File: stroke.c

package info (click to toggle)
swftools 0.9.2%2Bds1-3
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 9,488 kB
  • sloc: ansic: 122,576; sh: 8,494; cpp: 8,020; yacc: 2,260; lisp: 904; makefile: 581; python: 304
file content (233 lines) | stat: -rw-r--r-- 6,816 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "../gfxdevice.h"
#include "../gfxtools.h"
#include "poly.h"
#include "wind.h"
#include "convert.h"

/* notice: left/right for a coordinate system where y goes up, not down */
typedef enum {LEFT=0, RIGHT=1} leftright_t;

/* factor that determines into how many line fragments a spline is converted */
#define SUBFRACTION (2.4)

// spline equation:
// s(t) = t*t*x2 + 2*t*(1-t)*cx + (1-t)*(1-t)*x1
//
// s(0.5) = 0.25*x2 + 0.5*cx + 0.25*x1
// ds(t)/dt = 2*t*x2 + (2-2t)*cx + (2t-2)*x1
// ds(0) = 2*(cx-x1)

static void draw_arc(gfxdrawer_t*draw, double x, double y, double a1, double a2, double r)
{
    if(a2<a1) a2+=M_PI*2;

    double d = (a2-a1);
    int steps = ceil(8*d/(M_PI*2)); // we use 8 splines for a full circle
    if(!steps) return;

    int t;
    double step = (a2-a1)/steps;
    double lastx = x+cos(a1)*r;
    double lasty = y+sin(a1)*r;

    /* we could probably build a table for this- there are only 8
       possible values for step */
    double r2 = r*(2-sqrt(0.5+0.5*cos(step)));

    draw->lineTo(draw, x+cos(a1)*r,y+sin(a1)*r);
    for(t=1;t<=steps;t++) {
	double a = a1 + t*step;
	double c = cos(a)*r;
	double s = sin(a)*r;
	double xx = c + x;
	double yy = s + y;
	double dx = x + cos(a-step/2)*r2;
	double dy = y + sin(a-step/2)*r2;
	draw->splineTo(draw, dx, dy, xx, yy);
	lastx = xx;
	lasty = yy;
    }
}

static void draw_single_stroke(gfxpoint_t*p, int num, gfxdrawer_t*draw, double width, gfx_capType cap, gfx_joinType join, double limit)
{
    width/=2;
    if(width<=0) 
	width = 0.05;

    /* remove duplicate points */
    int s=1,t;
    gfxpoint_t last = p[0];
    for(t=1;t<num;t++) {
	if(p[t].x != last.x || p[t].y != last.y) {
	    p[s++] = last = p[t];
	}
    }
    num = s;
    
    char closed = (num>2 && p[0].x == p[num-1].x && p[0].y == p[num-1].y);
    
    int start = 0;
    int end = num-1;
    int incr = 1;
    int pos = 0;

    double lastw=0;
    /* iterate through the points two times: first forward, then backward,
       adding a stroke outline to the right side and line caps after each
       pass */
    int pass;
    for(pass=0;pass<2;pass++) {
	if(closed) {
	    double dx = p[end].x - p[end-incr].x;
	    double dy = p[end].y - p[end-incr].y;
	    lastw = atan2(dy,dx);
	    if(lastw<0) lastw+=M_PI*2;
	}
    
	int pos;
	for(pos=start;pos!=end;pos+=incr) {
	    //printf("%d) %.2f %.2f\n", pos, p[pos].x, p[pos].y);
	    double dx = p[pos+incr].x - p[pos].x;
	    double dy = p[pos+incr].y - p[pos].y;
	    double w = atan2(dy,dx);
	    if(w<0) w+=M_PI*2;
	    
	    if(closed || pos!=start) {
		double d = w-lastw;
		leftright_t turn;
		if(d>=0 && d<M_PI) turn=LEFT;
		else if(d<0 && d>-M_PI) turn=RIGHT;
		else if(d>=M_PI) {turn=RIGHT;}
		else if(d<=-M_PI) {turn=LEFT;d+=M_PI*2;}
		else {assert(0);}
		if(turn!=LEFT || join==gfx_joinBevel) {
		    // nothing to do. bevel joins are easy
		} else if(join==gfx_joinRound) {
		    draw_arc(draw, p[pos].x, p[pos].y, lastw-M_PI/2, w-M_PI/2, width);
		} else if(join==gfx_joinMiter) {
		    double xw = M_PI/2 - d/2;
		    if(xw>0) {
			double r2 = 1.0 / sin(M_PI/2-d/2);
			if(r2 < limit) {
			    r2 *= width;
			    double addx = cos(lastw-M_PI/2+d/2)*r2;
			    double addy = sin(lastw-M_PI/2+d/2)*r2;
			    draw->lineTo(draw, p[pos].x+addx, p[pos].y+addy);
			}
		    } 
		}
	    }

