1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
|
S-PLUS : Copyright (c) 1988, 1996 MathSoft, Inc.
S : Copyright AT&T.
Version 3.4 Release 1 for Sun SPARC, SunOS 5.3 : 1996
Mayo local startup...
loading survival
loading date
loading slocal.misc
set missing value action to 'na.omit'
set contrasts to ('contr.treatment', 'contr.poly')
stop automatic character -> factor conversion in data frames
Working data will be in .Data
> attach("../.Data")
> dyn.load("../loadmod.o")
> postscript(file="testall.ps")
> options(na.action="na.omit", contrasts="contr.treatment")
> #
> # This data set caused problems for Splus 3.4 due to a mistake in
> # my initial value code. Data courtesy Bob Treder at Statsci
> #
> capacitor <- read.table("data.capacitor", row.names=1,
+ col.names=c("", "days", "event", "voltage"))
> > fitig <- survreg(Surv(days, event)~voltage,
+ dist = "gaussian", data = capacitor)
> summary(fitig)
Call:
survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist =
"gaussian")
Value Std. Error z p
(Intercept) 1764.9 163.387 10.80 3.36e-27
voltage -53.9 5.545 -9.72 2.56e-22
Log(scale) 4.8 0.105 45.56 0.00e+00
Scale= 121
Gaussian distribution
Loglik(model)= -361.9 Loglik(intercept only)= -420.1
Chisq= 116.33 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n= 125
Correlation of Coefficients:
(Intercept) voltage
voltage -0.996
Log(scale) 0.412 -0.384
> > fitix <- survreg(Surv(days, event)~voltage,
+ dist = "extreme", data = capacitor)
> summary(fitix)
Call:
survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist =
"extreme")
Value Std. Error z p
(Intercept) 2055.59 180.348 11.4 4.28e-30
voltage -62.21 5.967 -10.4 1.88e-25
Log(scale) 4.53 0.108 41.9 0.00e+00
Scale= 92.9
Extreme value distribution
Loglik(model)= -360 Loglik(intercept only)= -427.1
Chisq= 134.25 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 6
n= 125
Correlation of Coefficients:
(Intercept) voltage
voltage -0.998
Log(scale) 0.425 -0.420
> > fitil <- survreg(Surv(days, event)~voltage,
+ dist = "logistic", data = capacitor)
> summary(fitil)
Call:
survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist =
"logistic")
Value Std. Error z p
(Intercept) 1811.56 148.853 12.2 4.48e-34
voltage -55.48 4.986 -11.1 9.39e-29
Log(scale) 4.19 0.117 35.8 2.03e-280
Scale= 66.3
Logistic distribution
Loglik(model)= -360.4 Loglik(intercept only)= -423.7
Chisq= 126.5 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n= 125
Correlation of Coefficients:
(Intercept) voltage
voltage -0.996
Log(scale) 0.343 -0.321
> > rm(fitil, fitig, fitix)
> #
> # Good initial values are key to this data set
> # It killed v4 of survreg;
> # data courtesy of Deborah Donnell, Fred Hutchinson Cancer Center
> #
>
> donnell <- scan("data.donnell", what=list(time1=0, time2=0, status=0))
> donnell <- data.frame(donnell)
> > dfit <- survreg(Surv(time1, time2, status, type="interval") ~1, donnell)
> summary(dfit)
Call:
survreg(formula = Surv(time1, time2, status, type = "interval") ~ 1, data =
donnell)
Value Std. Error z p
(Intercept) 2.390 0.804 2.973 0.00295
Log(scale) -0.237 0.346 -0.687 0.49222
Scale= 0.789
Weibull distribution
Loglik(model)= -51 Loglik(intercept only)= -51
Number of Newton-Raphson Iterations: 9
n= 210
Correlation of Coefficients:
(Intercept)
Log(scale) 0.955
> > #
> # Do a contour plot of the donnell data
> #
> npt <- 25
> beta0 <- seq(.4, 2.4, length=npt)
> logsig <- seq(-1.4, 0.41, length=npt)
> donlog <- matrix(0,npt, npt)
> > for (i in 1:npt) {
+ for (j in 1:npt) {
+ fit <- survreg(Surv(time1, time2, status, type="interval") ~1,
+ donnell, init=c(beta0[i],logsig[j]),
+ control=list(maxiter=0));+ donlog[i,j] <- fit$log[1];+ };+ }
> > clev <- -c(51, 51.5, 52:60, 65, 75, 85, 100, 150)
> contour(beta0, logsig, pmax(donlog, -200), levels=clev, xlab="Intercept",
+ ylab="Log(sigma)")
> points(2.39, log(.7885), pch=1, col=2)
> title("Donnell data")
> > #
> # Compute the path of the iteration
> # Step 2 isn't so good, and is followed by 3 iters of step-halving
> #
> niter <- 14
> donpath <- matrix(0,niter+1,2)
> for (i in 0:niter){
+ fit <- survreg(Surv(time1, time2, status, type="interval") ~1,
+ donnell, maxiter=i);+ donpath[i+1,] <- c(fit$coef, log(fit$scale));+ }
Warning messages:
1: Ran out of iterations and did not converge in: survreg.fit(X, Y, weights,
offset, init = init, controlvals = controlvals, dist ....
