File: Rtest

package info (click to toggle)
survival 2.29-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 3,204 kB
  • ctags: 1,077
  • sloc: asm: 8,713; ansic: 6,928; sh: 22; makefile: 2
file content (408 lines) | stat: -rw-r--r-- 13,820 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#attach("../.Data")
#dyn.load('../loadmod.o')
postscript(file='Rtest.ps')
library(survival)
if (R.version$minor>2) options(na.action="na.exclude")
#options(na.action='na.omit', contrasts='contr.treatment')
#
# This data set caused problems for Splus 3.4 due to a mistake in
#  my initial value code.  Data courtesy Bob Treder at Statsci
#
capacitor <- read.table('data.capacitor', row.names=1,
			col.names=c('', 'days', 'event', 'voltage'))

fitig <- survreg(Surv(days, event)~voltage, 
	dist = "gaussian", data = capacitor)
summary(fitig)

fitix <- survreg(Surv(days, event)~voltage, 
	dist = "extreme", data = capacitor)
summary(fitix)

fitil <- survreg(Surv(days, event)~voltage, 
	dist = "logistic", data = capacitor)
summary(fitil)

rm(fitil, fitig, fitix)
#
# Good initial values are key to this data set
#   It killed v4 of survreg; 
#   data courtesy of Deborah Donnell, Fred Hutchinson Cancer Center
#

donnell <- scan("data.donnell", what=list(time1=0, time2=0, status=0))
donnell <- data.frame(donnell)

dfit <- survreg(Surv(time1, time2, status, type='interval') ~1, donnell)
summary(dfit)

#
# Do a contour plot of the donnell data
#
npt <- 25
beta0  <- seq(.4, 2.4, length=npt)
logsig <- seq(-1.4, 0.41, length=npt)
donlog <- matrix(0,npt, npt)

for (i in 1:npt) {
    for (j in 1:npt) {
	fit <- survreg(Surv(time1, time2, status, type='interval') ~1,
			donnell, init=c(beta0[i],logsig[j]),
		        control=list(maxiter=0))
	donlog[i,j] <- fit$log[1]
	}
    }

clev <- -c(51, 51.5, 52:60, 65, 75, 85, 100, 150)
contour(beta0, logsig, pmax(donlog, -200), levels=clev, xlab="Intercept",
	ylab="Log(sigma)")
points(2.39, log(.7885), pch=1, col=2)
title("Donnell data")

#
# Compute the path of the iteration
#   Step 2 isn't so good, and is followed by 3 iters of step-halving
#
niter <- 14
donpath <- matrix(0,niter+1,2)
for (i in 0:niter){
    fit <- survreg(Surv(time1, time2, status, type='interval') ~1,
		    donnell, maxiter=i)
    donpath[i+1,] <- c(fit$coef, log(fit$scale))
    }
points(donpath[,1], donpath[,2])
lines(donpath[,1], donpath[,2], col=4)

rm(beta0, logsig, niter, fit, npt, donlog, clev)
#lfit1 <- censorReg(censor(time, status) ~ age + ph.ecog + strata(sex),lung)
data(lung)
lfit2 <- survreg(Surv(time, status) ~ age + ph.ecog + strata(sex), lung)
lfit3 <- survreg(Surv(time, status) ~ sex + (age+ph.ecog)*strata(sex), lung)

lfit4 <-  survreg(Surv(time, status) ~ age + ph.ecog , lung,
		  subset=(sex==1))
lfit5 <- survreg(Surv(time, status) ~ age + ph.ecog , lung,
		  subset=(sex==2))

aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
#aeq(lfit4$coef, lfit1[[1]]$coef)
#aeq(lfit4$scale, lfit1[[1]]$scale)
aeq(c(lfit4$scale, lfit5$scale), lfit3$scale )
#aeq(c(lfit4$scale, lfit5$scale), sapply(lfit1, function(x) x$scale))

