1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
/*
** The code for start-stop data
** this is the essentially the first iteration of agfit4.c
*/
#include <math.h>
#include "survS.h"
#include "survproto.h"
SEXP zph2(SEXP gt2, SEXP y2,
SEXP covar2, SEXP eta2, SEXP weights2,
SEXP strata2,SEXP method2, SEXP sort12, SEXP sort22) {
int i,j, k, kk, person, p, p1;
int cstrat; /* current stratum*/
int indx1, nrisk;
double temp, temp2, tmean, etasum;
double *dtemp, timewt=1;
double *a, *a2, **cmat, **cmat2;
int *keep;
double denom, dtime=0, ndead, denom2;
double risk, meanwt, recenter;
int nprotect;
/* scalar input arguments and counts*/
int nused, nvar, nevent, nstrat;
int method;
/* input vectors */
double *start, *tstop, *gt, *eta, *weights, *status;
int *strata, *sort1, *sort2;
double **covar;
/* returned objects */
SEXP rlist;
double *u, **imat, **schoen;
int **used;
static const char *rnames[]={"u", "imat", "schoen", "used", ""};
/* get local copies of input args */
nused = nrows(y2);
nvar = ncols(covar2);
method = asInteger(method2);
start = REAL(y2);
tstop = start + nused;
status = tstop + nused;
weights = REAL(weights2);
strata = INTEGER(strata2);
gt = REAL(gt2);
eta = REAL(eta2);
sort1= INTEGER(sort12);
sort2= INTEGER(sort22);
/*
** count up the number of events and the number of strata
*/
nevent =0;
nstrat =1;
for (i=0; i< nused; i++) {
nevent += status[i];
if (strata[i] >= nstrat) nstrat= strata[i] + 1;
}
/*
** Set up the ragged arrays and scratch space
*/
nprotect =0;
if (MAYBE_REFERENCED(covar2)) {
nprotect =1;
covar = dmatrix(REAL(PROTECT(duplicate(covar2))), nused, nvar);
}
else covar = dmatrix(REAL(covar2), nused, nvar);
nprotect++;
PROTECT(rlist = mkNamed(VECSXP, rnames));
u = REAL(SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, 2*nvar)));
dtemp = REAL(SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, 2*nvar, 2*nvar)));
imat = dmatrix(dtemp, 2*nvar, 2*nvar); /* information matrix */
dtemp = REAL(SET_VECTOR_ELT(rlist, 2, allocMatrix(REALSXP, nevent, nvar)));
schoen = dmatrix(dtemp, nevent, nvar); /* schoenfeld residuals */
used = imatrix(INTEGER(SET_VECTOR_ELT(rlist, 3,
allocMatrix(INTSXP, nstrat, nvar))),
nstrat, nvar);
/* scratch vectors */
a = (double *) R_alloc(2*nvar*nvar + 2*nvar, sizeof(double));
a2 = a + nvar;
cmat = dmatrix(a2+ nvar, nvar, nvar);
cmat2= dmatrix(a2+ nvar +nvar*nvar, nvar, nvar);
keep = (int *) R_alloc(nused, sizeof(int));
/* zero variables */
for (i=0; i<2*nvar; i++) {
u[i] =0;
for (j=0; j<2*nvar; j++) imat[i][j] =0 ;
}
for (i=0; i<nvar; i++) {
a[i] =0;
a2[i] =0;
for (j=0; j<nvar; j++) {
cmat[i][j] =0;
cmat2[i][j] =0;
}
for (j=0; j<nstrat; j++) used[i][j] =0;
}
for (i=0; i<nused; i++) keep[i] =0;
