1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
/* kdtree.c
Implementation of 2d kd trees.
Part of the swftools package.
Copyright (c) 2010 Matthias Kramm <kramm@quiss.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <memory.h>
#include <limits.h>
#include "q.h"
#include "kdtree.h"
/* 0=right 1=down 2=left 3=up */
static int vx_and[4] = {INT_MAX, 0, INT_MAX, 0};
static int vy_and[4] = {0, INT_MAX, 0, INT_MAX};
static int vx[4] = {1, 0, -1, 0};
static int vy[4] = {0, 1, 0, -1};
static int vsign[4] = {1,1,-1,-1};
static char* vname[4] = {"right", "down", "left", "up"};
kdarea_t* kdarea_new(void*data)
{
NEW(kdarea_t,area);
area->bbox.xmin = INT_MIN;
area->bbox.ymin = INT_MIN;
area->bbox.xmax = INT_MAX;
area->bbox.ymax = INT_MAX;
area->data = data;
return area;
}
kdtree_t* kdtree_new()
{
NEW(kdtree_t,tree);
tree->root = kdarea_new(0);
return tree;
}
static inline int32_t max32(int32_t v1, int32_t v2) {return v1>v2?v1:v2;}
static inline int32_t min32(int32_t v1, int32_t v2) {return v1<v2?v1:v2;}
kdbranch_t*kdbranch_new(int32_t xy, kdtype_t type)
{
NEW(kdbranch_t,b);
b->type = type;
b->xy = xy;
return b;
}
kdarea_t*kdbranch_follow(const kdbranch_t*tree, int32_t x, int32_t y)
{
/*
int follow = 0;
switch(tree->type) {
case KD_LEFT:
follow = (x < tree->xy);
break;
case KD_RIGHT:
follow = (x > tree->xy);
break;
case KD_UP:
follow = (y < tree->xy);
break;
case KD_DOWN:
follow = (y > tree->xy);
break;
}
return &tree->side[follow];
*/
int32_t s = x*vx[tree->type] + y*vy[tree->type];
int32_t v = tree->xy*vsign[tree->type];
return tree->side[s < v];
}
static kdarea_list_t* kdarea_list_new(kdarea_t*area)
{
NEW(kdarea_list_t,b);
b->area = area;
b->next = b->prev = b;
return b;
}
static kdarea_list_t*kdarea_list_concatenate(kdarea_list_t*l1, kdarea_list_t*l2)
{
if(!l1) return l2;
if(!l2) return l1;
l2->prev->next = l1->next;
l1->next->prev = l2->prev;
l2->prev = l1;
l1->next = l2;
return l1;
}
static kdbbox_t bbox_for_halfplane(int xy, int dir)
{
kdbbox_t b = {INT_MIN,INT_MIN,INT_MAX,INT_MAX};
switch(dir) {
case KD_LEFT:
b.xmax = xy;
break;
case KD_RIGHT:
b.xmin = xy;
break;
case KD_UP:
b.ymax = xy;
break;
case KD_DOWN:
b.ymin = xy;
break;
}
return b;
}
static kdbbox_t intersect_bbox(const kdbbox_t*box1, const kdbbox_t*box2)
{
kdbbox_t b = *box1;
if(box2->xmin > b.xmin)
b.xmin = box2->xmin;
if(box2->ymin > b.ymin)
b.ymin = box2->ymin;
if(box2->xmax < b.xmax)
b.xmax = box2->xmax;
if(box2->ymax < b.ymax)
b.ymax = box2->ymax;
if(b.xmin > b.xmax)
b.xmax = b.xmin;
if(b.ymin > b.ymax)
b.ymax = b.ymin;
return b;
}
static void kdarea_split(kdarea_t*area, int xy, int dir,
int32_t x1, int32_t y1,
int32_t x2, int32_t y2)
{
if(!area->split) {
kdbranch_t*b = area->split = kdbranch_new(xy, dir);
kdbbox_t b1 = bbox_for_halfplane(xy, dir);
kdbbox_t b2 = bbox_for_halfplane(xy, dir^2);
b->side[0] = kdarea_new(area->data);
b->side[1] = kdarea_new(area->data);
b->side[0]->bbox = intersect_bbox(&area->bbox,&b1);
b->side[1]->bbox = intersect_bbox(&area->bbox,&b2);
memcpy(b->side[0]->neighbors, area->neighbors, sizeof(area->neighbors));
memcpy(b->side[1]->neighbors, area->neighbors, sizeof(area->neighbors));
b->side[0]->neighbors[dir^2] = b->side[1];
