File: parse.Rnw

package info (click to toggle)
survival 3.8-6-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,496 kB
  • sloc: ansic: 8,088; makefile: 77
file content (592 lines) | stat: -rw-r--r-- 24,367 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
\subsection{Parsing the covariates list}
For a multi-state Cox model we allow a list of formulas to take the place
of the \code{formula} argument.
The first element of the list is the default formula, later elements
are of the form \code{transitions ~ formula/options}, where the left hand side
denotes one or more transitions, and the right hand side is used to augment
the basic formula wrt those transitions.

Step 1 is to break the formula into parts.  There will be a list of left sides,
a list of right sides, and a list of options.
From this we can create a single ``pseudo formula'' that is used to drive 
the model.frame process, which ensures that all of the variables we need 
will be found in the model frame.
Further processing has to wait until after the model frame has been constructed,
i.e., if a left side referred to state ``deathh'' that might be a real state
or a typing mistake, we can't know until the data is in hand.

Should we walk the parse tree of the formula, or convert it to character and use
string manipulations?  The latter looks promising until you see a fragment 
like this:
\code{entry:death ~ age/sex + ns(weight/height, df=4) / common}
Walking the parse tree is a bit more subtle, but we then can take advantage of 
all the knowledge built into the R parser.
A formula is a 3 element list of ``~'', leftside, rightside, or 2 elements if 
it has only a right hand side.  Legal ones for coxph have both left and right.

<<parsecovar>>=
parsecovar1 <- function(flist, statedata) {
    if (any(sapply(flist, function(x) !inherits(x, "formula"))))
        stop("an element of the formula list is not a formula")
    if (any(sapply(flist, length) != 3))
        stop("all formulas must have a left and right side")
    
    # split the formulas into a right hand and left hand side
    lhs <- lapply(flist, function(x) x[-3])   # keep the ~
    rhs <- lapply(flist, function(x) x[[3]])  # don't keep the ~
    
    rhs <- parse_rightside(rhs)
    <<parse-leftside>>
    list(rhs = rhs, lhs= lterm)
}
@ 

\begin{figure}
  \includegraphics{figures/fig1.pdf}
  \caption{The parse tree for the formula 
    \code{1:3 +2:3 ~ strata(sex)/(age + trt) + ns(weight/ht, df=4) / common + shared}}
  \label{figparse}
\end{figure}

Figure \ref{figparse} shows the parse tree for a complex formula.
The following function splits the formula at the rightmost slash, ignoring the
inside of any function or parenthesised phrase.
Recursive functions like this are almost impossible to read, but luckily 
it is short.
The formula recurrs on the left and right side of +*: and \%in\%, and on 
binary - (but not on unary -).
<<parsecovar>>=
rightslash <- function(x) {
    if (!inherits(x, 'call')) return(x)
    else {
        if (x[[1]] == as.name('/')) return(list(x[[2]], x[[3]]))
        else if (x[[1]]==as.name('+') || (x[[1]]==as.name('-') && length(x)==3)||
                 x[[1]]==as.name('*') || x[[1]]==as.name(':')  ||
                 x[[1]]==as.name('%in%')) {
                     temp <- rightslash(x[[3]])
                     if (is.list(temp)) {
                         x[[3]] <- temp[[1]]
                         return(list(x, temp[[2]]))
                     } else {
                         temp <- rightslash(x[[2]])
                         if (is.list(temp)) {
                             x[[2]] <- temp[[2]]
                             return(list(temp[[1]], x))
                         } else return(x)
                     }
                 }
        else return(x)
    }
}
@ 

There are 4 possble options of common, shared, and init. 
The first 2 appear just as words, the last should have a set of
values attached which become the \code{ival} vector.
There will, of course, one day be a user with a variable named \code{common}
who wants a nested term \code{x/common}. Since we don't look inside
parenthesis they will be able to use \code{1:3 ~ (x/common)}.

