File: poly.c

package info (click to toggle)
swftools 0.9.2%2Bgit20130725-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 8,680 kB
  • ctags: 17,348
  • sloc: ansic: 108,712; sh: 8,494; cpp: 8,040; yacc: 2,260; lisp: 904; makefile: 601; python: 300
file content (1635 lines) | stat: -rw-r--r-- 51,095 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <limits.h>
#include <time.h>
#include "../mem.h"
#include "../types.h"
#include "poly.h"
#include "active.h"
#include "xrow.h"
#include "wind.h"
#include "convert.h"
#include "heap.h"
#include "moments.h"

#ifdef HAVE_MD5
#include "MD5.h"
#endif

static gfxpoly_t*current_polygon = 0;
void gfxpoly_fail(char*expr, char*file, int line, const char*function)
{
    if(!current_polygon) {
	fprintf(stderr, "assert(%s) failed in %s in line %d: %s\n", expr, file, line, function);
	exit(1);
    }

    char filename[32+4+1];
#ifdef HAVE_MD5
    void*md5 = initialize_md5();
   
    int s,t;
    gfxpolystroke_t*stroke = current_polygon->strokes;
    for(;stroke;stroke=stroke->next) {
	for(t=0;t<stroke->num_points;t++) {
	    update_md5(md5, (unsigned char*)&stroke->points[t].x, sizeof(stroke->points[t].x));
	    update_md5(md5, (unsigned char*)&stroke->points[t].y, sizeof(stroke->points[t].y));
	}
    }
    unsigned char h[16];
    finish_md5(md5, h);
    sprintf(filename, "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x.ps",
	    h[0],h[1],h[2],h[3],h[4],h[5],h[6],h[7],h[8],h[9],h[10],h[11],h[12],h[13],h[14],h[15]);
#else
    sprintf(filename, "%d", (int)time(0));
#endif

    fprintf(stderr, "assert(%s) failed in %s in line %d: %s\n", expr, file, line, function);
    fprintf(stderr, "I'm saving a debug file \"%s\" to the current directory.\n", filename);

    gfxpoly_save(current_polygon, filename);
    exit(1);
}

static char point_equals(const void*o1, const void*o2)
{
    const point_t*p1 = o1;
    const point_t*p2 = o2;
    return p1->x == p2->x && p1->y == p2->y;
}
static unsigned int point_hash(const void*o)
{
    const point_t*p = o;
    return p->x^p->y;
}
static void* point_dup(const void*o)
{
    const point_t*p = o;
    point_t*n = malloc(sizeof(point_t));
    n->x = p->x;
    n->y = p->y;
    return n;
}
static void point_free(void*o)
{
    point_t*p = o;
    p->x = 0;
    p->y = 0;
    free(p);
}
type_t point_type = {
    equals: point_equals,
    hash: point_hash,
    dup: point_dup,
    free: point_free,
};

typedef struct _event {
    eventtype_t type;
    point_t p;
    segment_t*s1;
    segment_t*s2;
} event_t;

/* compare_events_simple differs from compare_events in that it schedules
   events from left to right regardless of type. It's only used in horizontal
   processing, in order to get an x-wise sorting of the current scanline */
static inline int compare_events_simple(const void*_a,const void*_b)
{
    event_t* a = (event_t*)_a;
    event_t* b = (event_t*)_b;
    int d = b->p.y - a->p.y;
    if(d) return d;
    d = b->p.x - a->p.x;
    if(d) return d;
    return 0;
}

static inline int compare_events(const void*_a,const void*_b)
{
    event_t* a = (event_t*)_a;
    event_t* b = (event_t*)_b;
    int d = b->p.y - a->p.y;
    if(d) return d;
    /* we need to schedule end after intersect (so that a segment about
       to end has a chance to tear up a few other segs first) and start
       events after end (in order not to confuse the intersection check, which
       assumes there's an actual y overlap between active segments, and 
       because ending segments in the active list make it difficult to insert
       starting segments at the right position)). 
       Horizontal lines come last, because the only purpose
       they have is to create snapping coordinates for the segments (still)
       existing in this scanline.
    */
    d = b->type - a->type;
    if(d) return d;
    return 0;