#
# Test out ridge regression and splines
#
lfit0 <- survreg(Surv(time, status) ~1, lung)
lfit1 <- survreg(Surv(time, status) ~ age + ridge(ph.ecog, theta=5), lung)
lfit2 <- survreg(Surv(time, status) ~ sex + ridge(age, ph.ecog, theta=1), lung)
lfit3 <- survreg(Surv(time, status) ~ sex + age + ph.ecog, lung)

lfit0
lfit1
lfit2
lfit3


xx <- pspline(lung$age, nterm=3, theta=.3)
xx <- matrix(unclass(xx), ncol=ncol(xx))   # the raw matrix
lfit4 <- survreg(Surv(time, status) ~xx, lung)
lfit5 <- survreg(Surv(time, status) ~age, lung)

lfit6 <- survreg(Surv(time, status)~pspline(age, df=2), lung)
plot(lung$age, predict(lfit6), xlab='Age', ylab="Spline prediction")
title("Lung Data")
     
lfit7 <- survreg(Surv(time, status) ~ offset(lfit6$lin), lung)

lfit4
lfit5
lfit6
lfit7$coef

rm(lfit1, lfit2, lfit3, lfit4, lfit5, lfit6, lfit7)
rm(xx, lfit0)
#
# Data courtesy of Bercedis Peterson, Duke University.
#  v4 of survreg fails due to 2 groups that have only 1 subject; the coef
#  for them easily gets out of hand.  In fact, this data set is my toughest
#  test of the minimizer.
#
# A shrinkage model for this coefficient is therefore interesting


peterson <- data.frame(
		  scan('data.peterson', what=list(grp=0, time=0, status=0)))

fitp <- survreg(Surv(time, status) ~ factor(grp), peterson)
summary(fitp)

# Now a shrinkage model.  Give the group coefficients
#  about 1/2 the scale parameter of the original model, i.e., .18.
#
ffit <- survreg(Surv(time, status) ~ frailty(grp, theta=.1), peterson)
ffit

#
# Try 3 degrees of freedom Gaussian fit, since there are 6 groups.
#   Compare them to the unconstrained ones.  The frailty coefs are
#   on a "sum to 0" constraint rather than "first coef=0", so
#   some conversion is neccessary
#
ffit3 <- survreg(Surv(time, status) ~ frailty(grp, df=3, dist='gauss'), 
		 peterson)
print(ffit3)

temp <- mean(c(0, fitp$coef[-1])) 
temp2 <- c(fitp$coef[1] + temp, c(0,fitp$coef[-1]) - temp)
xx <- rbind(c(nrow(peterson), table(peterson$grp)),
	    temp2,
	    c(ffit3$coef, ffit3$frail))
dimnames(xx) <- list(c("N", "factor fit", "frailty fit"),
		     c("Intercept", paste("grp", 1:6)))
signif(xx,2)
#
# All but the first coef are shrunk towards zero.
#
rm(ffit, ffit3, temp, temp2, xx, fitp)

#
# Look at predicted values
#
data(ovarian)
ofit1 <- survreg(Surv(futime, fustat) ~ age + ridge(ecog.ps, rx), ovarian)

predict(ofit1)
predict(ofit1, type='response')
predict(ofit1, type='terms', se=T)

temp1 <- predict(ofit1,type="link", se=T)
temp2 <- predict(ofit1, type= 'response', se=T)
all.equal(temp2$se.fit, temp1$se.fit* exp(temp1$fit))
#
# The Stanford data from 1980 is used in Escobar and Meeker
#	t5 = T5 mismatch score
#  Their case numbers correspond to a data set sorted by age
#
stanford2 <- read.table('data.stanford', 
			col.names=c('id', 'time', 'status', 'age', 't5'))
 
stanford2$t5 <- ifelse(stanford2$t5 <0, NA, stanford2$t5)
stanford2 <- stanford2[order(stanford2$age, stanford2$time),]
stanford2$time <- ifelse(stanford2$time==0, .5, stanford2$time)

cage <- stanford2$age - mean(stanford2$age)
###fit1 <- survreg(Surv(time, status) ~ cage + cage^2, stanford2,
###		dist='lognormal')
fit1 <- survreg(Surv(time, status) ~ cage + I(cage^2), stanford2,
		dist='lognormal')
fit1
ldcase <- resid(fit1, type='ldcase')
ldresp <- resid(fit1, type='ldresp')
print(ldresp)
# The ldcase and ldresp should be compared to table 1 in Escobar and 
#  Meeker, Biometrics 1992, p519; the colum they label as (1/2) A_{ii}

plot1 <- function() {
    # make their figure 1, 2, and 6
    plot(stanford2$age, stanford2$time, log='y', xlab="Age", ylab="Days",
	 ylim=c(.01, 10^6))
    temp <- predict(fit1, type='response', se.fit=T) 
    matlines(stanford2$age, cbind(temp$fit, temp$fit-1.96*temp$se.fit,
				            temp$fit+1.96*temp$se.fit),
	     lty=c(1,2,2))
    # these are the wrong CI lines, he plotted std dev, I plotted std err
    # here are the right ones
    #  Using uncentered age gives different coefs, but makes prediction over an
    #    extended range somewhat simpler 
    refit <- survreg(Surv(time,status)~ age + age^2, stanford2,
		     dist='lognormal')
    plot(stanford2$age, stanford2$time, log='y', xlab="Age", ylab="Days",
	 ylim=c(.01, 10^6), xlim=c(0,75))
    temp2 <- predict(refit, list(age=1:75), type='quantile', p=c(.05, .5, .95))
    matlines(1:75, temp2, lty=c(1,2,2), col=2)