2: Ran out of iterations and did not converge in: survreg.fit(X, Y, weights,
offset, init = init, controlvals = controlvals, dist ....
3: Ran out of iterations and did not converge in: survreg.fit(X, Y, weights,
offset, init = init, controlvals = controlvals, dist ....
4: Ran out of iterations and did not converge in: survreg.fit(X, Y, weights,
offset, init = init, controlvals = controlvals, dist ....
5: Ran out of iterations and did not converge in: survreg.fit(X, Y, weights,
offset, init = init, controlvals = controlvals, dist ....
6: Ran out of iterations and did not converge in: survreg.fit(X, Y, weights,
offset, init = init, controlvals = controlvals, dist ....
7: Ran out of iterations and did not converge in: survreg.fit(X, Y, weights,
offset, init = init, controlvals = controlvals, dist ....
> points(donpath[,1], donpath[,2])
Points out of bounds X= 3.890545 Y= 0.684751
Points out of bounds X= 2.814988 Y= -0.01247539
Points out of bounds X= 2.51267 Y= -0.182087
> lines(donpath[,1], donpath[,2], col=4)
Lines out of bounds X= 3.890545 Y= 0.684751
Lines out of bounds X= 2.814988 Y= -0.01247539
Lines out of bounds X= 2.51267 Y= -0.182087
Lines out of bounds X= 2.385003 Y= -0.2381598
> > rm(beta0, logsig, niter, fit, npt, donlog, clev)
> #lfit1 <- censorReg(censor(time, status) ~ age + ph.ecog + strata(sex),lung)
> lfit2 <- survreg(Surv(time, status) ~ age + ph.ecog + strata(sex), lung)
> lfit3 <- survreg(Surv(time, status) ~ sex + (age+ph.ecog)*strata(sex), lung)
> > lfit4 <- survreg(Surv(time, status) ~ age + ph.ecog , lung,
+ subset=(sex==1))
> lfit5 <- survreg(Surv(time, status) ~ age + ph.ecog , lung,
+ subset=(sex==2))
> > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
> #aeq(lfit4$coef, lfit1[[1]]$coef)
> #aeq(lfit4$scale, lfit1[[1]]$scale)
> aeq(c(lfit4$scale, lfit5$scale), lfit3$scale )
[1] "Mean relative difference: 1.364018e-07"
> aeq(c(lfit4$scale, lfit5$scale), sapply(lfit1, function(x) x$scale))
Error: Object "lfit1" not found
Dumped
> > #
> # Test out ridge regression and splines
> #
> lfit0 <- survreg(Surv(time, status) ~1, lung)
> lfit1 <- survreg(Surv(time, status) ~ age + ridge(ph.ecog, theta=5), lung)
> lfit2 <- survreg(Surv(time, status) ~ sex + ridge(age, ph.ecog, theta=1), lung)
> lfit3 <- survreg(Surv(time, status) ~ sex + age + ph.ecog, lung)
> > lfit0
Call:
survreg(formula = Surv(time, status) ~ 1, data = lung)
Coefficients:
(Intercept)
6.034903
Scale= 0.7593932
Loglik(model)= -1153.9 Loglik(intercept only)= -1153.9
n= 228
> lfit1
Call:
survreg(formula = Surv(time, status) ~ age + ridge(ph.ecog, theta = 5), data =
lung)
coef se(coef) se2 Chisq DF p
(Intercept) 6.83082 0.42860 0.42860 254.0 1 0.00000
age -0.00783 0.00687 0.00687 1.3 1 0.25000
ridge(ph.ecog) -0.32032 0.08484 0.08405 14.2 1 0.00016
Scale= 0.738
Iterations: 1 outer, 4 Newton-Raphson
Degrees of freedom for terms= 1 1 1 1
Likelihood ratio test=18.6 on 2 df, p=8.73e-05
n=227 (1 observations deleted due to missing)
> lfit2
Call:
survreg(formula = Surv(time, status) ~ sex + ridge(age, ph.ecog, theta = 1),
data = lung)
coef se(coef) se2 Chisq DF p
(Intercept) 6.27163 0.45280 0.45210 191.84 1 0.0e+00
sex 0.40096 0.12371 0.12371 10.50 1 1.2e-03
ridge(age) -0.00746 0.00675 0.00674 1.22 1 2.7e-01
ridge(ph.ecog) -0.33848 0.08329 0.08314 16.51 1 4.8e-05
Scale= 0.731
Iterations: 1 outer, 5 Newton-Raphson
Degrees of freedom for terms= 1 1 2 1
Likelihood ratio test=30 on 3 df, p=1.37e-06
n=227 (1 observations deleted due to missing)
> lfit3
Call:
survreg(formula = Surv(time, status) ~ sex + age + ph.ecog, data = lung)
Coefficients:
(Intercept) sex age ph.ecog
6.273435 0.4010877 -0.007475331 -0.3396365
Scale= 0.7311049
Loglik(model)= -1132.4 Loglik(intercept only)= -1147.4