    /* I don't see any reason why we would need to order by x- at least as long
       as we do horizontal lines in a seperate pass */
    //d = b->p.x - a->p.x;
    //return d;
}

#define COMPARE_EVENTS(x,y) (compare_events(x,y)>0)
#define COMPARE_EVENTS_SIMPLE(x,y) (compare_events_simple(x,y)>0)
HEAP_DEFINE(queue,event_t,COMPARE_EVENTS);
HEAP_DEFINE(hqueue,event_t,COMPARE_EVENTS_SIMPLE);

typedef struct _horizontal {
    int32_t y;
    int32_t x1, x2;
    edgestyle_t*fs;
    segment_dir_t dir;
    int polygon_nr;
    int xpos;
    int pos;
} horizontal_t;

typedef struct _horizdata {
    horizontal_t*data;
    int num;
    int size;
} horizdata_t;

typedef struct _status {
    int32_t y;
    double gridsize;
    actlist_t*actlist;
    queue_t queue;
    xrow_t*xrow;
    windrule_t*windrule;
    windcontext_t*context;
    segment_t*ending_segments;

    horizdata_t horiz;

    gfxpolystroke_t*strokes;
#ifdef CHECKS
    dict_t*seen_crossings; //list of crossing we saw so far
    dict_t*intersecting_segs; //list of segments intersecting in this scanline
    dict_t*segs_with_point; //lists of segments that received a point in this scanline
#endif
} status_t;


int gfxpoly_num_segments(gfxpoly_t*poly)
{
    gfxpolystroke_t*stroke = poly->strokes;
    int count = 0;
    for(;stroke;stroke=stroke->next) {
	count++;
    }
    return count;
}
int gfxpoly_size(gfxpoly_t*poly)
{
    int s,t;
    int edges = 0;
    gfxpolystroke_t*stroke = poly->strokes;
    for(;stroke;stroke=stroke->next) {
	edges += stroke->num_points-1;
    }
    return edges;
}

char gfxpoly_check(gfxpoly_t*poly, char updown)
{
    dict_t*d1 = dict_new2(&point_type);
    dict_t*d2 = dict_new2(&point_type);
    int s,t;
    gfxpolystroke_t*stroke = poly->strokes;
    for(;stroke;stroke=stroke->next) {
	/* In order to not confuse the fill/wind logic, existing segments must have
	   a non-zero edge style */
	assert(stroke->fs);

	/* put all the segments into dictionaries so that we can check
	   that the endpoint multiplicity is two */
	for(s=0;s<stroke->num_points;s++) {
	    point_t p = stroke->points[s];
	    int num_xor = (s>=1 && s<stroke->num_points-1)?2:1; // mid points are two points (start+end)
	    int num_circ = (s>=1 && s<stroke->num_points-1)?0:(s==0?1:-1);
	    if(stroke->dir==DIR_UP)
		num_circ=-num_circ;

	    if(!dict_contains(d1, &p)) {
		dict_put(d1, &p, (void*)(ptroff_t)num_xor);
		if(updown) {
		    assert(!dict_contains(d2, &p));
		    dict_put(d2, &p, (void*)(ptroff_t)num_circ);
		}
	    } else {
		int count = (ptroff_t)dict_lookup(d1, &p);
		dict_del(d1, &p);
		count+=num_xor;
		dict_put(d1, &p, (void*)(ptroff_t)count);

