File: validate.R

package info (click to toggle)
survival 3.8-6-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,496 kB
  • sloc: ansic: 8,088; makefile: 77
file content (192 lines) | stat: -rw-r--r-- 6,526 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
### R code from vignette source 'validate.Rnw'

###################################################
### code chunk number 1: init
###################################################
options(continue="  ", width=60)
options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1))))
pdf.options(pointsize=8) #text in graph about the same as regular text
library(survival, quietly=TRUE)


###################################################
### code chunk number 2: breslow1
###################################################
breslow1 <- function(beta) {
    # first test data set, Breslow approximation
    r = exp(beta)
    lpl = 2*beta - (log(3*r +3) + 2*log(r+3))
    U   = (6+ 3*r - r^2)/((r+1)*(r+3))
    H   =  r/(r+1)^2 + 6*r/(r+3)^2
    c(beta=beta, loglik=lpl, U=U, H=H)
}
beta <- log((3 + sqrt(33))/2)
temp <- rbind(breslow1(0), breslow1(beta))
dimnames(temp)[[1]] <- c("beta=0", "beta=solution")
temp


###################################################
### code chunk number 3: validate.Rnw:186-209
###################################################
iter <- matrix(0, nrow=6, ncol=4,
               dimnames=list(paste("iter", 0:5),
                             c("beta", "loglik", "U", "H")))
# Exact Newton-Raphson
beta <- 0
for (i in 1:5) {
    iter[i,] <- breslow1(beta)
    beta <- beta + iter[i,"U"]/iter[i,"H"]
}
print(iter, digits=9)

# coxph fits
test1 <- data.frame(time=  c(1, 1, 6, 6, 8, 9),
                    status=c(1, 0, 1, 1, 0, 1),
                    x=     c(1, 1, 1, 0, 0, 0))
temp <- matrix(0, nrow=6, ncol=4, 
                 dimnames=list(1:6, c("iter", "beta", "loglik", "H")))
for (i in 0:5) {
    tfit <- coxph(Surv(time, status) ~ x, data=test1, 
                  ties="breslow", iter.max=i)
    temp[i+1,] <- c(tfit$iter, coef(tfit), tfit$loglik[2], 1/vcov(tfit))
}
temp


###################################################
### code chunk number 4: mresid1
###################################################
mresid1 <- function(r) {
    status <- c(1,0,1,1,0,1)
    xbeta  <- c(r,r,r,1,1,1)
    temp1 <- 1/(3*r +3)
    temp2 <- 2/(r+3) + temp1
    status - xbeta*c(temp1, temp1, temp2, temp2, temp2, 1+ temp2)
}
r0 <- mresid1(1)
r1 <- round(mresid1((3 + sqrt(33))/2), 6)


###################################################
### code chunk number 5: iter
###################################################
temp <- matrix(0, 8, 3)
dimnames(temp) <- list(paste0("iteration ", 0:7, ':'), c("beta", "loglik", "H"))
bhat <- 0
for (i in 1:8) {
    r <- exp(bhat)
    temp[i,] <- c(bhat,  2*(bhat - log(3*r +3)), 2*r/(r+1)^2)
    bhat <- bhat + (r+1)/r 
}
round(temp,3)


###################################################
### code chunk number 6: breslow2
###################################################
ufun <- function(r) {
    4 - (r/(r+1) + r/(r+2) + 3*r/(3*r+2) + 6*r/(3*r+1) + 6*r/(3*r+2))
}
rhat <- uniroot(ufun, c(.5, 1.5), tol=1e-8)$root
bhat <- log(rhat)
c(rhat=rhat, bhat=bhat)