<<parsecovar>>=
parse_rightside <- function(rhs) {
    parts <- lapply(rhs, rightslash)
    new <- lapply(parts, function(opt) {
        tform <- ~ x    # a skeleton, "x" will be replaced
        if (!is.list(opt)) { # no options for this line
            tform[[2]] <- opt
            list(formula = tform, ival = NULL, common = FALSE,
                 shared = FALSE)
        }
        else{
            # treat the option list as though it were a formula
            temp <- ~ x
            temp[[2]] <- opt[[2]]
            optterms <- terms(temp)
            ff <- rownames(attr(optterms, "factors"))
            index <- match(ff, c("common", "shared", "init"))
            if (any(is.na(index)))
                stop("option not recognized in a covariates formula: ",
                     paste(ff[is.na(index)], collapse=", "))
            common <- any(index==1)
            shared  <- any(index==2)
            if (any(index==3)) {
                optatt <- attributes(optterms)
                j <- optatt$variables[1 + which(index==3)]
                j[[1]] <- as.name("list")
                ival <- unlist(eval(j, parent.frame()))
            } 
            else ival <- NULL
            tform[[2]] <- opt[[1]] 
            list(formula= tform, ival= ival, common= common, shared=shared)
        }
    })
    new
}
@
 
The left hand side of each formula specifies the set of transitions to which
the covariates apply, and is more complex.
Say instance that we had 7 states and the following statedata
data set.
\begin{center}
  \begin{tabular}{cccc}
    state & A&  N& death \\ \hline 
    A-N- &  0&  0 & 0\\
    A+N- &  1&  0 & 0\\
    A-N1 &  0&  1 & 0\\
    A+N1 &  1&  1 & 0\\
    A-N2 &  0&  2 & 0\\
    A+N2 &  1&  2 & 0\\
    Death&  NA & NA& 1 
\end{tabular}
\end{center}

  Here are some valid transitions
\begin{enumerate}
   \item 0:state('A+N+'),   any transition to the A+N+ state
   \item state('A-N-'):death(0), a transition from A-N-, but not to death
   \item A(0):A(1), any of the 4 changes that start with A=0 and end with A=1
   \item N(0):N(1,2) + N(1):N(2), an upward change of N
   \item 'A-N-':c('A-N+','A+N-'); if there is no variable then the 
     overall state is assumed
   \item 1:3 + 2:3;  we can refer to states by number, and we can have multiples
\end{enumerate}

<<parse-leftside>>=
# deal with the left hand side of the formula
# the next routine cuts at '+' signs
pcut <- function(form) {
    if (length(form)==3) {
        if (form[[1]] == '+') 
            c(pcut(form[[2]]), pcut(form[[3]]))
        else if (form[[1]] == '~') pcut(form[[2]])
        else list(form)
    }
    else list(form)
}
lcut <- lapply(lhs, function(x) pcut(x[[2]]))
@ 
We now have one list per formula, each list is either a single term
or a list of terms (case 4 above).
To make evaluation easier, create functions that append their
name to a list of values.
I have not yet found a way to do this without eval(parse()), which
always seems clumsy.
A use for the labels without an argument will arise later, hence the
double environments.

Repeating the list above, this is what we want to end with
\begin{itemize}
  \item a list with one element per formula in the covariates list
  \item each element is a list, with one element per term: multiple
    a:b terms are allowed separated by + signs
  \item each of these level 3 elements is a list with two elements
    ``left'' and ``right'', for the two sides of the : operator
  \item left and right will be one of 3 forms: a simple vector,
    a one element list containing the stateid, or a two element list
    containing the stateid and the values.  
    Any word that doesn't match one of the
    column names of statedata ends up as a vector.
\end{itemize}

<<parse-leftside>>=
env1 <- new.env(parent= parent.frame(2))
env2 <- new.env(parent= env1)
if (missing(statedata)) {
    assign("state", function(...) list(stateid= "state", 
                                       values=c(...)), env1)
    assign("state", list(stateid="state"))
}
else {
    for (i in statedata) {
        assign(i, eval(list(stateid=i)), env2)
        tfun <- eval(parse(text=paste0("function(...) list(stateid='"
                                       , i, "', values=c(...))")))
        assign(i, tfun, env1)
    }
}
lterm <- lapply(lcut, function(x) {
    lapply(x, function(z) {
        if (length(z)==1) {
            temp <- eval(z, envir= env2)
            if (is.list(temp) && names(temp)[[1]] =="stateid") temp
            else temp
        }
        else if (length(z) ==3 && z[[1]]==':')
            list(left=eval(z[[2]], envir=env2), right=eval(z[[3]], envir=env2))
        else stop("invalid term: ", deparse(z))
    })
})
@ 


The second call, which builds tmap, the terms map.
Arguments are the results from the first pass, the statedata data frame,
the default formula, the terms structure from the full formula,
and the transitions count.