/* count the number of events, per covariate per strata
** if a covariate is constant in the stratum it gets a 0, otherwise
** the number of events in the stratum. The algorithm is fairly
** simple but the code is ugly. Count the number of deaths, then at
** the end of each stratum set used[][] to the number of events or
** to zero for each covariate.
*/
k = 0; /* first obs of the stratum */
ndead=0;
cstrat = strata[sort2[0]];
for (i=0; i<nused; i++) {
person= sort2[i];
if (cstrat == strata[person]) ndead += status[person];
else { /* end of a stratum */
p1 = sort2[k]; /* first obs of the stratum */
for (j=0; j<nvar; j++) {
used[j][cstrat] =0; /* start pessimistic */
for (kk =k; kk<i; kk++) {
person = sort2[kk];
if (covar[j][person] != covar[j][p1]) {
used[j][cstrat] = ndead;
break;
}
}
}
k = i;
ndead = status[sort2[i]];
cstrat = strata[sort2[i]];
}
}
/* Deal with the last strata */
p1 = sort2[k];
for (j=0; j<nvar; j++) {
used[j][cstrat] =0; /* start pessimistic */
for (kk =k; kk<i; kk++) {
person = sort2[kk];
if (covar[j][person] != covar[j][p1]) {
used[j][cstrat] = ndead;
break;
}
}
}
/*
** Recenter the X matrix to make the variance computation more stable
*/
for (i=0; i<nvar; i++) {
tmean =0;
for (j=0; j<nused; j++) tmean += covar[i][j];
tmean /= nused;
for (j=0; j<nused; j++) covar[i][j] -= tmean;
}
/*
** 'person' walks through the the data from 1 to n,
** sort1[0] points to the largest stop time, sort1[1] the next, ...
** 'dtime' is a scratch variable holding the time of current interest
** 'indx1' walks through the start times.
*/
person =0;
indx1 =0;
denom=0;
nrisk=0;
etasum =0;
cstrat = -1;
recenter =0;
while (person < nused) {
/* find the next death time */
for (k=person; k< nused; k++) {
if (strata[sort2[k]] != cstrat) {
/* hit a new stratum; reset temporary sums */
cstrat = strata[sort2[k]];
denom = 0;
nrisk = 0;
etasum =0;
for (i=0; i<nvar; i++) {
a[i] =0;
for (j=0; j<nvar; j++) cmat[i][j] =0;
}
person =k; /* skip to end of stratum */
indx1 =k;
}
p = sort2[k];
if (status[p] == 1) {
dtime = tstop[p];
timewt = gt[p]; /* time weight for this event time */
break;
}
}
if (k == nused) person =k; /* no more ndead to be processed */
else {
/* remove any subjects no longer at risk */
/*
** subtract out the subjects whose start time is to the right
** If everyone is removed reset the totals to zero.
*/
for (; indx1<nused; indx1++) {
p1 = sort1[indx1];
if (strata[p1] != cstrat || start[p1] < dtime) break;
if (keep[p1] == 0) continue; /* skip any never-at-risk rows */
nrisk--;
if (nrisk ==0) {
etasum =0;
denom =0;
for (i=0; i<nvar; i++) {
a[i] =0;
for (j=0; j<=i; j++) cmat[i][j] =0;
}
}
else {
etasum -= eta[p1];
risk = exp(eta[p1] - recenter) * weights[p1];
denom -= risk;
for (i=0; i<nvar; i++) {
a[i] -= risk*covar[i][p1];
for (j=0; j<=i; j++)
cmat[i][j] -= risk*covar[i][p1]*covar[j][p1];
}
}
}
/*
** add any new subjects who are at risk
** denom2, a2, cmat2, meanwt and ndead count only the ndead
*/
denom2= 0;