b->side[1]->neighbors[dir] = b->side[0];
area->data = 0;
} else {
kdbranch_t*split = area->split;
kdarea_t*first = kdbranch_follow(split, x1,y1);
kdarea_t*second = kdbranch_follow(split, x2,y2);
if(!first) {
if(!second) {
/* line is on top of an already existing segment */
return;
} else {
/* first point is directly on the split */
kdarea_split(second, xy, dir, x1,y1, x2,y2);
return;
}
} else {
if(!second) {
/* second point is directly on the split */
kdarea_split(first, xy, dir, x1,y1, x2,y2);
return;
} else if(first == second) {
/* both points are to the same side of this split */
kdarea_split(first, xy, dir, x1,y1, x2,y2);
return;
} else {
kdarea_split(first, xy, dir, x1,y1, x2,y2);
kdarea_split(second, xy, dir, x1,y1, x2,y2);
return;
}
}
}
}
static kdarea_list_t* kdarea_filter(kdarea_t*area, int xy, int dir)
{
if(!area->split) {
return kdarea_list_new(area);
} else {
kdbranch_t*branch = area->split;
if((branch->type^dir) == 0) {
/* both filter as well as branch point into the same direction */
if(xy*vsign[dir] >= branch->xy*vsign[dir]) {
/* filter splits the primary node. We can skip the other one. */
#ifdef DEBUG
printf("%p: using %p, skipping %p (looking to %s of %d)\n", area, branch->side[0], branch->side[1], vname[dir], xy);
#endif
return kdarea_filter(branch->side[0], xy, dir);
} else {
/* filter splits the secondary node. the primary node is left completely intact,
and returned as such */
#ifdef DEBUG
printf("%p: expanding %p, filtering %p (looking to %s of %d)\n", area, branch->side[0], branch->side[1], vname[dir], xy);
#endif
kdarea_list_t*l1 = kdarea_list_new(branch->side[0]);
kdarea_list_t*l2 = kdarea_filter(branch->side[1], xy, dir);
return kdarea_list_concatenate(l1,l2);
}
} else if((branch->type^dir) == 2) {
/* filter and branch point into opposite directions */
if(xy*vsign[dir] >= branch->xy*vsign[dir]) {
// filter splits the secondary node. We can skip the primary node.
#ifdef DEBUG
printf("%p: skipping %p, using %p (looking to %s of %d)\n", area, branch->side[0], branch->side[1], vname[dir], xy);
#endif
return kdarea_filter(branch->side[1], xy, dir);
} else {
/* filter splits the primary node. the secondary node is left completely intact,
and returned as such */
#ifdef DEBUG
printf("%p: filtering %p, expanding %p (looking to %s of %d)\n", area, branch->side[0], branch->side[1], vname[dir], xy);
#endif
kdarea_list_t*l1 = kdarea_filter(branch->side[0], xy, dir);
kdarea_list_t*l2 = kdarea_list_new(branch->side[1]);
return kdarea_list_concatenate(l1,l2);
}
} else {
/* filter segment is perpendicular to the node */
return kdarea_list_new(area);
}
}
}
static kdarea_t* kdarea_find(kdarea_t*node, int x, int y)
{
while(node) {
if(!node->split)
break;
node = kdbranch_follow(node->split, x,y);
}
return node;
}
kdarea_t*kdtree_find(kdtree_t*tree, int x, int y)
{
return kdarea_find(tree->root, x,y);
}
void kdarea_list_destroy(kdarea_list_t*list)
{
kdarea_list_t*i = list;
if(i) do {
kdarea_list_t*next = i->next;
free(i);
i = next;
} while(i!=list);
}
static kdarea_list_t* kdarea_list_add(kdarea_list_t*l, kdarea_t*area)
{
return kdarea_list_concatenate(l,kdarea_list_new(area));
}