Chisq= 29.98 on 3 degrees of freedom, p= 1.4e-06
n=227 (1 observations deleted due to missing)
> > > xx <- pspline(lung$age, nterm=3, theta=.3)
> xx <- matrix(unclass(xx), ncol=ncol(xx)) # the raw matrix
> lfit4 <- survreg(Surv(time, status) ~xx, lung)
> lfit5 <- survreg(Surv(time, status) ~age, lung)
> > lfit6 <- survreg(Surv(time, status)~pspline(age, df=2), lung)
> plot(lung$age, predict(lfit6), xlab="Age", ylab="Spline prediction")
> title("Lung Data")
> > lfit7 <- survreg(Surv(time, status) ~ offset(lfit6$lin), lung)
> > lfit4
Call:
survreg(formula = Surv(time, status) ~ xx, data = lung)
Coefficients:
(Intercept) xx1 xx2 xx3 xx4 xx5
13.5507 -7.615118 -7.423983 -7.532781 -7.570687 -14.52685
Scale= 0.7557376
Loglik(model)= -1150.1 Loglik(intercept only)= -1153.9
Chisq= 7.52 on 5 degrees of freedom, p= 0.19
n= 228
> lfit5
Call:
survreg(formula = Surv(time, status) ~ age, data = lung)
Coefficients:
(Intercept) age
6.887117 -0.01360819
Scale= 0.7587492
Loglik(model)= -1151.9 Loglik(intercept only)= -1153.9
Chisq= 3.91 on 1 degrees of freedom, p= 0.048
n= 228
> lfit6
Call:
survreg(formula = Surv(time, status) ~ pspline(age, df = 2), data = lung)
coef se(coef) se2 Chisq DF p
(Intercept) 6.5918 0.63681 0.41853 107.15 1.00 0.000
pspline(age, df = 2), lin -0.0136 0.00687 0.00687 3.94 1.00 0.047
pspline(age, df = 2), non 0.78 1.06 0.400
Scale= 0.756
Iterations: 4 outer, 9 Newton-Raphson
Theta= 0.926
Degrees of freedom for terms= 0.4 2.1 1.0
Likelihood ratio test=5.2 on 1.5 df, p=0.0441 n= 228
> lfit7$coef
(Intercept)
-6.008005e-07
> > rm(lfit1, lfit2, lfit3, lfit4, lfit5, lfit6, lfit7)
> rm(xx, lfit0)
> #
> # Data courtesy of Bercedis Peterson, Duke University.
> # v4 of survreg fails due to 2 groups that have only 1 subject; the coef
> # for them easily gets out of hand. In fact, this data set is my toughest
> # test of the minimizer.
> #
> # A shrinkage model for this coefficient is therefore interesting
>
>
> peterson <- data.frame(
+ scan("data.peterson", what=list(grp=0, time=0, status=0)))
> > fitp <- survreg(Surv(time, status) ~ factor(grp), peterson)
> summary(fitp)
Call:
survreg(formula = Surv(time, status) ~ factor(grp), data = peterson)
Value Std. Error z p
(Intercept) 2.291 0.115 19.92 2.93e-88
factor(grp)2 0.786 0.177 4.44 8.79e-06
factor(grp)3 0.728 0.183 3.97 7.09e-05
factor(grp)4 -1.598 0.218 -7.32 2.48e-13
factor(grp)5 -0.500 0.218 -2.29 2.21e-02
factor(grp)6 0.475 0.170 2.79 5.23e-03
Log(scale) -1.684 0.257 -6.54 6.09e-11
Scale= 0.186
Weibull distribution
Loglik(model)= -26.7 Loglik(intercept only)= -40.7
Chisq= 28.18 on 5 degrees of freedom, p= 3.4e-05
Number of Newton-Raphson Iterations: 8
n= 19
Correlation of Coefficients:
(Intercept) factor(grp)2 factor(grp)3 factor(grp)4 factor(grp)5
factor(grp)2 -0.668
factor(grp)3 -0.683 0.463
factor(grp)4 -0.527 0.352 0.360
factor(grp)5 -0.527 0.352 0.360 0.278
factor(grp)6 -0.617 0.406 0.400 0.325 0.325
Log(scale) -0.364 0.285 0.380 0.192 0.192
factor(grp)6
factor(grp)2
factor(grp)3
factor(grp)4
factor(grp)5
factor(grp)6
Log(scale) 0.083
> > # Now a shrinkage model. Give the group coefficients
> # about 1/2 the scale parameter of the original model, i.e., .18.
> #
> ffit <- survreg(Surv(time, status) ~ frailty(grp, theta=.1), peterson)
> ffit
Call:
survreg(formula = Surv(time, status) ~ frailty(grp, theta = 0.1), data =
peterson)
coef se(coef) se2 Chisq DF p
(Intercept) 2.62 0.172 0.0874 232.0 1.00 0.0000
frailty(grp, theta = 0.1) 10.4 2.15 0.0067
Scale= 0.301
Iterations: 1 outer, 6 Newton-Raphson
Variance of random effect= 0.1 EM likelihood = -11.8
Degrees of freedom for terms= 0.3 2.2 0.7
Likelihood ratio test=13.8 on 1.1 df, p=0.00027 n= 19
> > #
> # Try 3 degrees of freedom Gaussian fit, since there are 6 groups.
