1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
/* drawer.c
part of swftools
A generic structure for providing vector drawing.
(Helper routines, spline approximation, simple text drawers)
Copyright (C) 2003 Matthias Kramm <kramm@quiss.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <memory.h>
#include <math.h>
#include <ctype.h>
#include "drawer.h"
static char* getToken(const char**p)
{
const char*start;
char*result;
while(**p && strchr(" ,()\t\n\r", **p)) {
(*p)++;
}
start = *p;
/*
SVF pathdata can exclude whitespace after L and M commands.
Ref: http://www.w3.org/TR/SVG11/paths.html#PathDataGeneralInformation
This allows us to use svg files output from gnuplot.
Also checks for relative MoveTo and LineTo (m and l).
051106 Magnus Lundin, lundin@mlu.mine.nu
*/
if (strchr("LMlm", **p) && (isdigit(*(*p+1))||strchr("+-", *(*p+1)))) {
(*p)++;
}
else while(**p && !strchr(" ,()\t\n\r", **p)) {
(*p)++;
}
result = (char*)malloc((*p)-start+1);
memcpy(result,start,(*p)-start+1);
result[(*p)-start] = 0;
return result;
}
void draw_conicTo(drawer_t*draw, FPOINT* c, FPOINT* to)
{
FPOINT* pos = &draw->pos;
FPOINT c1,c2;
c1.x = (pos->x + 2 * c->x) / 3;
c1.y = (pos->y + 2 * c->y) / 3;
c2.x = (2 * c->x + to->x) / 3;
c2.y = (2 * c->y + to->y) / 3;
draw_cubicTo(draw, &c1,&c2,to);
draw->pos = *to;
}
/* convenience routine */
static void draw_conicTo2(drawer_t*draw, double x1, double y1, double x2, double y2)
{
FPOINT c1,c2;
c1.x = x1;
c1.y = y1;
c2.x = x2;
c2.y = y2;
draw_conicTo(draw, &c1, &c2);
}
/* convenience routine */
static void draw_moveTo2(drawer_t*draw, double x, double y)
{
FPOINT c;
c.x = x; c.y = y;
draw->moveTo(draw, &c);
}
/* convenience routine */
static void draw_lineTo2(drawer_t*draw, double x, double y)
{
FPOINT c;
c.x = x; c.y = y;
draw->lineTo(draw, &c);
}
static float getFloat(const char** p)
{
char* token = getToken(p);
float result = atof(token);
free(token);
return result;
}
void draw_string(drawer_t*draw, const char*string)
{
const char*p = string;
while(*p) {
char*token = getToken(&p);
if(!token)
break;
if (!*token)
{
free(token);
break;
}
if(!strncmp(token, "moveTo", 6) ||
!strncmp(token, "M", 1) //svg
) {
FPOINT to;
to.x = getFloat(&p);
to.y = getFloat(&p);
draw->moveTo(draw, &to);
}
else if(!strncmp(token, "lineTo", 6) ||
!strncmp(token, "L", 1) //svg
) {
FPOINT to;
to.x = getFloat(&p);
to.y = getFloat(&p);
draw->lineTo(draw, &to);
}
else if(!strncmp(token, "curveTo", 7) || !strncmp(token, "splineTo", 8)) {
FPOINT mid,to;
mid.x = getFloat(&p);
mid.y = getFloat(&p);
to.x = getFloat(&p);
to.y = getFloat(&p);
draw->splineTo(draw, &mid, &to);
}
else if(!strncmp(token, "conicTo", 5)) {
FPOINT mid,to;
mid.x = getFloat(&p);
mid.y = getFloat(&p);
to.x = getFloat(&p);
to.y = getFloat(&p);
draw_conicTo(draw, &mid, &to);
}
else if(!strncmp(token, "circle", 6)) {
int mx,my,r;
double r2;
mx = getFloat(&p);
my = getFloat(&p);
r = getFloat(&p);
r2 = 0.70710678118654757*r;
draw_moveTo2(draw, mx, my-r);
draw_conicTo2(draw, mx+r2, my-r2, mx+r, my);
draw_conicTo2(draw, mx+r2, my+r2, mx, my+r);
draw_conicTo2(draw, mx-r2, my+r2, mx-r, my);
draw_conicTo2(draw, mx-r2, my-r2, mx, my-r);
}
else if(!strncmp(token, "box", 3)) {
int x1,y1,x2,y2;
x1 = getFloat(&p);
y1 = getFloat(&p);
x2 = getFloat(&p);
y2 = getFloat(&p);
draw_moveTo2(draw, x1, y1);
draw_lineTo2(draw, x1, y2);
draw_lineTo2(draw, x2, y2);
draw_lineTo2(draw, x2, y1);
draw_lineTo2(draw, x1, y1);
}
else if(!strncmp(token, "cubicTo", 5) ||
!strncmp(token, "C", 1) //svg
) {
FPOINT mid1,mid2,to;
mid1.x = getFloat(&p);
mid1.y = getFloat(&p);
mid2.x = getFloat(&p);
mid2.y = getFloat(&p);
to.x = getFloat(&p);
to.y = getFloat(&p);
draw_cubicTo(draw, &mid1, &mid2, &to);
}
else if(!strncmp(token, "z", 1) //svg
) {
// ignore
}
else
fprintf(stderr, "drawer: Warning: unknown primitive '%s'\n", token);
free(token);
}
}
struct SPLINEPOINT
{
double x,y;
};
struct qspline
{
struct SPLINEPOINT start;
struct SPLINEPOINT control;
struct SPLINEPOINT end;
};
struct cspline
{
struct SPLINEPOINT start;
struct SPLINEPOINT control1;
struct SPLINEPOINT control2;
struct SPLINEPOINT end;
};
static inline struct SPLINEPOINT cspline_getpoint(const struct cspline*s, double t)
{
struct SPLINEPOINT p;
double tt = t*t;
double ttt = tt*t;