###################################################
### code chunk number 7: temp
###################################################
true2 <- function(beta, newx=0) {
    r <- exp(beta)
    loglik <- 4*beta - log(r+1) - log(r+2) - 3*log(3*r+2) - 2*log(3*r+1)
    u <- 1/(r+1) +  1/(3*r+1) + 4/(3*r+2) -
                 ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1))
    imat <- r/(r+1)^2 + 2*r/(r+2)^2 + 6*r/(3*r+2)^2 +
            3*r/(3*r+1)^2 + 3*r/(3*r+1)^2 + 12*r/(3*r+2)^2

    hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 2/(3*r+2) )
    xbar <- c(r/(r+1), r/(r+2), 3*r/(3*r+2), 3*r/(3*r+1), 3*r/(3*r+1),
                3*r/(3*r+2))
   # The matrix of weights, one row per obs, one col per time
    #   deaths at 2,3,6,7,8,9
    wtmat <- matrix(c(1,0,0,0,1,0,0,0,0,0,
                      0,1,0,1,1,0,0,0,0,0,
                      0,0,1,1,1,0,1,1,0,0,
                      0,0,0,1,1,0,1,1,0,0,
                      0,0,0,0,1,1,1,1,0,0,
                      0,0,0,0,0,1,1,1,1,1), ncol=6)
    wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat

    x      <- c(1,0,0,1,0,1,1,1,0,0)
    status <- c(1,1,1,1,1,1,1,0,0,0)
    xbar <- colSums(wtmat*x)/ colSums(wtmat)
    n <- length(x)

   # Table of sums for score and Schoenfeld resids
    hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time
    dM <- -hazmat  #Expected part
    for (i in 1:6) dM[i,i] <- dM[i,i] +1  #observed
    dM[7,6] <- dM[7,6] +1  # observed
    mart <- rowSums(dM)

    # Table of sums for score and Schoenfeld resids
    #  Looks like the last table of appendix E.2.1 of the book
    resid <- dM * outer(x, xbar, '-')
    score <- rowSums(resid)
    scho <- colSums(resid)
    # We need to split the two tied times up, to match coxph
    scho <- c(scho[1:5], scho[6]/2, scho[6]/2)
    var.g <- cumsum(hazard*hazard /c(1,1,1,1,1,2))
    var.d <- cumsum( (xbar-newx)*hazard)

    surv <- exp(-cumsum(hazard) * exp(beta*newx))
    varhaz <- (var.g + var.d^2/imat)* exp(2*beta*newx)

    list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard,
	     mart=mart,  score=score, rmat=resid,
		scho=scho, surv=surv, var=varhaz)
    }
val2 <- true2(bhat)
rtemp <- round(val2$mart, 6)


###################################################
### code chunk number 8: wt1
###################################################
ufun <- function(r) {
    xbar <- c( (2*r^2 + 11*r)/(r^2 + 11*r +7), 11*r/(11*r + 5), 2*r/(2*r +1))
    11- (xbar[1] + 10* xbar[2] + 2* xbar[3])
}
rhat <- uniroot(ufun, c(1,3), tol= 1e-9)$root
bhat <- log(rhat)
c(rhat=rhat, bhat=bhat)


###################################################
### code chunk number 9: wt2
###################################################
wfun <- function(r) {
    beta <- log(r)
    pl <- 11*beta - (log(r^2 + 11*r + 7) + 10*log(11*r +5) + 2*log(2*r +1))
    xbar <- c((2*r^2 + 11*r)/(r^2 + 11*r +7), 11*r/(11*r +5), 2*r/(2*r +1))
    U <- 11 - (xbar[1] + 10*xbar[2] + 2*xbar[3])
    H <- ((4*r^2 + 11*r)/(r^2 + 11*r +7)- xbar[1]^2) + 
        10*(xbar[2] - xbar[2]^2) +  2*(xbar[3]- xbar[3]^2)
    c(loglik=pl, U=U, H=H)
}
temp <- matrix(c(wfun(1), wfun(rhat)), ncol=2, 
       dimnames=list(c("loglik", "U", "H"), c("beta=0", "beta-hat")))
round(temp, 6)       


###################################################
### code chunk number 10: mstate1
###################################################
getOption("SweaveHooks")[["fig"]]()
states <- c("Entry", "a", "b", "c")
smat <- matrix(0, 4, 4, dimnames=list(states, states))
smat[1,2:3] <- 1
smat[2,3] <- smat[3,2] <- smat[3,4] <- smat[2,4] <- 1
statefig(c(1,2,1), smat)