> # Compare them to the unconstrained ones. The frailty coefs are
> # on a "sum to 0" constraint rather than "first coef=0", so
> # some conversion is neccessary
> #
> ffit3 <- survreg(Surv(time, status) ~ frailty(grp, df=3, dist="gauss"),
+ peterson)
> print(ffit3)
Call:
survreg(formula = Surv(time, status) ~ frailty(grp, df = 3, dist = "gauss"),
data = peterson)
coef se(coef) se2 Chisq DF p
(Intercept) 2.44 0.223 0.0661 119.8 1 0.00000
frailty(grp, df = 3, dist 16.4 3 0.00096
Scale= 0.251
Iterations: 7 outer, 24 Newton-Raphson
Variance of random effect= 0.197
Degrees of freedom for terms= 0.1 3.0 0.6
Likelihood ratio test=20.1 on 1.7 df, p=2.79e-05 n= 19
> > temp <- mean(c(0, fitp$coef[-1]))
> temp2 <- c(fitp$coef[1] + temp, c(0,fitp$coef[-1]) - temp)
> xx <- rbind(c(nrow(peterson), table(peterson$grp)),
+ temp2,
+ c(ffit3$coef, ffit3$frail))
> dimnames(xx) <- list(c("N", "factor fit", "frailty fit"),
+ c("Intercept", paste("grp", 1:6)))
> signif(xx,2)
Intercept grp 1 grp 2 grp 3 grp 4 grp 5 grp 6
N 19.0 3.000 6.00 6.00 1.00 1.00 2.00
factor fit 2.3 0.018 0.80 0.75 -1.60 -0.48 0.49
frailty fit 2.4 -0.180 0.58 0.55 -0.77 -0.44 0.26
> #
> # All but the first coef are shrunk towards zero.
> #
> rm(ffit, ffit3, temp, temp2, xx, fitp)
> > #
> # Look at predicted values
> #
> ofit1 <- survreg(Surv(futime, fustat) ~ age + ridge(ecog.ps, rx), ovarian)
> > predict(ofit1)
[1] 207.7546 172.7985 358.7725 1426.6414 1353.7225 843.8571 1102.1610
[8] 859.5061 416.3272 1280.4037 820.7276 1882.7133 876.1244 1041.8917
[15] 3477.0123 2622.9581 3761.4852 2207.8635 1362.1943 3113.9504 879.1986
[22] 180.8418 2501.0478 645.2425 555.8297 936.0066
> predict(ofit1, type="response")
[1] 207.7546 172.7985 358.7725 1426.6414 1353.7225 843.8571 1102.1610
[8] 859.5061 416.3272 1280.4037 820.7276 1882.7133 876.1244 1041.8917
[15] 3477.0123 2622.9581 3761.4852 2207.8635 1362.1943 3113.9504 879.1986
[22] 180.8418 2501.0478 645.2425 555.8297 936.0066
> predict(ofit1, type="terms", se=T)
$fit:
age ridge(ecog.ps, rx)
1 -1.37775562 -0.1765498
2 -1.56198696 -0.1765498
3 -0.87785012 -0.1301245
4 0.23871941 0.1336957
5 0.49650010 -0.1765498
6 -0.02255551 -0.1301245
7 -0.06575616 0.1801210
8 -0.31442628 0.1801210
9 -0.68264179 -0.1765498
10 0.08414645 0.1801210
11 -0.05034745 -0.1301245
12 0.51611042 0.1336957
13 -0.29527617 0.1801210
14 -0.07556559 0.1336957
15 1.43981531 -0.1765498
16 1.11151929 -0.1301245
17 1.47203044 -0.1301245
18 0.98566722 -0.1765498
19 0.19249326 0.1336957
20 1.01928857 0.1336957
21 -0.29177342 0.1801210
22 -1.56291591 -0.1301245
23 1.11035170 -0.1765498
24 -0.60115796 0.1801210
25 -0.70389695 0.1336957
26 -0.18273628 0.1336957
attr($fit, "constant"):
[1] 6.890663
$se.fit:
age ridge(ecog.ps, rx)
1 0.356016316 0.1738687
2 0.403622262 0.1738687
3 0.226839188 0.1942911
4 0.061685835 0.1803885
5 0.128297162 0.1738687
6 0.005828413 0.1942911
7 0.016991596 0.1872282
8 0.081248722 0.1872282
9 0.176396749 0.1738687
10 0.021743704 0.1872282
11 0.013009936 0.1942911
12 0.133364529 0.1803885
13 0.076300276 0.1872282
14 0.019526381 0.1803885
15 0.372052731 0.1738687
16 0.287220023 0.1942911
17 0.380377220 0.1942911
18 0.254699460 0.1738687
19 0.049740854 0.1803885
20 0.263387319 0.1803885
21 0.075395153 0.1872282
22 0.403862307 0.1942911
23 0.286918315 0.1738687
24 0.155341078 0.1872282
25 0.181889150 0.1803885
26 0.047219621 0.1803885
> > temp1 <- predict(ofit1, se=T)