		if(updown) {
		    assert(dict_contains(d2, &p));
		    count = (ptroff_t)dict_lookup(d2, &p);
		    dict_del(d2, &p);
		    count+=num_circ;
		    dict_put(d2, &p, (void*)(ptroff_t)count);
		}
	    }
	}
    }
    DICT_ITERATE_ITEMS(d1, point_t*, p1, void*, c1) {
        int count = (ptroff_t)c1;
        if(count&1) {
            fprintf(stderr, "Error: Point (%.2f,%.2f) occurs %d times\n", p1->x * poly->gridsize, p1->y * poly->gridsize, count);
            dict_destroy(d1);
            dict_destroy(d2);
	    return 0;
        }
    }
    if(updown) {
	DICT_ITERATE_ITEMS(d2, point_t*, p2, void*, c2) {
	    int count = (ptroff_t)c2;
	    assert(dict_contains(d1, p2));
	    int ocount = (ptroff_t)dict_lookup(d1, p2);
	    if(count!=0) {
		if(count>0) fprintf(stderr, "Error: Point (%.2f,%.2f) has %d more incoming than outgoing segments (%d incoming, %d outgoing)\n", p2->x * poly->gridsize, p2->y * poly->gridsize, count, (ocount+count)/2, (ocount-count)/2);
		if(count<0) fprintf(stderr, "Error: Point (%.2f,%.2f) has %d more outgoing than incoming segments (%d incoming, %d outgoing)\n", p2->x * poly->gridsize, p2->y * poly->gridsize, -count, (ocount+count)/2, (ocount-count)/2);
		gfxpolystroke_t*stroke = poly->strokes;
		for(;stroke;stroke=stroke->next) {
		    for(s=0;s<stroke->num_points-1;s++) {
			point_t a = stroke->points[s];
			point_t b = stroke->points[s+1];
			if(a.x == p2->x && a.y == p2->y ||
			   b.x == p2->x && b.y == p2->y) {
			    fprintf(stderr, "%.2f,%.2f -> %.2f,%.2f\n", 
				    a.x * poly->gridsize, 
				    a.y * poly->gridsize, 
				    b.x * poly->gridsize, 
				    b.y * poly->gridsize);
			}
		    }
		}
		dict_destroy(d2);
		return 0;
	    }
	}
    }
    dict_destroy(d1);
    dict_destroy(d2);
    return 1;
}

void gfxpoly_dump(gfxpoly_t*poly)
{
    int s,t;
    double g = poly->gridsize;
    fprintf(stderr, "polyon %p (gridsize: %.2f)\n", poly, poly->gridsize);
    gfxpolystroke_t*stroke = poly->strokes;
    for(;stroke;stroke=stroke->next) {
	fprintf(stderr, "%11p", stroke);
	if(stroke->dir==DIR_UP) {
	    for(s=stroke->num_points-1;s>=1;s--) {
		point_t a = stroke->points[s];
		point_t b = stroke->points[s-1];
		fprintf(stderr, "%s (%.2f,%.2f) -> (%.2f,%.2f)%s%s\n", s!=stroke->num_points-1?"           ":"", a.x*g, a.y*g, b.x*g, b.y*g,
							    s==1?"]":"", a.y==b.y?"H":"");
	    }
	} else {
	    for(s=0;s<stroke->num_points-1;s++) {
		point_t a = stroke->points[s];
		point_t b = stroke->points[s+1];
		fprintf(stderr, "%s (%.2f,%.2f) -> (%.2f,%.2f)%s%s\n", s?"           ":"", a.x*g, a.y*g, b.x*g, b.y*g,
							    s==stroke->num_points-2?"]":"", a.y==b.y?"H":"");
	    }
	}
    }
}

void gfxpoly_save(gfxpoly_t*poly, const char*filename)
{
    FILE*fi = fopen(filename, "wb");
    fprintf(fi, "%% gridsize %f\n", poly->gridsize);
    fprintf(fi, "%% begin\n");
    int s,t;
    gfxpolystroke_t*stroke = poly->strokes;
    for(;stroke;stroke=stroke->next) {
	    fprintf(fi, "%g setgray\n", stroke->dir==DIR_UP ? 0.7 : 0);
	point_t p = stroke->points[0];
	fprintf(fi, "%d %d moveto\n", p.x, p.y);
	for(s=1;s<stroke->num_points;s++) {
	    p = stroke->points[s];
	    fprintf(fi, "%d %d lineto\n", p.x, p.y);
	}
	fprintf(fi, "stroke\n");
    }
    fprintf(fi, "showpage\n");
    fclose(fi);
}

void gfxpoly_save_arrows(gfxpoly_t*poly, const char*filename)
{
    FILE*fi = fopen(filename, "wb");
    fprintf(fi, "%% gridsize %f\n", poly->gridsize);
    fprintf(fi, "%% begin\n");
    int t;
    double l = 5.0 / poly->gridsize;
    double g = poly->gridsize;
    gfxpolystroke_t*stroke = poly->strokes;
    for(;stroke;stroke=stroke->next) {
	fprintf(fi, "0 setgray\n");