One nuisance is that the terms function sometimes inverts things.  For 
example in the formula
\code{terms(~ x1 + x1:iage + x2 + x2:iage)} the label for the second
of these becomes \code{iage:x2}.  
I'm guessing it is because the variables first appear in the order x1, iage, x2
and labels make use of that order. 
But when we look at the formula fragment \code{~ x2 + x2:iage} the terms
will be in the other order.  
A way out of this is to use the simple \code{termmatch} function below,
which keys off of the factors attribute instead of the names. 

<<parsecovar>>=
termmatch <- function(f1, f2) {
    # look for f1 in f2, each the factors attribute of a terms object
    if (length(f1)==0) return(NULL)   # a formula with only ~1
    irow <- match(rownames(f1), rownames(f2))
    if (any(is.na(irow))) stop ("termmatch failure 1") 
    hashfun <- function(j) sum(ifelse(j==0, 0, 2^(seq(along.with=j))))
    hash1 <- apply(f1, 2, hashfun)
    hash2 <- apply(f2[irow,,drop=FALSE], 2, hashfun)
    index <- match(hash1, hash2)
    if (any(is.na(index))) stop("termmatch failure 2")
    index
}

parsecovar2 <- function(covar1, statedata, dformula, Terms, transitions,states) {
    if (is.null(statedata))
        statedata <- data.frame(state = states, stringsAsFactors=FALSE)
    else {
        if (is.null(statedata$state)) 
            stop("the statedata data set must contain a variable 'state'")
        indx1 <- match(states, statedata$state, nomatch=0)
        if (any(indx1==0))
            stop("statedata does not contain all the possible states: ", 
                 states[indx1==0])
        statedata <- statedata[indx1,]   # put it in order
    }
    
    # Statedata might have rows for states that are not in the data set,
    #  for instance if the coxph call had used a subset argument.  Any of
    #  those were eliminated above.
    # Likewise, the formula list might have rules for transitions that are
    #  not present.  Don't worry about it at this stage.
    allterm <- attr(Terms, 'factors')
    nterm <- ncol(allterm)

    # create a map for every transition, even ones that are not used.
    # at the end we will thin it out
    # It has an extra first row for intercept (baseline)
    # Fill it in with the default formula
    nstate <- length(states)
    tmap <- array(0L, dim=c(nterm+1, nstate, nstate))
    dmap <- array(seq_len(length(tmap)), dim=c(nterm+1, nstate, nstate)) #unique values
    dterm <- termmatch(attr(terms(dformula), "factors"), allterm)
    dterm <- c(1L, 1L+ dterm)  # add intercept
    tmap[dterm,,] <- dmap[dterm,,]
    inits <- NULL

    if (!is.null(covar1)) {
        <<parse-tmap>>
    }
    <<parse-finish>>
}
@ 

Now go through the formulas one by one.  The left hand side tells us which
state:state transitions to fill in,  the right hand side tells the variables.
The code block below goes through lhs element(s) for a single formula.
That element is itself a list which has an entry for each term, and that
entry can have left and right portions.
<<parse-lmatch>>=
state1 <- state2 <- NULL
for (x in lhs) {
    # x is one term
    if (!is.list(x) || is.null(x$left)) stop("term found without a ':' ", x)
    # left of the colon
    if (!is.list(x$left) && length(x$left) ==1 && x$left==0) 
        temp1 <- 1:nrow(statedata)
    else if (is.numeric(x$left)) {
        temp1 <- as.integer(x$left)
        if (any(temp1 != x$left)) stop("non-integer state number")
        if (any(temp1 <1 | temp1> nstate))
            stop("numeric state is out of range")
    }
    else if (is.list(x$left) && names(x$left)[1] == "stateid"){
        if (is.null(x$left$value)) 
            stop("state variable with no list of values: ",x$left$stateid)
        else {
            if (any(k= is.na(match(x$left$stateid, names(statedata)))))
                stop(x$left$stateid[k], ": state variable not found")
            zz <- statedata[[x$left$stateid]]
            if (any(k= is.na(match(x$left$value, zz))))
                stop(x$left$value[k], ": state value not found")
            temp1 <- which(zz %in% x$left$value)
        }
    }
    else {
        k <- match(x$left, statedata$state)
        if (any(is.na(k))) stop(x$left[is.na(k)], ": state not found")
        temp1 <- which(statedata$state %in% x$left)
    }
    