> temp2 <- predict(ofit1, type= "response", se=T)
> all.equal(temp2$se.fit, temp1$se.fit* sqrt(exp(temp1$fit)))
[1] "Mean relative difference: Inf"
> #
> # The Stanford data from 1980 is used in Escobar and Meeker
> # t5 = T5 mismatch score
> # Their case numbers correspond to a data set sorted by age
> #
> stanford2 <- read.table("data.stanford",
+ col.names=c("id", "time", "status", "age", "t5"))
> > stanford2$t5 <- ifelse(stanford2$t5 <0, NA, stanford2$t5)
> stanford2 <- stanford2[order(stanford2$age, stanford2$time),]
> stanford2$time <- ifelse(stanford2$time==0, .5, stanford2$time)
> > cage <- stanford2$age - mean(stanford2$age)
> fit1 <- survreg(Surv(time, status) ~ cage + cage^2, stanford2,
+ dist="lognormal")
> fit1
Call:
survreg(formula = Surv(time, status) ~ cage + cage^2, data = stanford2, dist =
"lognormal")
Coefficients:
(Intercept) cage I(cage^2)
6.717596 -0.06190903 -0.003504326
Scale= 2.362866
Loglik(model)= -863.6 Loglik(intercept only)= -868.8
Chisq= 10.5 on 2 degrees of freedom, p= 0.0053
n= 184
> ldcase <- resid(fit1, type="ldcase")
> ldresp <- resid(fit1, type="ldresp")
> print(ldresp)
139 159 181 119 74 120 99
0.1379203 0.145245 0.02628074 0.07320179 0.07624326 0.0399479 0.06328466
108 179 43 134 160 177 153
0.0612898 0.009685606 0.04767553 0.02980549 0.1036051 0.008990546 0.02114946
136 133 176 66 157 114 46
0.0255769 0.1591464 0.008618358 0.03389346 0.01141316 0.01990885 0.02044978
65 184 88 182 180 163
0.02480539 1.085676e-05 0.0547439 0.001786473 0.002574794 0.007654047
84 90 68 48 174 151 125
0.02024456 0.08561197 0.03894985 0.07007566 0.0037674 0.008314653 0.01248552
73 105 117 96 39 38 106
0.01954895 0.01831982 0.01739301 0.01789441 0.02406183 0.02364314 0.04717185
14 123 135 111 83 143 69
0.02051897 0.04763901 0.01663805 0.01367015 0.03204509 0.01857902 0.02058868
27 113 167 156 141 30
0.03896725 0.03775025 0.005091493 0.01528402 0.008682116 0.01746136
144 158 79 102 77 36
0.02593291 0.006620361 0.01375918 0.01547852 0.01786267 0.0233067
183 122 162 121 87 2
3.720795e-05 0.01696469 0.005954799 0.01233286 0.01655939 0.1089489
64 150 85 71 19 21 175
0.06015393 0.007469416 0.016665 0.01893414 0.02645489 0.18433 0.01789942
169 148 138 98 104 103 12
0.004379942 0.007619682 0.009332594 0.014288 0.01445961 0.01449499 0.03404299
89 3 100 55 142 63 168
0.03358406 0.03113308 0.01412657 0.01179741 0.00864158 0.01426955 0.00455403
72 137 10 124 17 94 82
0.01094162 0.009645953 0.01226565 0.01222511 0.01088511 0.01493685 0.0184422
170 149 42 128 67 109 75
0.03988065 0.03038322 0.02127744 0.01439502 0.01285836 0.00894498 0.0199779
26 97 58 178 140 32 126
0.02757124 0.02549339 0.02356049 0.002057497 0.01269584 0.01103393 0.0125303
51 101 29 33 164 60
0.0143023 0.01637414 0.02201027 0.01118993 0.006417554 0.008492277
152 145 112 76 47 118
0.008651511 0.009608663 0.01609214 0.02168279 0.02622512 0.02274276
5 129 31 35 40 130
0.01184996 0.009391146 0.008772106 0.008526052 0.009451662 0.01295997
28 56 91 44 23 37 70
0.01285987 0.01536642 0.02031498 0.02807957 0.01965943 0.01733256 0.009129009
132 9 81 59 127 131
0.009121716 0.009083024 0.01025238 0.01032187 0.01183694 0.01403298
80 20 25 165 24 172 146
0.02363944 0.02181251 0.02723395 0.02043511 0.02019542 0.01152649 0.01265906
86 107 95 116 41 61 155
0.01538527 0.02107502 0.0229847 0.02128395 0.01791007 0.01763098 0.01345059
166 154 4 92 93 62 34