	int s = stroke->dir==DIR_UP?stroke->num_points-1:0;
	int end = stroke->dir==DIR_UP?-1:stroke->num_points;
	int dir = stroke->dir==DIR_UP?-1:1;

	point_t p = stroke->points[s];
	s+=dir;
	point_t o = p;
	fprintf(fi, "%f %f moveto\n", p.x * g, p.y * g);
	for(;s!=end;s+=dir) {
	    p = stroke->points[s];
	    int lx = p.x - o.x;
	    int ly = p.y - o.y;
	    double d = sqrt(lx*lx+ly*ly);
	    if(!d) d=1;
	    else   d = l / d;
	    double d2 = d*1.5;
	    fprintf(fi, "%f %f lineto\n", (p.x - lx*d2) * g, (p.y - ly*d2) * g);
	    fprintf(fi, "%f %f lineto\n", (p.x - lx*d2 + (ly*d))*g,
		                          (p.y - ly*d2 - (lx*d))*g);
	    fprintf(fi, "%f %f lineto\n", p.x * g, p.y * g);
	    fprintf(fi, "%f %f lineto\n", (p.x - lx*d2 - (ly*d))*g, 
		                          (p.y - ly*d2 + (lx*d))*g);
	    fprintf(fi, "%f %f lineto\n", (p.x - lx*d2) * g, (p.y - ly*d2) * g);
	    fprintf(fi, "%f %f moveto\n", p.x * g, p.y * g);
	    o = p;
	}
	fprintf(fi, "stroke\n");
    }
    fprintf(fi, "showpage\n");
    fclose(fi);
}

inline static event_t* event_new()
{
    event_t*e = rfx_calloc(sizeof(event_t));
    return e;
}
inline static void event_free(event_t*e)
{
    free(e);
}

static void event_dump(status_t*status, event_t*e)
{
    if(e->type == EVENT_HORIZONTAL) {
        fprintf(stderr, "Horizontal [%d] (%.2f,%.2f) -> (%.2f,%.2f)\n", (int)e->s1->nr, 
		e->s1->a.x * status->gridsize, e->s1->a.y * status->gridsize, e->s1->b.x * status->gridsize, e->s1->b.y * status->gridsize);
    } else if(e->type == EVENT_START) {
        fprintf(stderr, "event: segment [%d] starts at (%.2f,%.2f)\n", (int)e->s1->nr, 
		e->p.x * status->gridsize, e->p.y * status->gridsize);
    } else if(e->type == EVENT_END) {
        fprintf(stderr, "event: segment [%d] ends at (%.2f,%.2f)\n", (int)e->s1->nr, 
		e->p.x * status->gridsize, e->p.y * status->gridsize);
    } else if(e->type == EVENT_CROSS) {
        fprintf(stderr, "event: segment [%d] and [%d] intersect at (%.2f,%.2f)\n", (int)e->s1->nr, (int)e->s2->nr, 
		e->p.x * status->gridsize, e->p.y * status->gridsize);
    } else {
        assert(0);
    }
}

static inline int32_t max32(int32_t v1, int32_t v2) {return v1>v2?v1:v2;}
static inline int32_t min32(int32_t v1, int32_t v2) {return v1<v2?v1:v2;}

static void segment_dump(segment_t*s)
{
    fprintf(stderr, "[%d] (%d,%d)->(%d,%d) ", (int)s->nr, s->a.x, s->a.y, s->b.x, s->b.y);
    fprintf(stderr, " dx:%d dy:%d k:%f dx/dy=%f fs=%p\n", s->delta.x, s->delta.y, s->k,
            (double)s->delta.x / s->delta.y, s->fs);
}