	    double addx = cos(w-M_PI/2)*width;
	    double addy = sin(w-M_PI/2)*width;
	    draw->lineTo(draw, p[pos].x+addx, p[pos].y+addy);
	    double px2 = p[pos+incr].x + addx;
	    double py2 = p[pos+incr].y + addy;
	    draw->lineTo(draw, p[pos+incr].x+addx, p[pos+incr].y+addy);
	    lastw = w;
	}

	if(closed) {
	    draw->close(draw);
	} else {
	    /* draw stroke ends. We draw duplicates of some points here. The drawer
	       implementation should be smart enough to remove them. */
	    double c = cos(lastw-M_PI/2)*width;
	    double s = sin(lastw-M_PI/2)*width;
	    if(cap == gfx_capButt) {
		draw->lineTo(draw, p[pos].x+c, p[pos].y+s);
		draw->lineTo(draw, p[pos].x-c, p[pos].y-s);
	    } else if(cap == gfx_capRound) {
		draw_arc(draw, p[pos].x, p[pos].y, lastw-M_PI/2, lastw+M_PI/2, width);
	    } else if(cap == gfx_capSquare) {
		double c = cos(lastw-M_PI/2)*width;
		double s = sin(lastw-M_PI/2)*width;
		draw->lineTo(draw, p[pos].x+c, p[pos].y+s);
		draw->lineTo(draw, p[pos].x+c-s, p[pos].y+s+c);
		draw->lineTo(draw, p[pos].x-c-s, p[pos].y-s+c);
		draw->lineTo(draw, p[pos].x-c, p[pos].y-s);
	    }
	    lastw += M_PI; // for dots
	}
	start=num-1;
	end=0;
	incr=-1;
    }
    if(!closed)
	draw->close(draw);
}

void draw_stroke(gfxline_t*start, gfxdrawer_t*draw, double width, gfx_capType cap, gfx_joinType join, double miterLimit)
{
    if(!start) 
	return;
    assert(start->type == gfx_moveTo);
    gfxline_t*line = start;
    // measure array size
    int size = 0;
    int pos = 0;
    double lastx,lasty;
    while(line) {
	if(line->type == gfx_moveTo) {
	    if(pos>size) size = pos;
	    pos++;
	} else if(line->type == gfx_lineTo) {
	    pos++;
	} else if(line->type == gfx_splineTo) {
            int parts = (int)(sqrt(fabs(line->x-2*line->sx+lastx) + fabs(line->y-2*line->sy+lasty))*SUBFRACTION);
            if(!parts) parts = 1;
	    pos+=parts+1;
	}
	lastx = line->x;
	lasty = line->y;
	line = line->next;
    }
    if(pos>size) size = pos;
    if(!size) return;

    gfxpoint_t* points = malloc(sizeof(gfxpoint_t)*size);
    line = start;
    pos = 0;
    while(line) {
	if(line->type == gfx_moveTo) {
	    if(pos)
		draw_single_stroke(points, pos, draw, width, cap, join, miterLimit);
	    pos = 0;
	} else if(line->type == gfx_splineTo) {
            int parts = (int)(sqrt(fabs(line->x-2*line->sx+lastx) + fabs(line->y-2*line->sy+lasty))*SUBFRACTION);
            if(!parts) parts = 1;
	    double stepsize = 1.0/parts;
            int i;
	    for(i=0;i<parts;i++) {
		double t = (double)i*stepsize;
		points[pos].x = (line->x*t*t + 2*line->sx*t*(1-t) + lastx*(1-t)*(1-t));
		points[pos].y = (line->y*t*t + 2*line->sy*t*(1-t) + lasty*(1-t)*(1-t));
		pos++;
	    }
	}
	lastx = points[pos].x = line->x;
	lasty = points[pos].y = line->y;
	pos++;
	line = line->next;
    }
    if(pos) draw_single_stroke(points, pos, draw, width, cap, join, miterLimit);
    free(points);
}

static windcontext_t onepolygon = {1};
gfxpoly_t* gfxpoly_from_stroke(gfxline_t*line, gfxcoord_t width, gfx_capType cap_style, gfx_joinType joint_style, gfxcoord_t miterLimit, double gridsize)
{
    gfxdrawer_t d;
    gfxdrawer_target_poly(&d, gridsize);
    draw_stroke(line, &d, width, cap_style, joint_style, miterLimit);
    gfxpoly_t*poly = (gfxpoly_t*)d.result(&d);
    assert(gfxpoly_check(poly, 1));
    gfxpoly_t*poly2 = gfxpoly_process(poly, 0, &windrule_circular, &onepolygon, 0);
    gfxpoly_destroy(poly);
    return poly2;
}