static kdarea_list_t* kdarea_all_children(kdarea_t*area, int32_t x1, int32_t y1, int32_t x2, int32_t y2, kdarea_list_t*result)
{
if(!area->split) {
if(area->bbox.xmin >= x1 &&
area->bbox.ymin >= y1 &&
area->bbox.xmax <= x2 &&
area->bbox.ymax <= y2) {
result = kdarea_list_add(result, area);
}
} else {
result = kdarea_all_children(area->split->side[0], x1, y1, x2, y2, result);
result = kdarea_all_children(area->split->side[1], x1, y1, x2, y2, result);
}
return result;
}
/* return all areas that are contained in, or partly intersect, the given bounding box */
kdarea_list_t* kdtree_filter(kdtree_t*tree, int32_t x1, int32_t y1, int32_t x2, int32_t y2, char leafs)
{
kdarea_list_t*result = 0;
kdarea_list_t*branches1 = kdarea_filter(tree->root, x2, KD_LEFT);
kdarea_list_t*i = branches1;
#ifdef DEBUG
kdarea_list_t*u = branches1;
if(u) do {printf("%p [%d %d %d %d] is to the left of %d\n", u->area, u->area->bbox.xmin, u->area->bbox.ymin, u->area->bbox.xmax, u->area->bbox.ymax, x2);u = u->next;} while(u!=branches1);
#endif
if(i) do {
kdarea_list_t*branches2 = kdarea_filter(i->area, y2, KD_UP);
kdarea_list_t*j = branches2;
#ifdef DEBUG
kdarea_list_t*u = branches2;
if(u) do {printf("%p [%d %d %d %d] is above %d\n", u->area, u->area->bbox.xmin, u->area->bbox.ymin, u->area->bbox.xmax, u->area->bbox.ymax, y2);u = u->next;} while(u!=branches2);
#endif
if(j) do {
kdarea_list_t*branches3 = kdarea_filter(j->area, x1, KD_RIGHT);
kdarea_list_t*k = branches3;
#ifdef DEBUG
kdarea_list_t*u = branches3;
if(u) do {printf("%p [%d %d %d %d] is to the right of %d\n", u->area, u->area->bbox.xmin, u->area->bbox.ymin, u->area->bbox.xmax, u->area->bbox.ymax, x1);u = u->next;} while(u!=branches3);
#endif
if(k) do {
kdarea_list_t*branches4 = kdarea_filter(k->area, y1, KD_DOWN);
kdarea_list_t*l = branches4;
#ifdef DEBUG
kdarea_list_t*u = branches4;
if(u) do {printf("%p [%d %d %d %d] is below %d\n", u->area, u->area->bbox.xmin, u->area->bbox.ymin, u->area->bbox.xmax, u->area->bbox.ymax, y1);u = u->next;} while(u!=branches4);
#endif
if(leafs) {
if(l) do {
result = kdarea_list_concatenate(result, kdarea_all_children(l->area, x1, y1, x2, y2, 0));
l = l->next;
} while(l!=branches4);
kdarea_list_destroy(branches4);
} else {
result = kdarea_list_concatenate(result, l);
}
k = k->next;
} while(k!=branches3);
kdarea_list_destroy(branches3);
j = j->next;
} while(j!=branches2);
kdarea_list_destroy(branches2);
i = i->next;
} while(i!=branches1);
kdarea_list_destroy(branches1);
return result;
}
static void kdtree_modify_box(kdtree_t*tree, int32_t x1, int32_t y1, int32_t x2, int32_t y2, void*(*f)(void*user,void*data), void*user)
{
kdarea_split(tree->root, x2, KD_LEFT, x2,y1, x2,y2);
kdarea_split(tree->root, y2, KD_UP, x1,y2, x2,y2);
kdarea_split(tree->root, x1, KD_RIGHT, x1,y1, x1,y2);
kdarea_split(tree->root, y1, KD_DOWN, x1,y1, x2,y1);
#ifdef DEBUG
printf("inserting (%d,%d,%d,%d) %p\n", x1, y1, x2, y2, user);
#endif
kdarea_list_t*l = kdtree_filter(tree, x1, y1, x2, y2, 1);
kdarea_list_t*i = l;
if(l) do {
#ifdef DEBUG
printf("%p [%d,%d,%d,%d], is contained in [%d %d %d %d]\n", i->area,
i->area->bbox.xmin,
i->area->bbox.ymin,
i->area->bbox.xmax,
i->area->bbox.ymax,