static void segment_init(segment_t*s, int32_t x1, int32_t y1, int32_t x2, int32_t y2, int polygon_nr, segment_dir_t dir)
{
    static int segment_count=0;
    s->nr = segment_count++;
    s->dir = dir;
    if(y1!=y2) {
	assert(y1<y2);
    } else {
        /* We need to make sure horizontal segments always go from left to right.
	   "up/down" for horizontal segments is handled by "rotating"
           them 90° counterclockwise in screen coordinates (tilt your head to
           the right). In other words, the "normal" direction (what's positive dy for
	   vertical segments) is positive dx for horizontal segments ("down" is right).
	 */
        if(x1>x2) {
            s->dir = DIR_INVERT(s->dir);
            int32_t x = x1;x1=x2;x2=x;
            int32_t y = y1;y1=y2;y2=y;
        }
#ifdef DEBUG
	fprintf(stderr, "Scheduling horizontal segment [%d] (%.2f,%.2f) -> (%.2f,%.2f) %s\n",
		segment_count,
		x1 * 0.05, y1 * 0.05, x2 * 0.05, y2 * 0.05, s->dir==DIR_UP?"up":"down");
#endif
    }
    s->a.x = x1;
    s->a.y = y1;
    s->b.x = x2;
    s->b.y = y2;
    s->k = (double)x1*y2-(double)x2*y1;
    s->left = s->right = 0;
    s->delta.x = x2-x1;
    s->delta.y = y2-y1;
    s->minx = min32(x1,x2);
    s->maxx = max32(x1,x2);

    s->pos = s->a;
    s->polygon_nr = polygon_nr;

#ifdef CHECKS
    /* notice: on some systems (with some compilers), for the line 
       (1073741823,-1073741824)->(1073741823,1073741823)
       we get LINE_EQ(s->a, s) == 1. 
       That's why we now clamp to 26 bit.
    */
    assert(LINE_EQ(s->a, s) == 0);
    assert(LINE_EQ(s->b, s) == 0);

    /* check that all signs are in order:
       a        a
       |\      /|
       | \    / |
     minx-b  b--maxx
     < 0        > 0
    */
    point_t p = s->b;
    p.x = min32(s->a.x, s->b.x);
    assert(LINE_EQ(p, s) <= 0);
    p.x = max32(s->a.x, s->b.x);
    assert(LINE_EQ(p, s) >= 0);
#endif

#ifndef DONT_REMEMBER_CROSSINGS
    dict_init2(&s->scheduled_crossings, &ptr_type, 0);
#endif
}

static segment_t* segment_new(point_t a, point_t b, int polygon_nr, segment_dir_t dir)
{
    segment_t*s = (segment_t*)rfx_calloc(sizeof(segment_t));
    segment_init(s, a.x, a.y, b.x, b.y, polygon_nr, dir);
    return s;
}

static void segment_clear(segment_t*s)
{
#ifndef DONT_REMEMBER_CROSSINGS
    dict_clear(&s->scheduled_crossings);
#endif
}
static void segment_destroy(segment_t*s)
{
    segment_clear(s);
    free(s);
}

static void advance_stroke(queue_t*queue, hqueue_t*hqueue, gfxpolystroke_t*stroke, int polygon_nr, int pos, double gridsize)
{
    if(!stroke) 
	return;
    segment_t*s = 0;
    /* we need to queue multiple segments at once because we need to process start events
       before horizontal events */
    while(pos < stroke->num_points-1) {
	assert(stroke->points[pos].y <= stroke->points[pos+1].y);
	s = segment_new(stroke->points[pos], stroke->points[pos+1], polygon_nr, stroke->dir);
	s->fs = stroke->fs;
	pos++;
	s->stroke = 0;
	s->stroke_pos = 0;
#ifdef DEBUG
	/*if(l->tmp)
	    s->nr = l->tmp;*/
	fprintf(stderr, "[%d] (%.2f,%.2f) -> (%.2f,%.2f) %s (stroke %p, %d more to come)\n",
		s->nr, s->a.x * gridsize, s->a.y * gridsize, 
		s->b.x * gridsize, s->b.y * gridsize,
		s->dir==DIR_UP?"up":"down", stroke, stroke->num_points - 1 - pos);
#endif
	event_t* e = event_new();
	e->type = s->delta.y ? EVENT_START : EVENT_HORIZONTAL;
	e->p = s->a;
	e->s1 = s;
	e->s2 = 0;
	
	if(queue) queue_put(queue, e);
	else hqueue_put(hqueue, e);

	if(e->type != EVENT_HORIZONTAL) {
	    break;
	}
    }
    if(s) {
	s->stroke = stroke;
	s->stroke_pos = pos;
    }
}

static void gfxpoly_enqueue(gfxpoly_t*p, queue_t*queue, hqueue_t*hqueue, int polygon_nr)
{
    int t;
    gfxpolystroke_t*stroke = p->strokes;
    for(;stroke;stroke=stroke->next) {
	assert(stroke->num_points > 1);

