057277
46 0.240797087 0.1171308                   0.6057277
47 0.021174386 0.1171308                   0.6266224
48 0.008699554 0.1171308                   0.6266224
49 0.008699554 0.3279661                   0.5525454
50 0.008699554 0.3279661                   0.5525454
51 0.165948095 0.1171308                   0.5555328
52 0.178422927 0.1171308                   0.5555328
53 0.420369012 0.1171308                   0.5848260
54 0.420369012 0.1171308                   0.5848260
55 0.103573935 0.1171308                   0.6080357
56 0.103573935 0.1171308                   0.6080357
57 0.116048767 0.3279661                   0.6008923
58 0.116048767 0.3279661                   0.6008923
59 0.128523599 0.1171308                   0.5760879
60 0.128523599 0.1171308                   0.5760879
61 0.153473263 0.1171308                   0.5981138
62 0.153473263 0.1171308                   0.5981138
63 0.078624270 0.1171308                   0.6612065
64 0.091099103 0.1171308                   0.6612065
65 0.165948095 0.1171308                   0.5608325
66 0.165948095 0.1171308                   0.5608325
67 0.003775278 0.1171308                   0.5843468
68 0.016250110 0.1171308                   0.5843468
69 0.270671027 0.1171308                   0.6088168
70 0.270671027 0.1171308                   0.6088168
71 0.021174386 0.1171308                   0.6793365
72 0.021174386 0.1171308                   0.6793365
73 0.103573935 0.1171308                   0.6419952
74 0.103573935 0.1171308                   0.6419952
75 0.203372591 0.3279661                   0.5778115
76 0.203372591 0.3279661                   0.5778115

> kfit1
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    dist = "gauss"), data = kidney)

                          coef     se(coef) se2     Chisq DF   p     
age                        0.00471 0.0125   0.00856  0.14  1.0 0.7100
sex                       -1.41063 0.4451   0.31503 10.04  1.0 0.0015
frailty(id, dist = "gauss                           26.54 14.7 0.0290

Iterations: 6 outer, 28 Newton-Raphson
     Variance of random effect= 0.569 
Degrees of freedom for terms=  0.5  0.5 14.7 
Likelihood ratio test=47.5  on 15.7 df, p=4.65e-05  n= 76 
> kfitx
Call:
coxph(formula = Surv(time, status) ~ age + sex + offset(temp), 
    data = kidney, init = kfit1$coef, iter = 0)


        coef exp(coef) se(coef)      z       p
age  0.00471     1.005  0.00875  0.538 5.9e-01
sex -1.41063     0.244  0.30916 -4.563 5.0e-06

Likelihood ratio test=0  on 2 df, p=1  n= 76 
> 
> rm(temp1, temp2, kfitx, zed, tempf)
> #
> # The special case of a single sparse frailty
> #
> 
> kfit1 <- coxph(Surv(time, status) ~ frailty(id, dist='gauss'), kidney)
> tempf <- predict(kfit1, type='terms')
> temp  <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))]
> all.equal(as.vector(tempf), as.vector(temp))
[1] TRUE
> 
> # Now fit a model with explicit offset
> kfitx <- coxph(Surv(time, status) ~ offset(tempf),kidney, eps=1e-7)
> 
> all.equal(resid(kfit1), resid(kfitx))
[1] TRUE
> all.equal(resid(kfit1, type='deviance'), resid(kfitx, type='deviance'))
[1] TRUE
> 
> #
> # Some tests of predicted values
> #
> aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
> aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected'))
[1] TRUE
> aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp'))
[1] TRUE
> 
> temp1 <- predict(kfit1, type='terms', se.fit=T)
> all.equal(temp1$fit, kfitx$linear)
[1] TRUE
> all.equal(temp1$se.fit^2, 
+ 	  kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))])
[1] TRUE
> 
> temp1
$fit
 [1]  0.695322941  0.695322941  0.244363776  0.244363776  0.493777896
 [6]  0.493777896 -0.658879753 -0.658879753  0.520994314  0.520994314
[11] -0.114379760 -0.114379760  0.799261991  0.799261991 -0.487795409
[16] -0.487795409 -0.120271844 -0.120271844  0.131081160  0.131081160
[21] -0.214822375 -0.214822375 -0.054773695 -0.054773695  0.184575874
[26]  0.184575874 -0.509525783 -0.509525783 -0.790241403 -0.790241403
[31]  0.324356959  0.324356959 -0.239177390 -0.239177390 -0.264230973
[36] -0.264230973 -0.472242362 -0.472242362  0.006350496  0.006350496
[41] -0.872904122 -0.872904122 -0.530513459 -0.530513459  0.351179181
[46]  0.351179181 -0.037129299 -0.037129299  0.441718240  0.441718240
[51] -0.418876639 -0.418876639 -0.107887816 -0.107887816  0.346099359
[56]  0.346099359  0.658680102  0.658680102  0.197185714  0.197185714
[61]  0.304679320  0.304679320  0.139630271  0.139630271  0.093562534
[66]  0.093562534 -0.209483283 -0.209483283  0.301887374  0.301887374
[71] -0.278636264 -0.278636264  0.068590872  0.068590872  0.078473259
[76]  0.078473259