0.01285115 0.0121809 0.01470506 0.02599207 0.03098464 0.03037746 0.02166522
15 173 171 52 110 50
0.01478523 0.007517959 0.008681577 0.01679632 0.02540017 0.03470671
45 53 54 147 115 16 1
0.03229507 0.03017737 0.02416304 0.01870027 0.02172489 0.1164272 0.04257799
6 7 57 78 161 11 8
0.02459122 0.03585529 0.03587691 0.02865161 0.02603297 0.05640971 0.04338251
49 13 22 18
0.03425475 0.06262793 0.1029315 0.1442429
> # The ldcase and ldresp should be compared to table 1 in Escobar and
> # Meeker, Biometrics 1992, p519; the colum they label as (1/2) A_{ii}
>
> plot1 <- function() {
+ # make their figure 1, 2, and 6
+ plot(stanford2$age, stanford2$time, log="y", xlab="Age", ylab="Days",
+ ylim=c(.01, 10^6));+ temp <- predict(fit1, type="response", se.fit=T) ;+ matlines(stanford2$age, cbind(temp$fit, temp$fit-1.96*temp$se.fit,
+ temp$fit+1.96*temp$se.fit),
+ lty=c(1,2,2));+ # these are the wrong CI lines, he plotted std dev, I plotted std err
+ # here are the right ones
+ # Using uncentered age gives different coefs, but makes prediction over an
+ # extended range somewhat simpler
+ refit <- survreg(Surv(time,status)~ age + age^2, stanford2,
+ dist="lognormal");+ plot(stanford2$age, stanford2$time, log="y", xlab="Age", ylab="Days",
+ ylim=c(.01, 10^6), xlim=c(0,75));+ temp2 <- predict(refit, list(age=1:75), type="quantile", p=c(.05, .5, .95));+ matlines(1:75, temp2, lty=c(1,2,2), col=2);+
+ tsplot(ldcase, xlab="Case Number", ylab="(1/2) A");+ title (main="Case weight pertubations");+ tsplot(ldresp, xlab="Case Number", ylab="(1/2) A");+ title(main="Response pertubations");+ }
> > plot1()
Warning: Data values <=0 omitted from logarithmic plot
> #
> # Stanford predictions in other ways
> #
> fit2 <- survreg(Surv(time, status) ~ poly(age,2), stanford2,
+ dist="lognormal")
> > p1 <- predict(fit1, type="response")
> p2 <- predict(fit2, type="response")
> aeq(p1, p2)
[1] T
> > p3 <- predict(fit2, type="terms", se=T)
> p4 <- predict(fit2, type="lp", se=T)
> p5 <- predict(fit1, type="lp", se=T)
> aeq(p3$fit + attr(p3$fit, "constant"), p4$fit)
[1] T
> aeq(p4$fit, p5$fit)
[1] T
> aeq(p3$se.fit, p4$se.fit) #this one should be false
[1] "Mean relative difference: 0.358807"
> aeq(p4$se.fit, p5$se.fit) #this one true
[1] T
> > #
> # Verify that scale can be fixed at a value
> # coefs will differ slightly due to different iteration paths
> tol <- survreg.control()$rel.tolerance
> > # Intercept only models
> fit1 <- survreg(Surv(time,status) ~ 1, lung)
> fit2 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale)
> all.equal(fit1$coef, fit2$coef, tolerance= tol)
[1] T
> all.equal(fit1$loglik, fit2$loglik, tolerance= tol)
[1] T
> > # multiple covariates
> fit1 <- survreg(Surv(time,status) ~ age + ph.karno, lung)
> fit2 <- survreg(Surv(time,status) ~ age + ph.karno, lung,
+ scale=fit1$scale)
> all.equal(fit1$coef, fit2$coef, tolerance=tol)
[1] T
> all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol)
[1] T
> > # penalized models
> fit1 <- survreg(Surv(time, status) ~ pspline(age), lung)
> fit2 <- survreg(Surv(time, status) ~ pspline(age), lung, scale=fit1$scale)
> all.equal(fit1$coef, fit2$coef, tolerance=tol)
[1] "Mean relative difference: 0.0002487206"
> all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol)
[1] T
> > rm(fit1, fit2, tol)
> > #
> # Test out the strata capabilities
> #
> tol <- survreg.control()$rel.tolerance
> aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y), ...)