#ifdef CHECKS
	int s;
	for(s=0;s<stroke->num_points-1;s++) {
	    assert(stroke->points[s].y <= stroke->points[s+1].y);
	}
#endif
	advance_stroke(queue, hqueue, stroke, polygon_nr, 0, p->gridsize);
    }
}

static void schedule_endpoint(status_t*status, segment_t*s)
{
    // schedule end point of segment
    assert(s->b.y > status->y);
    event_t*e = event_new();
    e->type = EVENT_END;
    e->p = s->b;
    e->s1 = s;
    e->s2 = 0;
    queue_put(&status->queue, e);
}

static void schedule_crossing(status_t*status, segment_t*s1, segment_t*s2)
{
    /* the code that's required (and the checks you can perform) before
       it can be said with 100% certainty that we indeed have a valid crossing
       amazes me every time. -mk */
#ifdef CHECKS
    assert(s1!=s2);
    assert(s1->right == s2);
    assert(s2->left == s1);
    int32_t miny1 = min32(s1->a.y,s1->b.y);
    int32_t maxy1 = max32(s1->a.y,s1->b.y);
    int32_t miny2 = min32(s2->a.y,s2->b.y);
    int32_t maxy2 = max32(s2->a.y,s2->b.y);
    int32_t minx1 = min32(s1->a.x,s1->b.x);
    int32_t minx2 = min32(s2->a.x,s2->b.x);
    int32_t maxx1 = max32(s1->a.x,s1->b.x);
    int32_t maxx2 = max32(s2->a.x,s2->b.x);
    /* check that precomputation is sane */
    assert(minx1 == s1->minx && minx2 == s2->minx);
    assert(maxx1 == s1->maxx && maxx2 == s2->maxx);
    /* both segments are active, so this can't happen */
    assert(!(maxy1 <= miny2 || maxy2 <= miny1));
    /* we know that right now, s2 is to the right of s1, so there's
       no way the complete bounding box of s1 is to the right of s1 */
    assert(!(s1->minx > s2->maxx));
    assert(s1->minx != s2->maxx || (!s1->delta.x && !s2->delta.x));
#endif

    if(s1->maxx <= s2->minx) {
#ifdef DEBUG
            fprintf(stderr, "[%d] doesn't intersect with [%d] because: bounding boxes don't intersect\n", s1->nr, s2->nr);
#endif
        /* bounding boxes don't intersect */
        return;
    }

#ifndef DONT_REMEMBER_CROSSINGS
    if(dict_contains(&s1->scheduled_crossings, (void*)(ptroff_t)s2->nr)) {
        /* FIXME: this whole segment hashing thing is really slow */
#ifdef DEBUG
        fprintf(stderr, "[%d] doesn't intersect with [%d] because: we already scheduled this intersection\n", s1->nr, s2->nr);
//	DICT_ITERATE_KEY(&s1->scheduled_crossings, void*, x) {
//	    fprintf(stderr, "[%d]<->[%d]\n", s1->nr, (int)(ptroff_t)x);
//	}
#endif
        return; // we already know about this one
    }
#endif

    double det = (double)s1->delta.x*s2->delta.y - (double)s1->delta.y*s2->delta.x;
    if(!det) {
        if(s1->k == s2->k) {
            // lines are exactly on top of each other (ignored)
#ifdef DEBUG
            fprintf(stderr, "Notice: segments [%d] and [%d] are exactly on top of each other\n", s1->nr, s2->nr);
#endif
            return;
        } else {
#ifdef DEBUG
            fprintf(stderr, "[%d] doesn't intersect with [%d] because: they are parallel to each other\n", s1->nr, s2->nr);
#endif
            /* lines are parallel */
            return;
        }
    }

    double asign2 = LINE_EQ(s1->a, s2);
    if(asign2==0) {
        // segment1 touches segment2 in a single point (ignored)
#ifdef DEBUG
        fprintf(stderr, "Notice: segment [%d]'s start point touches segment [%d]\n", s1->nr, s2->nr);
#endif
        return;
    }
    double bsign2 = LINE_EQ(s1->b, s2);
    if(bsign2==0) {
        // segment1 touches segment2 in a single point (ignored)
#ifdef DEBUG
        fprintf(stderr, "Notice: segment [%d]'s end point touches segment [%d]\n", s1->nr, s2->nr);
#endif
        return;
    }