$se.fit
 [1] 0.6147113 0.6147113 0.6157024 0.6157024 0.5713312 0.5713312 0.4392271
 [8] 0.4392271 0.5759022 0.5759022 0.4832712 0.4832712 0.6417752 0.6417752
[15] 0.4573402 0.4573402 0.4812024 0.4812024 0.5118065 0.5118065 0.4762681
[22] 0.4762681 0.5530110 0.5530110 0.5193604 0.5193604 0.5531610 0.5531610
[29] 0.4773814 0.4773814 0.6361045 0.6361045 0.4707460 0.4707460 0.4669424
[36] 0.4669424 0.5597930 0.5597930 0.5639378 0.5639378 0.4648879 0.4648879
[43] 0.4902904 0.4902904 0.5446419 0.5446419 0.5567662 0.5567662 0.5606017
[50] 0.5606017 0.4994076 0.4994076 0.4830103 0.4830103 0.5450207 0.5450207
[57] 0.6054682 0.6054682 0.5207580 0.5207580 0.5374623 0.5374623 0.5908553
[64] 0.5908553 0.5063650 0.5063650 0.5288166 0.5288166 0.5366511 0.5366511
[71] 0.5992889 0.5992889 0.5760201 0.5760201 0.5780104 0.5780104

> kfit1
Call:
coxph(formula = Surv(time, status) ~ frailty(id, dist = "gauss"), 
    data = kidney)

                          coef se(coef) se2 Chisq DF   p    
frailty(id, dist = "gauss                   23.0  13.8 0.057

Iterations: 6 outer, 28 Newton-Raphson
     Variance of random effect= 0.457 
Degrees of freedom for terms= 13.8 
Likelihood ratio test=33.4  on 13.8 df, p=0.00234  n= 76 
> 
> 
> # From Gail, Sautner and Brown, Biometrics 36, 255-66, 1980
> 
> # 48 rats were injected with a carcinogen, and then randomized to either
> # drug or placebo.  The number of tumors ranges from 0 to 13; all rats were
> # censored at 6 months after randomization.
> 
> # Variables: rat, treatment (1=drug, 0=control), o
> # 	   observation # within rat,
> #	   (start, stop] status
> # The raw data has some intervals of zero length, i.e., start==stop.
> #  We add .1 to these times as an approximate solution
> #
> rat2 <- read.table('data.rat2', col.names=c('id', 'rx', 'enum', 'start',
+ 				  'stop', 'status'))
> temp1 <- rat2$start
> temp2 <- rat2$stop
> for (i in 1:nrow(rat2)) {
+     if (temp1[i] == temp2[i]) {
+ 	temp2[i] <- temp2[i] + .1
+ 	if (i < nrow(rat2) && rat2$id[i] == rat2$id[i+1]) {
+ 	    temp1[i+1] <- temp1[i+1] + .1
+ 	    if (temp2[i+1] <= temp1[i+1]) temp2[i+1] <- temp1[i+1]
+ 	    }
+         }
+     }
> rat2$start <- temp1
> rat2$stop  <- temp2
> 
> r2fit0 <- coxph(Surv(start, stop, status) ~ rx + cluster(id), rat2)
> 
> r2fitg <-  coxph(Surv(start, stop, status) ~ rx + frailty(id), rat2)
> r2fitm <-  coxph(Surv(start, stop, status) ~ rx + frailty.gaussian(id), rat2)
> 
> r2fit0
Call:
coxph(formula = Surv(start, stop, status) ~ rx + cluster(id), 
    data = rat2)


     coef exp(coef) se(coef) robust se     z       p
rx -0.827     0.438    0.151     0.204 -4.05 5.2e-05