    plot(ldcase, xlab="Case Number", ylab="(1/2) A")
    title (main="Case weight pertubations")
    plot(ldresp, xlab="Case Number", ylab="(1/2) A")
    title(main="Response pertubations")
    }

plot1()
#
# Stanford predictions in other ways
#
fit2 <- survreg(Surv(time, status) ~ poly(age,2), stanford2,
		dist='lognormal')

p1 <- predict(fit1, type='response')
p2 <- predict(fit2, type='response')
aeq(p1, p2)

p3 <- predict(fit2, type='terms', se=T)
p4 <- predict(fit2, type='lp', se=T)
p5 <- predict(fit1, type='lp', se=T)
aeq(p3$fit + attr(p3$fit, 'constant'), p4$fit)

aeq(p4$fit, p5$fit)
#!aeq(p3$se.fit, p4$se.fit)  #this one should be false
aeq(p4$se.fit, p5$se.fit)  #this one true

#
# Verify that scale can be fixed at a value
#    coefs will differ slightly due to different iteration paths
tol <- survreg.control()$rel.tolerance

# Intercept only models
fit1 <- survreg(Surv(time,status) ~ 1, lung)
fit2 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale)
#all.equal(fit1$coef, fit2$coef, tolerance= tol)
#all.equal(fit1$loglik, fit2$loglik, tolerance= tol)
all.equal(fit1$coef, fit2$coef)
all.equal(fit1$loglik, fit2$loglik)

# multiple covariates
fit1 <- survreg(Surv(time,status) ~ age + ph.karno, lung)
fit2 <- survreg(Surv(time,status) ~ age + ph.karno, lung,
		scale=fit1$scale)
##all.equal(fit1$coef, fit2$coef, tolerance=tol)
##all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol)
all.equal(fit1$coef, fit2$coef)
all.equal(fit1$loglik[2], fit2$loglik[2])

# penalized models
fit1 <- survreg(Surv(time, status) ~ pspline(age), lung)
fit2 <- survreg(Surv(time, status) ~ pspline(age), lung, scale=fit1$scale)
#all.equal(fit1$coef, fit2$coef, tolerance=tol)
#all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol)
all.equal(fit1$coef, fit2$coef)
all.equal(fit1$loglik[2], fit2$loglik[2])

rm(fit1, fit2, tol)

#
# Test out the strata capabilities
#
tol <- survreg.control()$rel.tolerance
aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y))

# intercept only models
fit1 <- survreg(Surv(time, status) ~ strata(sex), lung)
fit2 <- survreg(Surv(time, status) ~ strata(sex) + sex, lung)
fit3a<- survreg(Surv(time,status) ~1, lung, subset=(sex==1))
fit3b<- survreg(Surv(time,status) ~1, lung, subset=(sex==2))

fit1
fit2
aeq(fit2$scale, c(fit3a$scale, fit3b$scale), tolerance=tol)
aeq(fit2$loglik[2], (fit3a$loglik + fit3b$loglik)[2], tolerance=tol)
aeq(fit2$coef[1] + 1:2*fit2$coef[2], c(fit3a$coef, fit3b$coef), tolerance=tol)

#penalized models
fit1 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+strata(sex), lung)
fit2 <- survreg(Surv(time, status) ~  pspline(age, theta=.92)+ 
		strata(sex) + sex, lung)
fit1
fit2

age1 <- ifelse(lung$sex==1, lung$age, mean(lung$age))
age2 <- ifelse(lung$sex==2, lung$age, mean(lung$age))
fit3 <- survreg(Surv(time,status) ~ pspline(age1, theta=.92) +
		pspline(age2, theta=.95) + sex + strata(sex), lung,
		rel.tol=1e-6)
fit3a<- survreg(Surv(time,status) ~pspline(age, theta=.92), lung, 
		    subset=(sex==1))
fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), lung, 
		     subset=(sex==2))