    # right of colon
    if (!is.list(x$right) && length(x$right) ==1 && x$right ==0) 
        temp2 <- 1:nrow(statedata)
    else if (is.numeric(x$right)) {
        temp2 <- as.integer(x$right)
        if (any(temp2 != x$right)) stop("non-integer state number")
        if (any(temp2 <1 | temp2> nstate))
            stop("numeric state is out of range")
    }
    else if (is.list(x$right) && names(x$right)[1] == "stateid") {
        if (is.null(x$right$value))
            stop("state variable with no list of values: ",x$right$stateid)
        else {
            if (any(k= is.na(match(x$right$stateid, names(statedata)))))
                stop(x$right$stateid[k], ": state variable not found")
            zz <- statedata[[x$right$stateid]]
            if (any(k= is.na(match(x$right$value, zz))))
                stop(x$right$value[k], ": state value not found")
            temp2 <- which(zz %in% x$right$value)
        }
    }
    else {
        k <- match(x$right, statedata$state)
        if (any(is.na(k))) stop(x$right, ": state not found")
        temp2 <- which(statedata$state %in% x$right)
    }


    state1 <- c(state1, rep(temp1, length(temp2)))
    state2 <- c(state2, rep(temp2, each=length(temp1)))
}           
@ 
At the end it has created two vectors state1 and state2 listing all
the pairs of states that are indicated.

The init clause (initial values) are gathered but not checked:
we don't yet know how many columns a term will expand into.
tmap is a 3 way array: term, state1, state2 containing coefficient numbers and
zeros.

<<parse-tmap>>=
for (i in 1:length(covar1$rhs)) {  
    rhs <- covar1$rhs[[i]]
    lhs <- covar1$lhs[[i]]  # one rhs and one lhs per formula
  
    <<parse-lmatch>>
    npair <- length(state1)  # number of state:state pairs for this line

    # update tmap for this set of transitions
    # first, what variables are mentioned, and check for errors
    rterm <- terms(rhs$formula)
    rindex <- 1L + termmatch(attr(rterm, "factors"), allterm)

    # the update.formula function is good at identifying changes
    # formulas that start with  "- x" have to be pasted on carefully
    temp <- substring(deparse(rhs$formula, width.cutoff=500), 2)
    if (substring(temp, 1,1) == '-') dummy <- formula(paste("~ .", temp))
    else dummy <- formula(paste("~. +", temp))

    rindex1 <- termmatch(attr(terms(dformula), "factors"), allterm)
    rindex2 <- termmatch(attr(terms(update(dformula, dummy)), "factors"),
                     allterm)
    dropped <- 1L + rindex1[is.na(match(rindex1, rindex2))] # remember the intercept
    if (length(dropped) >0) {
        for (k in 1:npair) tmap[dropped, state1[k], state2[k]] <- 0
    }

    # grab initial values
    if (length(rhs$ival)) 
        inits <- c(inits, list(term=rindex, state1=state1, 
                               state2= state2, init= rhs$ival))
    
    # adding -1 to the front is a trick, to check if there is a "+1" term
    dummy <- ~ -1 + x
    dummy[[2]][[3]] <- rhs$formula
    if (attr(terms(dummy), "intercept") ==1) rindex <- c(1L, rindex)
 
    # an update of "- sex" won't generate anything to add
    # dmap is simply an indexed set of unique values to pull from, so that
    #  no number is used twice
    if (length(rindex) > 0) {  # rindex = things to add
        if (rhs$common) {
            j <- dmap[rindex, state1[1], state2[1]] 
            for(k in 1:npair) tmap[rindex, state1[k], state2[k]] <- j
        }
        else {
            for (k in 1:npair)
                tmap[rindex, state1[k], state2[k]] <- dmap[rindex, state1[k], state2[k]]
        }
    }

