File: pyears3b.c

package info (click to toggle)
survival 3.8-3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 15,488 kB
  • sloc: ansic: 8,088; makefile: 85
file content (205 lines) | stat: -rw-r--r-- 5,777 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
**  Person-years calculations, leading to expected survival for a cohort.
**    The output table depends only on factors, not on continuous.
**    This version converted to .Call syntax for memory savings
**
**  Input:
**      death        1=conditional surv, 0=cohort
**
**    expected table, a multi-way array
**      efac[edim]  1=is a factor, 0=continuous (time based)
**      edims[edim] the dimension vector of the table; edim is its length
**      ecut[sum(edims)]  the starting point (label) for each dimension.
**                          if it is a factor dim, will be 1:edims[i]
**      expect      the actual table of expected rates
**
**    subject data
**      grpx[n]     how patients are grouped into curves
**      x[edim, n]  where each subject indexes into the expected table 
**                       at time 0, n= number of subjects
**      y[n]         the time at risk for each subject
**
**    control over output
**      ngrp  number of output groups (the max value of grpx)
**      times[ntime]    the list of output times
**
**    Output
**      esurv[ntime,ngrp]   conditional survival
**      nsurv[ntime,ngrp]   number of subjects per cell of "esurv"
*/
#include <math.h>
#include "survS.h"
#include "survproto.h"

/* my habit is to name a S object "charlie2" and the pointer
**  to the contents of the object "charlie"; the latter is
**  used in the computations
*/
SEXP pyears3b(SEXP   death2,    SEXP   efac2,   SEXP edims2,
	      SEXP   ecut2,     SEXP   expect2, SEXP grpx2,
	      SEXP   x2, 	SEXP   y2,      SEXP times2,
	      SEXP   ngrp2) {
    int i,j,k;
    int     n,
	    death,
	    edim,
	    ngrp,
	    ntime;
    double  **x;
    double  *data2;
    double  **ecut, *etemp;
    double  hazard,   /*cum hazard over an interval */
	    cumhaz;   /*total hazard to date for the subject */
    double  timeleft,
	    thiscell,
	    etime,
	    time,
	    et2;
    int     index,
	    indx,
	    indx2;
    double  wt;
    double  *wvec;    /* vector of weights needed for unconditional surv */
    int     group;

    int	    *efac, *edims, *grpx;
    double  *expect, *y, *times;
    SEXP    esurv2, nsurv2, rlist, rlistnames;
    double  *esurv;
    int     *nsurv;
    

    /* 
    ** copies of input arguments
    */
    death = asInteger(death2);
    ngrp  = asInteger(ngrp2);
    efac  = INTEGER(efac2);
    edims = INTEGER(edims2);
    edim  = LENGTH(edims2);
    expect= REAL(expect2);
    grpx  = INTEGER(grpx2);
    
    n     = LENGTH(y2);
    x     = dmatrix(REAL(x2), n, edim);
    y     = REAL(y2);
    times = REAL(times2);
    ntime = LENGTH(times2);

    /* scratch space */
    data2 = (double *)ALLOC(edim+1, sizeof(double));
    wvec  = (double *)ALLOC(ntime*ngrp, sizeof(double));
    for (j=0; j<ntime*ngrp; j++) wvec[j] =0;

    /*
    ** Set up ecut index as a ragged array
    */
    ecut = (double **)ALLOC(edim, sizeof(double *));
    etemp = REAL(ecut2);
    for (i=0; i<edim; i++) {
	ecut[i] = etemp;
	if (efac[i]==0)     etemp += edims[i];
	else if(efac[i] >1) etemp += 1 + (efac[i]-1)*edims[i];
	}

    /* 
    ** Create output arrays
    */
    PROTECT(esurv2 = allocVector(REALSXP, ntime*ngrp));
    esurv = REAL(esurv2);
    PROTECT(nsurv2 = allocVector(INTSXP, ntime*ngrp));
    nsurv = INTEGER(nsurv2);
    for (i=0; i<(ntime*ngrp); i++) {
	esurv[i] =0.;
	nsurv[i] =0;
	}

    /* compute */
    for (i=0; i<n; i++) {
	R_CheckUserInterrupt();  /* check for control-C */
	/*
	** initialize
	*/
	cumhaz =0;
	for (j=0; j<edim; j++) data2[j] = x[j][i];
	timeleft = y[i];
	group = grpx[i] -1;
	time =0;      /*change this later to an input paramter, i.e., start */

	/*
	** add up hazard
	*/
	for (j=0; j<ntime && timeleft >0; j++) {
	    thiscell = times[j] - time;
	    if (thiscell > timeleft) thiscell = timeleft;
	    index =j + ntime*group;

	    /* expected calc 
	    **  The wt parameter only comes into play for older style US rate
	    **   tables, where pystep does interpolation.
	    ** Each call to pystep moves up to the next 'boundary' in the
	    **  expected table, data2 contains our current position therein
	    */
	    etime = thiscell;
	    hazard =0;
	    while (etime >0) {
		et2 = pystep(edim, &indx, &indx2, &wt, data2, efac,
			     edims, ecut, etime, 1);
		if (wt <1) hazard+= et2*(wt*expect[indx] +(1-wt)*expect[indx2]);
		else       hazard+= et2* expect[indx];
		for (k=0; k<edim; k++)
		    if (efac[k] !=1) data2[k] += et2;
		etime -= et2;
/*
printf("indx=%d, time=%5.1f, rate1=%6e, rate2=%6e, wt=%3.1f\n", 
       indx, et2, expect[indx], expect[indx2], wt);
*/
		}
/*printf("index=%d, hazard=%6e, cumhaz=%6e\n", index, hazard, cumhaz); */
	    if (times[j]==0) {
		wvec[index]=1;
		if (death==0) esurv[index]=1;
		else          esurv[index]=0;
		}
	    else if (death==0) {
		esurv[index] += exp(-(cumhaz+hazard)) * thiscell;
		wvec[index]  += exp(-cumhaz) * thiscell;
		}
	    else {
		esurv[index] += hazard * thiscell;
		wvec[index] +=  thiscell;
		}
	    nsurv[index] ++;
	    cumhaz += hazard;

	    time  += thiscell;
	    timeleft -= thiscell;
	    }
	}

    for (i=0; i<ntime*ngrp; i++) {
/*
printf("i=%3d, esurv=%6e, wvec=%6e, death=%d\n", i, esurv[i], wvec[i], death);
*/
	if (wvec[i]>0) {
	    if (death==0) esurv[i] /= wvec[i];
	    else          esurv[i] = exp(-esurv[i]/wvec[i]);
	    }
	else if (death!=0) esurv[i] = exp(-esurv[i]);
	}
    
    /*
    ** package the output
    */
    PROTECT(rlist = allocVector(VECSXP, 2));
    SET_VECTOR_ELT(rlist,0, esurv2);
    SET_VECTOR_ELT(rlist,1, nsurv2);
    
    PROTECT(rlistnames= allocVector(STRSXP, 2));
    SET_STRING_ELT(rlistnames, 0, mkChar("surv"));
    SET_STRING_ELT(rlistnames, 1, mkChar("n"));
    setAttrib(rlist, R_NamesSymbol, rlistnames);

    unprotect(4);
    return(rlist);
    }