ndead=0; meanwt=0;
for (i=0; i<nvar; i++) {
a2[i]=0;
for (j=0; j<nvar; j++) {
cmat2[i][j]=0;
}
}
for (; person<nused; person++) {
p = sort2[person];
if (strata[p] != cstrat || tstop[p] < dtime) break; /* no more to add */
etasum += eta[p];
nrisk++;
if (fabs(etasum/nrisk - recenter) > 200) {
temp = etasum/nrisk - recenter;
recenter = etasum/nrisk;
if (denom > 0) {
/* we can skip this if there is no one at risk */
if (fabs(temp) > 709) error("exp overflow due to covariates\n");
temp = exp(-temp);
denom *= temp;
for (i=0; i<nvar; i++) {
a[i] *= temp;
for (j=0; j<nvar; j++) {
cmat[i][j]*= temp;
}
}
}
}
risk = exp(eta[p] - recenter) * weights[p];
if (status[p] ==1) {
nevent--;
keep[p] =1;
ndead++;
denom2 += risk;
meanwt += weights[p];
for (i=0; i<nvar; i++) {
u[i] += weights[p] * covar[i][p];
u[i+nvar] += weights[p]*covar[i][p] * timewt;
a2[i]+= risk*covar[i][p];
schoen[i][nevent] = covar[i][p];
for (j=0; j<=i; j++)
cmat2[i][j] += risk*covar[i][p]*covar[j][p];
}
}
else if (start[p] < dtime) {
keep[p] =1;
denom += risk;
for (i=0; i<nvar; i++) {
a[i] += risk*covar[i][p];
for (j=0; j<=i; j++)
cmat[i][j] += risk*covar[i][p]*covar[j][p];
}
}
}
/*
** Add results into u and imat for all events at this time point
*/
if (method==0 || ndead ==1) { /*Breslow */
denom += denom2;
for (i=0; i<nvar; i++) {
a[i] += a2[i];
temp = a[i]/denom; /*mean covariate at this time */
u[i] -= meanwt*temp;
u[i+nvar] -= meanwt*temp * timewt;
for (j=0; j<=i; j++) {
cmat[i][j] += cmat2[i][j];
temp2 = meanwt*((cmat[i][j]- temp*a[j])/denom);
imat[j][i] += temp2;
imat[j][i+nvar] += temp2* timewt;
imat[j+nvar][i+nvar] += temp2*timewt * timewt;
}
for (j=0; j<ndead; j++)
schoen[i][nevent+j] -= temp;
}
}
else {
meanwt /= ndead;
/* compute the mean x, for Schoenfeld residuals */
for (i=0; i<nvar; i++) {
tmean =0;
for (k=0; k<ndead; k++) {
temp = (k+1)/ndead;
tmean += (a[i] + a2[i]*temp)/(denom + denom2*temp);
}
for (j=0; j<ndead; j++)
schoen[i][nevent+j] -= tmean/ndead;
}
for (k=0; k<ndead; k++) {
denom += denom2/ndead;
for (i=0; i<nvar; i++) {
a[i] += a2[i]/ndead;
temp = a[i]/denom;
u[i] -= meanwt*temp;
u[i+nvar] -= meanwt*temp* timewt;
for (j=0; j<=i; j++) {
cmat[i][j] += cmat2[i][j]/ndead;
temp2 = meanwt*((cmat[i][j]- temp*a[j])/denom);
imat[j][i] += temp2;
imat[j][i+nvar] += temp2* timewt;
imat[j+nvar][i+nvar] += temp2*timewt * timewt;
}
}
}
}
if (fabs(etasum/nrisk) > 200) {
temp = etasum/nrisk;
for (i=0; i<nused; i++) eta[i] -= temp;
temp = exp(-temp);
denom *= temp;
for (i=0; i<nvar; i++) {
a[i] *= temp;
for (j=0; j<nvar; j++) {
cmat[i][j]*= temp;
}
}
etasum =0;
}
}
} /* end of accumulation loop */
/* fill in the rest of the information matrix */
for (i=0; i<nvar; i++) {
for (j=0; j<i; j++) {
imat[i][j] = imat[j][i];
imat[i][j+nvar]= imat[j][i+nvar];
imat[i+nvar][j+nvar] = imat[j+nvar][i+nvar];
}
}
for (i=0; i<nvar; i++) {
for (j=0; j<nvar; j++) /* upper right */
imat[i+nvar][j] = imat[j][i+nvar];
}
UNPROTECT(nprotect);
return(rlist);
}
|