    # Deal with the shared argument, using - for a separate coef
    if (rhs$shared && npair>1) {
        j <- dmap[1, state1[1], state2[1]]
        for (k in 2:npair) 
            tmap[1, state1[k], state2[k]] <- -j
    }
}    
@ 


Fold the 3-dimensional tmap into a matrix with terms as rows
and one column for each transition that actually occured.
``Actually occured'' is on its face a simple task: look at the transitions 
matrix and find all the non-zero entries.  
Shared hazards create a nuisance though.
Suppose 1:death and 2:death have shared hazard, no state 1 obs actually die,
but there are state 1 subjects at risk, i.e., there is a nonzero row for
state 1 in the transitions matrix.  (The death row is normally all zero).
The 1:death transition certainly needs to appear in the final smap object.
Shared transitions can be found in the [1,,] element of tmap; use that to
put sums into the t2 matrix below.
This isn't perfect, e.g., if there was a single state 1 subject who is censored
before anything happens, then the 1:death state is never actually part of a 
risk set and could be omitted from cmap and smap. 

A more complex case shows up when we divide a covariate into groups in order
to deal with time dependent covariates.  Say we have states A, B and death,
and two covariates x1 and x2 with 3 levels each.
This leads to a 10 state model A11, A12,\ldots A33, B11, \ldots, B33, death.
If covariates change slowly we might never have an A11 to B33 transition, ever.
If the user used statedata, the model statement might be 
\code{A(1:9) *B(1:9)~ x1 + x2 + 1/common}, collapsing all 81 possiblilties 
into a stratum with shared coefficients and baseline.
Without due care one could end up with 9 copies of each subject in the A:B
transition's risk set. This routine passes the buck to stacker to deal with it.

Later addition: For the real data cases we have seen so far, it is best to
assume that any transition that isn't observed, won't occur.  Given that, it
is easier if we don't mark extra shared hazards a possible in the
returned object.  An example was states of not demented, demented and death,
with the first 2 divided by the presence of 0-7 cardiometabolic comorbidities.
It is easy to declare all 8*8 ND:dementia transitions as 'shared', but because
CMC cannot go backwards a lot of these are impossible (each condition x is 
coded as ``any history of x''). Because CMC changes slowly, many others are
effectively so, such as ND0 to dem7.  We don't want to estimate a positive
hazard for such transitions.

<<parse-finish>>=
t2 <- transitions[rowSums(transitions) > 0,, drop=FALSE]
i <- match("(censored)", colnames(transitions), nomatch=0)
if (i>0) t2 <- t2[,-i, drop=FALSE]   # transitions to 'censor' don't count
indx1 <- match(rownames(t2), states)
indx2 <- match(colnames(t2), states)

# check shared hazards
#  Commented out per discussion in the noweb file: in more complex shared hazard
# models such as multiple time-dependent covariates, assuming that all the
# transitions implied by the user's model statement should be counted can lead
# to including a *lot* of state combinations that are improbable or impossible.
# So we no longer extend the state space.
#  But keep the code here just in case we change our mind
#temp <- matrix(tmap[1,indx1,indx2], nrow=nrow(t2))
#for (i in unique(temp)) {
#    if (sum(temp==i) > 1) { #shared hazard
#        j <- cbind(row(temp)[temp==i], col(temp)[temp==i])
#        t2[j] <- sum(t2[j])  # credit all with all the events
#    }
#}

tmap2 <- matrix(0L, nrow= 1+nterm, ncol= sum(t2>0))
trow <- row(t2)[t2>0]
tcol <- col(t2)[t2>0]
for (i in 1:nrow(tmap2)) {
    for (j in 1:ncol(tmap2))
        tmap2[i,j] <- tmap[i, indx1[trow[j]], indx2[tcol[j]]]
}

# Remember which hazards had ph
# tmap2[1,] is the 'intercept' row
# If the hazard for colum 6 is proportional to the hazard for column 2,
# the tmap2[1,2] = tmap[1,6], and phbaseline[6] =2
temp <- tmap2[1,]
indx <- which(temp> 0)
tmap2[1,] <- indx[match(abs(temp), temp[indx])]
phbaseline <- ifelse(temp<0, tmap2[1,], 0)    # remembers column numbers   
tmap2[1,] <- match(tmap2[1,], unique(tmap2[1,])) # unique strata 1,2, ...
                  
