File: bladder.R

package info (click to toggle)
survival 3.8-6-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,496 kB
  • sloc: ansic: 8,088; makefile: 77
file content (38 lines) | stat: -rw-r--r-- 1,348 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
options(na.action=na.exclude) # preserve missings
options(contrasts=c('contr.treatment', 'contr.poly'),
                     show.signif.stars=FALSE) #ensure constrast type
library(survival)

#
# Fit the models found in Wei et. al.
#
wfit <- coxph(Surv(stop, event) ~ (rx + size + number)* strata(enum),
		 cluster=id, bladder, ties='breslow')
wfit

# Check the rx coefs versus Wei, et al, JASA 1989
rx <- c(1,4,5,6)  # the treatment coefs above
cmat <- diag(4); cmat[1,] <- 1;          #contrast matrix
wfit$coefficients[rx] %*% cmat           # the coefs in their paper (table 5)
t(cmat) %*% wfit$var[rx,rx] %*% cmat  # var matrix (eqn 3.2)

# Anderson-Gill fit
fita <- coxph(Surv(start, stop, event) ~ rx + size + number, cluster=id,
		  bladder2,  ties='breslow')
summary(fita)

# Prentice fits.  Their model 1 a and b are the same
fit1p  <- coxph(Surv(stop, event) ~ rx + size + number, bladder2,
		subset=(enum==1), ties='breslow')
fit2pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2,
		subset=(enum==2), ties='breslow')
fit2pb <- coxph(Surv(stop-start,  event) ~ rx + size + number, bladder2,
		   subset=(enum==2), ties='breslow')
fit3pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2,
		subset=(enum==3), ties='breslow')
 #and etc.
fit1p
fit2pa
fit2pb
fit3pa
rm(rx, cmat, wfit, fita, fit1p, fit2pa, fit2pb, fit3pa)