    if(asign2<0 && bsign2<0) {
        // segment1 is completely to the left of segment2
#ifdef DEBUG
            fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s1->nr, s2->nr);
#endif
        return;
    }
    if(asign2>0 && bsign2>0)  {
        // segment1 is completely to the right of segment2
#ifndef DONT_REMEMBER_CROSSINGS
	assert(0);
#endif
#ifdef DEBUG
            fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s2->nr, s1->nr);
#endif
        return;
    }
    
    double asign1 = LINE_EQ(s2->a, s1);
    if(asign1==0) {
        // segment2 touches segment1 in a single point (ignored)
#ifdef DEBUG
        fprintf(stderr, "Notice: segment [%d]'s start point touches segment [%d]\n", s2->nr, s1->nr);
#endif
        return;
    }
    double bsign1 = LINE_EQ(s2->b, s1);
    if(asign2==0) {
        // segment2 touches segment1 in a single point (ignored)
#ifdef DEBUG
        fprintf(stderr, "Notice: segment [%d]'s end point touches segment [%d]\n", s2->nr, s1->nr);
#endif
        return;
    }

    if(asign1<0 && bsign1<0) {
        // segment2 is completely to the left of segment1
#ifndef DONT_REMEMBER_CROSSINGS
	assert(0);
#endif
#ifdef DEBUG
            fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s1->nr, s2->nr);
#endif
        return;
    }
    if(asign1>0 && bsign1>0)  {
        // segment2 is completely to the right of segment1
#ifdef DEBUG
            fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s2->nr, s1->nr);
#endif
        return;
    }

#ifdef DONT_REMEMBER_CROSSINGS
    /* s2 crosses s1 from *left* to *right*. This is a crossing we already processed- 
       there's not way s2 would be to the left of s1 otherwise */
    if(asign1<0 && bsign1>0) return;
    if(asign2>0 && bsign2<0) return;
#endif

    assert(!(asign1<0 && bsign1>0));
    assert(!(asign2>0 && bsign2<0));

    /* TODO: should we precompute these? */
    double la = (double)s1->a.x*(double)s1->b.y - (double)s1->a.y*(double)s1->b.x;
    double lb = (double)s2->a.x*(double)s2->b.y - (double)s2->a.y*(double)s2->b.x;

    point_t p;
    p.x = (int32_t)ceil((-la*s2->delta.x + lb*s1->delta.x) / det);
    p.y = (int32_t)ceil((+lb*s1->delta.y - la*s2->delta.y) / det);

    assert(p.y >= status->y);
#ifdef CHECKS
    assert(p.x >= s1->minx && p.x <= s1->maxx);
    assert(p.x >= s2->minx && p.x <= s2->maxx);

    point_t pair;
    pair.x = s1->nr;
    pair.y = s2->nr;
#ifndef DONT_REMEMBER_CROSSINGS
    assert(!dict_contains(status->seen_crossings, &pair));
    dict_put(status->seen_crossings, &pair, 0);
#endif
#endif
#ifdef DEBUG
    fprintf(stderr, "schedule crossing between [%d] and [%d] at (%d,%d)\n", s1->nr, s2->nr, p.x, p.y);
#endif

#ifndef DONT_REMEMBER_CROSSINGS
    /* we insert into each other's intersection history because these segments might switch
       places and we still want to look them up quickly after they did */
    dict_put(&s1->scheduled_crossings, (void*)(ptroff_t)(s2->nr), 0);
    dict_put(&s2->scheduled_crossings, (void*)(ptroff_t)(s1->nr), 0);
#endif

    event_t* e = event_new();
    e->type = EVENT_CROSS;
    e->p = p;
    e->s1 = s1;
    e->s2 = s2;
    queue_put(&status->queue, e);
    return;
}