if (nrow(tmap2) > 1)
    tmap2[-1,] <- match(tmap2[-1,], unique(c(0L, tmap2[-1,]))) -1L
  
dimnames(tmap2) <- list(c("(Baseline)", colnames(allterm)),
                            paste(indx1[trow], indx2[tcol], sep=':')) 
# mapid gives the from,to for each realized state
list(tmap = tmap2, inits=inits, mapid= cbind(from=indx1[trow], to=indx2[tcol]),
     phbaseline = phbaseline)
@


Last is a helper routine that converts tmap, which has one row per term,
into cmap, which has one row per coefficient.  Both have one column per 
transition.  If there a transition with no covariates, that is removed from
cmap.
It uses the assign attribute of the X matrix along with the column names.

Consider the model \code{~ x1 + strata(x2) + factor(x3)} where x3 has 4 levels.
The Xassign vector will be 1, 3, 3, 3, since it refers to terms and there are 3
columns of X for term number 3.
If there were an intercept the first column of X
would be a 1 and Xassign would be 0, 1, 3, 3, 3.

Let's say that there were 3 transitions and tmap looks like this:
\begin{tabular}{rccc}
            & 1:2 & 1:3 & 2:3 \\
(Baseline)  & 1   & 2   & 3 \\
 x1         & 1   & 4   & 4 \\ 
 strata(x2) & 2   & 5   & 6 \\
 factor(x3) & 3   & 3   & 7
\end{tabular}
The cmap matrix will ignore rows 1 and 3 since they do not correspond to 
coefficients in the model.  
Proportional baseline hazards add another wrinkle: say that the 1:3 and 2:3
hazards were proportional, and the user had \code{1:3 + 2:3 /shared} in thier
call.  Then the phbaseline vector will be 0,0,2 and 
cmap will gain an extra row with label ph(1:3) which has a coefficient
for the 2:3 transition. 
If the user typed \code{2:3 + 1:3/shared} then the phbaseline vector will
be (0,3,0) and 2:3 is the reference level.

<<parsecovar>>=
parsecovar3 <- function(tmap, Xcol, Xassign, phbaseline=NULL) {
    # sometime X will have an intercept, sometimes not; cmap never does
    hasintercept <- (Xassign[1] ==0)
    ph.coef <- (phbaseline !=0)  # any proportional baselines?
    ph.rows <- length(unique(phbaseline[ph.coef])) #extra rows to add to cmap
    cmap <- matrix(0L, length(Xcol) + ph.rows -hasintercept, ncol(tmap))
    uterm <- unique(Xassign[Xassign != 0L])  # terms that will have coefficients
    
    xcount <- table(factor(Xassign, levels=1:max(Xassign)))
    mult <- 1L+ max(xcount)  # temporary scaling

    ii <- 0
    for (i in uterm) {
        k <- seq_len(xcount[i])
        for (j in 1:ncol(tmap)) 
            cmap[ii+k, j] <- if(tmap[i+1,j]==0) 0L else tmap[i+1,j]*mult +k
        ii <- ii + max(k)
    }

    if (ph.rows > 0) {
        temp <- phbaseline[ph.coef] # where each points
        for (i in unique(temp)) {
            # for each baseline that forms a reference
            j <- which(phbaseline ==i)  # the others that are proportional to it
            k <- seq_len(length(j))
            ii <- ii +1   # row of cmat for this baseline
            cmap[ii, j] <- max(cmap) + k  # fill in elements
        }
        newname <- paste0("ph(", colnames(tmap)[unique(temp)], ")")
    } else newname <- NULL

    # renumber coefs as 1, 2, 3, ...
    cmap[,] <- match(cmap, sort(unique(c(0L, cmap)))) -1L
    
    colnames(cmap) <- colnames(tmap)
    if (hasintercept) rownames(cmap) <- c(Xcol[-1], newname)
    else rownames(cmap) <- c(Xcol, newname)

#    nonzero <- colSums(cmap) > 0  # there is at least one covariate
#    if (!all(nonzero)) cmap <- cmap[, nonzero, drop=FALSE]
    cmap
}
@