double mt = (1-t);
double mtmt = mt*(1-t);
double mtmtmt = mtmt*(1-t);
p.x= s->end.x*ttt + 3*s->control2.x*tt*mt
+ 3*s->control1.x*t*mtmt + s->start.x*mtmtmt;
p.y= s->end.y*ttt + 3*s->control2.y*tt*mt
+ 3*s->control1.y*t*mtmt + s->start.y*mtmtmt;
return p;
}
static struct SPLINEPOINT qspline_getpoint(const struct qspline*s, double t)
{
struct SPLINEPOINT p;
p.x= s->end.x*t*t + 2*s->control.x*t*(1-t) + s->start.x*(1-t)*(1-t);
p.y= s->end.y*t*t + 2*s->control.y*t*(1-t) + s->start.y*(1-t)*(1-t);
return p;
}
static int approximate3(const struct cspline*s, struct qspline*q, int size, double quality2)
{
unsigned int gran = 0;
unsigned int istep = 0x80000000;
unsigned int istart = 0;
int num = 0;
int level = 0;
while(istart<0x80000000)
{
unsigned int iend = istart + istep;
double start = istart/(double)0x80000000;
double end = iend/(double)0x80000000;
struct qspline test;
double pos,qpos;
char left = 0,recurse=0;
int t;
int probes = 15;
/* create simple approximation: a qspline which run's through the
qspline point at 0.5 */
test.start = cspline_getpoint(s, start);
test.control = cspline_getpoint(s, (start+end)/2);
test.end = cspline_getpoint(s, end);
/* fix the control point:
move it so that the new spline does runs through it */
test.control.x = -(test.end.x + test.start.x)/2 + 2*(test.control.x);
test.control.y = -(test.end.y + test.start.y)/2 + 2*(test.control.y);
/* depending on where we are in the spline, we either try to match
the left or right tangent */
if(start<0.5)
left=1;
/* get derivative */
pos = left?start:end;
qpos = pos*pos;
test.control.x = s->end.x*(3*qpos) + 3*s->control2.x*(2*pos-3*qpos) +
3*s->control1.x*(1-4*pos+3*qpos) + s->start.x*(-3+6*pos-3*qpos);
test.control.y = s->end.y*(3*qpos) + 3*s->control2.y*(2*pos-3*qpos) +
3*s->control1.y*(1-4*pos+3*qpos) + s->start.y*(-3+6*pos-3*qpos);
if(left) {
test.control.x *= (end-start)/2;
test.control.y *= (end-start)/2;
test.control.x += test.start.x;
test.control.y += test.start.y;
} else {
test.control.x *= -(end-start)/2;
test.control.y *= -(end-start)/2;
test.control.x += test.end.x;
test.control.y += test.end.y;
}
#define PROBES
#ifdef PROBES
/* measure the spline's accurancy, by taking a number of probes */
for(t=0;t<probes;t++) {
struct SPLINEPOINT qr1,qr2,cr1,cr2;
double pos = 0.5/(probes*2)*(t*2+1);
double dx,dy;
double dist1,dist2;
qr1 = qspline_getpoint(&test, pos);
cr1 = cspline_getpoint(s, start+pos*(end-start));
dx = qr1.x - cr1.x;
dy = qr1.y - cr1.y;
dist1 = dx*dx+dy*dy;
if(dist1>quality2) {
recurse=1;break;
}
qr2 = qspline_getpoint(&test, (1-pos));
cr2 = cspline_getpoint(s, start+(1-pos)*(end-start));
dx = qr2.x - cr2.x;
dy = qr2.y - cr2.y;
dist2 = dx*dx+dy*dy;
if(dist2>quality2) {
recurse=1;break;
}
}
#else // quadratic error: *much* faster!
/* convert control point representation to
d*x^3 + c*x^2 + b*x + a */
double dx,dy;
dx= s->end.x - s->control2.x*3 + s->control1.x*3 - s->start.x;
dy= s->end.y - s->control2.y*3 + s->control1.y*3 - s->start.y;
/* we need to do this for the subspline between [start,end], not [0,1]
as a transformation of t->a*t+b does nothing to highest coefficient
of the spline except multiply it with a^3, we just need to modify
d here. */
{double m = end-start;
dx*=m*m*m;
dy*=m*m*m;
}
/* use the integral over (f(x)-g(x))^2 between 0 and 1
to measure the approximation quality.
(it boils down to const*d^2)
*/
recurse = (dx*dx + dy*dy > quality2);
#endif
if(recurse && istep>1 && size-level > num) {
istep >>= 1;
level++;
} else {
*q++ = test;
num++;
istart += istep;
while(!(istart & istep)) {
level--;
istep <<= 1;
}
}
}
return num;
}
void draw_cubicTo(drawer_t*draw, FPOINT* control1, FPOINT* control2, FPOINT* to)
{
struct qspline q[128];
struct cspline c;
//double quality = 80;
double maxerror = 1;//(500-(quality*5)>1?500-(quality*5):1)/20.0;
int t,num;
c.start.x = draw->pos.x;
c.start.y = draw->pos.y;
c.control1.x = control1->x;
c.control1.y = control1->y;
c.control2.x = control2->x;
c.control2.y = control2->y;
c.end.x = to->x;
c.end.y = to->y;
num = approximate3(&c, q, 128, maxerror*maxerror);
for(t=0;t<num;t++) {
FPOINT mid;
FPOINT to;
mid.x = q[t].control.x;
mid.y = q[t].control.y;
to.x = q[t].end.x;
to.y = q[t].end.y;
draw->splineTo(draw, &mid, &to);
}
}
|