Likelihood ratio test=32.9  on 1 df, p=9.9e-09  n= 253 
> r2fitg
Call:
coxph(formula = Surv(start, stop, status) ~ rx + frailty(id), 
    data = rat2)

            coef   se(coef) se2   Chisq DF   p      
rx          -0.838 0.219    0.152 14.6   1.0 0.00013
frailty(id)                       57.3  26.4 0.00045

Iterations: 7 outer, 21 Newton-Raphson
     Variance of random effect= 0.317   I-likelihood = -779.1 
Degrees of freedom for terms=  0.5 26.3 
Likelihood ratio test=120  on 26.8 df, p=8.43e-14  n= 253 
> r2fitm
Call:
coxph(formula = Surv(start, stop, status) ~ rx + frailty.gaussian(id), 
    data = rat2)

                     coef  se(coef) se2   Chisq DF   p      
rx                   -0.79 0.220    0.154 12.9   1.0 3.3e-04
frailty.gaussian(id)                      61.0  24.9 7.3e-05

Iterations: 5 outer, 17 Newton-Raphson
     Variance of random effect= 0.303 
Degrees of freedom for terms=  0.5 24.9 
Likelihood ratio test=118  on 25.4 df, p=7e-14  n= 253 
> 
> #This example is unusual: the frailties variances end up about the same,
> #  but the effect on rx differs.  Double check it
> # Because of different iteration paths, the coef won't be exactly the
> #     same, but darn close.
> 
> temp <- coxph(Surv(start, stop, status) ~ rx + offset(r2fitm$frail[id]), rat2)
> all.equal(temp$coef, r2fitm$coef[1]) ##not quite
[1] TRUE
> 
> temp <- coxph(Surv(start, stop, status) ~ rx + offset(r2fitg$frail[id]), rat2)
> all.equal(temp$coef, r2fitg$coef[1]) ##not quite
[1] TRUE
> 
> #
> # What do I get with AIC
> #
> r2fita1 <- coxph(Surv(start, stop, status) ~ rx + frailty(id, method='aic'),
+ 		 rat2)
> r2fita2 <- coxph(Surv(start, stop, status) ~ rx + frailty(id, method='aic',
+ 							  dist='gauss'), rat2)
> r2fita3 <- coxph(Surv(start, stop, status) ~ rx + frailty(id, dist='t'),
+ 		 rat2)
> 
> r2fita1
Call:
coxph(formula = Surv(start, stop, status) ~ rx + frailty(id, 
    method = "aic"), data = rat2)

                          coef   se(coef) se2   Chisq DF   p      
rx                        -0.838 0.230    0.151 13.3   1.0 0.00026
frailty(id, method = "aic                       60.4  28.2 0.00039

Iterations: 10 outer, 25 Newton-Raphson
     Variance of random effect= 0.375   I-likelihood = -779.2 
Degrees of freedom for terms=  0.4 28.2 
Likelihood ratio test=124  on 28.6 df, p=7.92e-14  n= 253 
> r2fita2
Call:
coxph(formula = Surv(start, stop, status) ~ rx + frailty(id, 
    method = "aic", dist = "gauss"), data = rat2)

                          coef   se(coef) se2   Chisq DF   p      
rx                        -0.784 0.255    0.154  9.48  1.0 2.1e-03
frailty(id, method = "aic                       73.40 29.7 1.4e-05

Iterations: 6 outer, 18 Newton-Raphson
     Variance of random effect= 0.493 
Degrees of freedom for terms=  0.4 29.7 
Likelihood ratio test=127  on 30 df, p=6.02e-14  n= 253 
> r2fita3
Call:
coxph(formula = Surv(start, stop, status) ~ rx + frailty(id, 
    dist = "t"), data = rat2)

                        coef  se(coef) se2   Chisq DF p      
rx                      -0.79 0.254    0.157  9.67  1 0.00190
frailty(id, dist = "t")                      64.70 30 0.00024

Iterations: 7 outer, 23 Newton-Raphson
     Variance of random effect= 0.779 
Degrees of freedom for terms=  0.4 30.0 
Likelihood ratio test=126  on 30.4 df, p=1.39e-13  n= 253 
> q()