> > # intercept only models
> fit1 <- survreg(Surv(time, status) ~ strata(sex), lung)
> fit2 <- survreg(Surv(time, status) ~ strata(sex) + sex, lung)
> fit3a<- survreg(Surv(time,status) ~1, lung, subset=(sex==1))
> fit3b<- survreg(Surv(time,status) ~1, lung, subset=(sex==2))
> > fit1
Call:
survreg(formula = Surv(time, status) ~ strata(sex), data = lung)
Coefficients:
(Intercept)
6.06217
Scale:
sex=1 sex=2
0.8167547 0.6533025
Loglik(model)= -1152.5 Loglik(intercept only)= -1152.5
n= 228
> fit2
Call:
survreg(formula = Surv(time, status) ~ strata(sex) + sex, data = lung)
Coefficients:
(Intercept) sex
5.49441 0.3801714
Scale:
sex=1 sex=2
0.8084286 0.6355802
Loglik(model)= -1147.1 Loglik(intercept only)= -1152.5
Chisq= 10.9 on 1 degrees of freedom, p= 0.00096
n= 228
> aeq(fit2$scale, c(fit3a$scale, fit3b$scale), tolerance=tol)
[1] T
> aeq(fit2$loglik[2], (fit3a$loglik + fit3b$loglik)[2], tolerance=tol)
[1] T
> aeq(fit2$coef[1] + 1:2*fit2$coef[2], c(fit3a$coef, fit3b$coef), tolerance=tol)
[1] T
> > #penalized models
> fit1 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+strata(sex), lung)
> fit2 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+
+ strata(sex) + sex, lung)
> fit1
Call:
survreg(formula = Surv(time, status) ~ pspline(age, theta = 0.92) + strata(sex),
data = lung)
coef se(coef) se2 Chisq DF p
(Intercept) 6.9036 0.8469 0.5688 66.45 1.00 3.3e-16
pspline(age, theta = 0.92 -0.0124 0.0067 0.0067 3.45 1.00 6.3e-02
pspline(age, theta = 0.92 2.53 2.65 4.0e-01
Scale:
sex=1 sex=2
0.807 0.654
Iterations: 1 outer, 3 Newton-Raphson
Theta= 0.92
Degrees of freedom for terms= 0.5 3.6 2.0
Likelihood ratio test=6.54 on 3.1 df, p=0.0937 n= 228
> fit2
Call:
survreg(formula = Surv(time, status) ~ pspline(age, theta = 0.92) + strata(sex) +
sex, data = lung)
coef se(coef) se2 Chisq DF p
(Intercept) 6.3729 0.84471 0.59118 56.92 1.00 4.5e-14
pspline(age, theta = 0.92 -0.0111 0.00666 0.00666 2.77 1.00 9.6e-02
pspline(age, theta = 0.92 2.46 2.68 4.2e-01
sex 0.3686 0.11711 0.11685 9.91 1.00 1.6e-03
Scale:
sex=1 sex=2
0.8 0.636
Iterations: 1 outer, 4 Newton-Raphson
Theta= 0.92
Degrees of freedom for terms= 0.5 3.7 1.0 2.0
Likelihood ratio test=16.8 on 4.2 df, p=0.00245 n= 228
> > age1 <- ifelse(lung$sex==1, lung$age, mean(lung$age))
> age2 <- ifelse(lung$sex==2, lung$age, mean(lung$age))
> fit3 <- survreg(Surv(time,status) ~ pspline(age1, theta=.92) +
+ pspline(age2, theta=.95) + sex + strata(sex), lung,
+ rel.tol=1e-6)
> fit3a<- survreg(Surv(time,status) ~pspline(age, theta=.92), lung,
+ subset=(sex==1))
> fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), lung,
+ subset=(sex==2))
> > # relax the tolerance a little, since the above has lots of parameters
> # I still don't exactly match the second group, but very close
> aeq(fit3$scale, c(fit3a$scale, fit3b$scale), tolerance=tol*10)
[1] "Mean relative difference: 0.001270825"
> aeq(fit3$loglik[2], (fit3a$loglik + fit3b$loglik)[2], tolerance=tol*10)
[1] T
> pred <- predict(fit3)
> aeq(pred[lung$sex==1] , predict(fit3a), tolerance=tol*10)
[1] T
> aeq(pred[lung$sex==2], predict(fit3b), tolerance=tol*10)
[1] "Mean relative difference: 0.01158256"
> > > > > #
> # Some tests using the rat data
> #
> rats <- read.table("../testfrail/data.rats",
+ col.names=c("litter", "rx", "time", "status"))
> > rfitnull <- survreg(Surv(time, status) ~1, rats)
> temp <- rfitnull$scale^2 * pi^2/6
> cat("Effective n =", round(temp*(solve(rfitnull$var))[1,1],1), "\n")
Effective n = 65.8
> > rfit0 <- survreg(Surv(time, status) ~ rx , rats)
> print(rfit0)
Call:
survreg(formula = Surv(time, status) ~ rx, data = rats)
Coefficients:
(Intercept) rx
4.983121 -0.2385013
Scale= 0.2637831
Loglik(model)= -242.3 Loglik(intercept only)= -246.3
Chisq= 8 on 1 degrees of freedom, p= 0.0047
n= 150
> > rfit1 <- survreg(Surv(time, status) ~ rx + factor(litter), rats)
> temp <- rbind(c(rfit0$coef, rfit0$scale), c(rfit1$coef[1:2], rfit1$scale))
> dimnames(temp) <- list(c("rfit0", "rfit1"), c("Intercept", "rx", "scale"))
> temp
Intercept rx scale
rfit0 4.983121 -0.2385013 0.2637831
rfit1 4.902437 -0.2189405 0.2025429
> > > rfit2a <- survreg(Surv(time, status) ~ rx +
+ frailty.gaussian(litter, df=13, sparse=F), rats )
> rfit2b <- survreg(Surv(time, status) ~ rx +
+ frailty.gaussian(litter, df=13, sparse=T), rats )
> > rfit3a <- coxph(Surv(time,status) ~ rx +
+ frailty.gaussian(litter, df=13, sparse=F), rats )
> rfit3b <- coxph(Surv(time,status) ~ rx +
+ frailty(litter, df=13, dist="gauss"), rats)
> > temp <- cbind(rfit2a$coef[3:52], rfit2b$frail, rfit3a$coef[2:51], rfit3b$frail)
> dimnames(temp) <- list(NULL, c("surv","surv.sparse","cox","cox.sparse"))
> pairs(temp)
> apply(temp,2,var)/c(rfit2a$scale, rfit2b$scale, 1,1)^2
surv surv.sparse cox cox.sparse
0.1346009 0.1346009 0.1224049 0.1207863
> apply(temp,2,mean)
surv surv.sparse cox cox.sparse
-7.979728e-19 6.938894e-20 -1.096345e-17 1.054712e-17
> > # The parametric model gives the coefficients less variance for the
> # two fits, for the same df, but the scaled results are similar.