x1, y1, x2, y2);
#endif
i->area->data = f(user, i->area->data);
i = i->next;
} while(i!=l);
kdarea_list_destroy(l);
}
static void* overwrite(void*user, void*data)
{
return user;
}
void kdtree_add_box(kdtree_t*tree, int32_t x1, int32_t y1, int32_t x2, int32_t y2, void*data)
{
kdtree_modify_box(tree, x1, y1, x2, y2, overwrite, data);
}
static void* add_to_dict(void*user, void*data)
{
dict_t*items = (dict_t*)user;
if(!dict_contains(items, data)) {
dict_put(items, data, data);
}
return data;
}
kdresult_list_t*kdtree_find_in_box(kdtree_t*tree, int32_t x1, int32_t y1, int32_t x2, int32_t y2)
{
dict_t*items = dict_new2(&ptr_type);
kdtree_modify_box(tree, x1, y1, x2, y2, add_to_dict, items);
kdresult_list_t*list = 0;
DICT_ITERATE_KEY(items, void*, d) {
if(d) {
NEW(kdresult_list_t,r);
r->data = d;
r->next = list;
list = r;
}
};
dict_destroy(items);
return list;
}
kdarea_t*kdarea_neighbor(kdarea_t*area, int dir, int xy)
{
int x,y;
switch(dir) {
case KD_LEFT:
x = area->bbox.xmin;
y = xy;
break;
case KD_RIGHT:
x = area->bbox.xmax;
y = xy;
break;
case KD_UP:
x = xy;
y = area->bbox.ymin;
break;
case KD_DOWN:
x = xy;
y = area->bbox.ymax;
break;
}
kdarea_t*n = area->neighbors[dir];
if(!n)
return 0;
return kdarea_find(n, x, y);
}
static void do_indent(int l)
{
int i;
for(i=0;i<l;i++)
printf(" ");
}
void kdarea_print(kdarea_t*area, int indent);
void kdbranch_print(kdbranch_t*branch, int indent)
{
do_indent(indent);printf("[%p] branch (%s, %d)\n", branch, vname[branch->type], branch->xy);
kdbbox_t b = bbox_for_halfplane(branch->xy, branch->type);
kdarea_print(branch->side[0], indent+4);
kdarea_print(branch->side[1], indent+4);
}
void kdarea_print(kdarea_t*area, int indent)
{
int i;
assert(area);
do_indent(indent);printf("[%p] area (%d,%d,%d,%d) %p (l:%p r:%p u:%p d:%p)\n", area,
area->bbox.xmin,
area->bbox.ymin,
area->bbox.xmax,
area->bbox.ymax,
area->data,
area->neighbors[KD_LEFT],
area->neighbors[KD_RIGHT],
area->neighbors[KD_UP],
area->neighbors[KD_DOWN]);
if(area->split) {
kdbranch_print(area->split, indent+4);
}
}
void kdtree_print(kdtree_t*tree)
{
kdarea_print(tree->root, 0);
}
void kdbranch_destroy(kdbranch_t*b)
{
if(b->side[0]) {
kdarea_destroy(b->side[0]);
b->side[0] = 0;
}
if(b->side[1]) {
kdarea_destroy(b->side[1]);
b->side[1] = 0;
}
free(b);
}
void kdarea_destroy(kdarea_t*area)
{
if(area->split) {
kdbranch_destroy(area->split);
}
free(area);
}
void kdtree_destroy(kdtree_t*tree)
{
kdarea_destroy(tree->root);
tree->root = 0;
free(tree);
}
#ifdef MAIN
int main()
{
assert((1^vx[2]) < 0);
kdtree_t*tree = kdtree_new();
kdtree_add_box(tree, 10,30,20,40, "hello world");
kdtree_add_box(tree, 12,50,15,60, "hello world");
//kdtree_print(tree);
kdarea_t*a = kdtree_find(tree, 15,35);
kdarea_t*left = kdarea_neighbor(a, KD_LEFT, /*y*/35);
kdarea_t*right = kdarea_neighbor(a, KD_RIGHT, /*y*/35);
kdarea_t*up = kdarea_neighbor(a, KD_UP, /*x*/15);
kdarea_t*down = kdarea_neighbor(a, KD_DOWN, /*x*/15);
a = kdtree_find(tree, 15,25);
assert(!a || !a->data);
a = kdtree_find(tree, 15,45);
assert(!a || !a->data);
a = kdtree_find(tree, 5,35);
assert(!a || !a->data);
a = kdtree_find(tree, 45,35);
assert(!a || !a->data);
kdtree_destroy(tree);
}
#endif
|