# relax the tolerance a little, since the above has lots of parameters
#  I still don't exactly match the second group, but very close
aeq(fit3$scale, c(fit3a$scale, fit3b$scale), tolerance=tol*10)
aeq(fit3$loglik[2], (fit3a$loglik + fit3b$loglik)[2], tolerance=tol*10)
pred <- predict(fit3)
aeq(pred[lung$sex==1] , predict(fit3a), tolerance=tol*10)
aeq(pred[lung$sex==2],  predict(fit3b), tolerance=tol*10)###????FIXME




#
# Some tests using the rat data
#
rats <- read.table('../testfrail/data.rats', 
		   col.names=c('litter', 'rx', 'time', 'status'))

rfitnull <- survreg(Surv(time, status) ~1, rats)
temp <- rfitnull$scale^2 * pi^2/6
cat("Effective n =", round(temp*(solve(rfitnull$var))[1,1],1), "\n")

rfit0 <- survreg(Surv(time, status) ~ rx , rats)
print(rfit0)

rfit1 <- survreg(Surv(time, status) ~ rx + factor(litter), rats)
temp <- rbind(c(rfit0$coef, rfit0$scale), c(rfit1$coef[1:2], rfit1$scale))
dimnames(temp) <- list(c("rfit0", "rfit1"), c("Intercept", "rx", "scale"))
temp


rfit2a <- survreg(Surv(time, status) ~ rx +
		  frailty.gaussian(litter, df=13, sparse=F), rats )
rfit2b <- survreg(Surv(time, status) ~ rx +
		  frailty.gaussian(litter, df=13, sparse=T), rats )

rfit3a <- coxph(Surv(time,status) ~ rx + 
		  frailty.gaussian(litter, df=13, sparse=F), rats )
rfit3b <- coxph(Surv(time,status) ~ rx + 
		frailty(litter, df=13, dist='gauss'), rats)

temp <- cbind(rfit2a$coef[3:52], rfit2b$frail, rfit3a$coef[2:51], rfit3b$frail)
dimnames(temp) <- list(NULL, c("surv","surv.sparse","cox","cox.sparse"))
pairs(temp)
apply(temp,2,var)/c(rfit2a$scale, rfit2b$scale, 1,1)^2
apply(temp,2,mean)

# The parametric model gives the coefficients less variance for the
#  two fits, for the same df, but the scaled results are similar.
# 13 df is near to the rmle for the rats

rm(temp, rfit2a, rfit2b, rfit3a, rfit3b, rfitnull, rfit0, rfit1)
options(na.action="na.exclude")
temp <- matrix(scan("data.mpip", skip=23), ncol=13, byrow=T)
dimnames(temp) <- list(NULL, c('ved', 'angina', 'education', 'prior.mi',
                     'nyha', 'rales', 'ef', 'ecg', 'angina2', 'futime', 
                     'status', 'admit', 'betab'))
 
mpip <- data.frame(temp)
lved <- log(mpip$ved + .02)

fit1 <- coxph(Surv(futime, status) ~ pspline(lved) + factor(nyha) + 
	      rales + pspline(ef), mpip)

temp <- predict(fit1, type='terms', se.fit=T)
yy <- cbind(temp$fit[,4], temp$fit[,4] + 1.96*temp$se[,4],
	                  temp$fit[,4] - 1.96*temp$se[,4])
index <- order(mpip$ef)
index<-index[!is.na(yy[index,1])]
matplot(mpip$ef[index], yy[index,], type='l', lty=c(1,2,2), col=1,
        xlab="Ejection Fraction", ylab="Cox model risk", 
        main="Post-Infarction Survival")

fit2 <- coxph(Surv(futime, status) ~ lved + factor(nyha) + rales +
	      pspline(ef, df=0), mpip)
temp <- predict(fit2, type='terms', se.fit=T)
yy <- cbind(temp$fit[,4], temp$fit[,4] + 1.96*temp$se[,4],
	                  temp$fit[,4] - 1.96*temp$se[,4])
matplot(mpip$ef[index], yy[index,], type='l', lty=c(1,2,2), col=1,
        xlab="Ejection Fraction", ylab="Cox model risk", 
        main="Post-Infarction Survival, AIC")


fit3 <- survreg(Surv(futime, status) ~ lved + factor(nyha) + rales +
		pspline(ef, df=2), mpip, dist='lognormal')
temp <- predict(fit3, type='terms', se.fit=T)
yy <- cbind(temp$fit[,4], temp$fit[,4] + 1.96*temp$se[,4],
	                  temp$fit[,4] - 1.96*temp$se[,4])
matplot(mpip$ef[index], yy[index,], type='l', lty=c(1,2,2), col=1,
        xlab="Ejection Fraction", ylab="Log-normal model predictor", 
        main="Post-Infarction Survival")
q()