> # 13 df is near to the rmle for the rats
>
> rm(temp, rfit2a, rfit2b, rfit3a, rfit3b, rfitnull, rfit0, rfit1)
> > temp <- matrix(scan("data.mpip", skip=23), ncol=13, byrow=T)
> dimnames(temp) <- list(NULL, c("ved", "angina", "education", "prior.mi",
+ "nyha", "rales", "ef", "ecg", "angina2", "futime",
+ "status", "admit", "betab"))
> > mpip <- data.frame(temp)
> lved <- log(mpip$ved + .02)
> > fit1 <- coxph(Surv(futime, status) ~ pspline(lved) + factor(nyha) +
+ rales + pspline(ef), mpip)
> > temp <- predict(fit1, type="terms", se.fit=T)
> yy <- cbind(temp$fit[,4], temp$fit[,4] + 1.96*temp$se[,4],
+ temp$fit[,4] - 1.96*temp$se[,4])
> index <- order(mpip$ef)
> matplot(mpip$ef[index], yy[index,], type="l", lty=c(1,2,2), col=1)
> title(xlab="Ejection Fraction", ylab="Cox model risk",
+ main="Post-Infarction Survival")
> > fit2 <- coxph(Surv(futime, status) ~ lved + factor(nyha) + rales +
+ pspline(ef, df=0), mpip)
Warning messages:
1: Condition has 764 elements: only the first used in: if(n < df + 2) dfc <-
(df - n) + ((df + 1) * df)/2 - 1 else dfc <- -1 + (df + 1 ....
2: Condition has 764 elements: only the first used in: if(n < df + 2) dfc <-
(df - n) + ((df + 1) * df)/2 - 1 else dfc <- -1 + (df + 1 ....
3: Condition has 764 elements: only the first used in: if(n < df + 2) dfc <-
(df - n) + ((df + 1) * df)/2 - 1 else dfc <- -1 + (df + 1 ....
4: Condition has 764 elements: only the first used in: if(n < df + 2) dfc <-
(df - n) + ((df + 1) * df)/2 - 1 else dfc <- -1 + (df + 1 ....
5: Condition has 764 elements: only the first used in: if(n < df + 2) dfc <-
(df - n) + ((df + 1) * df)/2 - 1 else dfc <- -1 + (df + 1 ....
6: Condition has 764 elements: only the first used in: if(n < df + 2) dfc <-
(df - n) + ((df + 1) * df)/2 - 1 else dfc <- -1 + (df + 1 ....
7: Condition has 764 elements: only the first used in: if(n < df + 2) dfc <-
(df - n) + ((df + 1) * df)/2 - 1 else dfc <- -1 + (df + 1 ....
8: Condition has 764 elements: only the first used in: if(n < df + 2) dfc <-
(df - n) + ((df + 1) * df)/2 - 1 else dfc <- -1 + (df + 1 ....
9: Condition has 764 elements: only the first used in: if(n < df + 2) dfc <-
(df - n) + ((df + 1) * df)/2 - 1 else dfc <- -1 + (df + 1 ....
10: Condition has 764 elements: only the first used in: if(n < df + 2) dfc <-
(df - n) + ((df + 1) * df)/2 - 1 else dfc <- -1 + (df + 1 ....
> temp <- predict(fit2, type="terms", se.fit=T)
> yy <- cbind(temp$fit[,4], temp$fit[,4] + 1.96*temp$se[,4],
+ temp$fit[,4] - 1.96*temp$se[,4])
> matplot(mpip$ef[index], yy[index,], type="l", lty=c(1,2,2), col=1)
> title(xlab="Ejection Fraction", ylab="Cox model risk",
+ main="Post-Infarction Survival, AIC")
> > > fit3 <- survreg(Surv(futime, status) ~ lved + factor(nyha) + rales +
+ pspline(ef, df=2), mpip, dist="lognormal")
> temp <- predict(fit3, type="terms", se.fit=T)
> yy <- cbind(temp$fit[,4], temp$fit[,4] + 1.96*temp$se[,4],
+ temp$fit[,4] - 1.96*temp$se[,4])
> matplot(mpip$ef[index], yy[index,], type="l", lty=c(1,2,2), col=1)
> title(xlab="Ejection Fraction", ylab="Log-normal model predictor",
+ main="Post-Infarction Survival")
> q()
Generated postscript file "testall.ps".
|