static void exchange_two(status_t*status, event_t*e)
{
    //exchange two segments in list
    segment_t*s1 = e->s1;
    segment_t*s2 = e->s2;
#ifdef CHECKS
    if(!dict_contains(status->intersecting_segs, s1))
        dict_put(status->intersecting_segs, s1, 0);
    if(!dict_contains(status->intersecting_segs, s2))
        dict_put(status->intersecting_segs, s2, 0);
#endif
    assert(s2->left == s1);
    assert(s1->right == s2);
    actlist_swap(status->actlist, s1, s2);
    assert(s2->right  == s1);
    assert(s1->left == s2);
    segment_t*left = s2->left;
    segment_t*right = s1->right;
    if(left)
        schedule_crossing(status, left, s2);
    if(right)
        schedule_crossing(status, s1, right);
}

typedef struct _box {
    point_t left1, left2, right1, right2;
} box_t;
static inline box_t box_new(int32_t x, int32_t y)
{
    box_t box;
    box.right1.x = box.right2.x = x;
    box.left1.x = box.left2.x = x-1;
    box.left1.y = box.right1.y = y-1;
    box.left2.y = box.right2.y = y;
    return box;
}

static void store_horizontal(status_t*status, point_t p1, point_t p2, edgestyle_t*fs, segment_dir_t dir, int polygon_nr);

static void append_stroke(status_t*status, point_t a, point_t b, segment_dir_t dir, edgestyle_t*fs)
{
    gfxpolystroke_t*stroke = status->strokes;
    /* find a stoke to attach this segment to. It has to have an endpoint
       matching our start point, and a matching edgestyle */
    while(stroke) {
	point_t p = stroke->points[stroke->num_points-1];
	if(p.x == a.x && p.y == a.y && stroke->fs == fs && stroke->dir == dir)
	    break;
	stroke = stroke->next;
    }
    if(!stroke) {
	stroke = rfx_calloc(sizeof(gfxpolystroke_t));
	stroke->dir = dir;
	stroke->fs = fs;
	stroke->next = status->strokes;
	status->strokes = stroke;
	stroke->points_size = 2;
	stroke->points = rfx_calloc(sizeof(point_t)*stroke->points_size);
	stroke->points[0] = a;
	stroke->num_points = 1;
    } else if(stroke->num_points == stroke->points_size) {
	assert(stroke->fs);
	stroke->points_size *= 2;
	stroke->points = rfx_realloc(stroke->points, sizeof(point_t)*stroke->points_size);
    }
    stroke->points[stroke->num_points++] = b;
}

static void insert_point_into_segment(status_t*status, segment_t*s, point_t p)
{
    assert(s->pos.x != p.x || s->pos.y != p.y);

#ifdef CHECKS
    if(!dict_contains(status->segs_with_point, s))
        dict_put(status->segs_with_point, s, 0);
    assert(s->fs_out_ok);
#endif

    if(s->pos.y != p.y) {
	/* non horizontal line- copy to output */
	if(s->fs_out) {
	    segment_dir_t dir = s->wind.is_filled?DIR_DOWN:DIR_UP;
#ifdef DEBUG
	    fprintf(stderr, "[%d] receives next point (%.2f,%.2f)->(%.2f,%.2f) (drawing (%s))\n", s->nr,
		    s->pos.x * status->gridsize, s->pos.y * status->gridsize, 
		    p.x * status->gridsize, p.y * status->gridsize,
		    dir==DIR_UP?"up":"down"
		    );
#endif
	    assert(s->pos.y != p.y);
	    append_stroke(status, s->pos, p, dir, s->fs_out);
	} else {
#ifdef DEBUG
	    fprintf(stderr, "[%d] receives next point (%.2f,%.2f) (omitting)\n", s->nr, 
		    p.x * status->gridsize, 
		    p.y * status->gridsize);
#endif
	}
    } else {
	/* horizontal line. we need to look at this more closely at the end of this
	   scanline */
	store_horizontal(status, s->pos, p, s->fs, s->dir, s->polygon_nr);
    }

    s->pos = p;
}

typedef struct _segrange {
    double xmin;
    segment_t*segmin;
    double xmax;
    segment_t*segmax;
} segrange_t;

static void segrange_adjust_endpoints(segrange_t*range, int32_t y)
{
#define XPOS_EQ(s1,s2,ypos) (XPOS((s1),(ypos))==XPOS((s2),(ypos)))
    segment_t*min = range->segmin;
    segment_t*max = range->segmax;

    /* we need this because if two segments intersect exactly on
       the scanline, segrange_test_segment_{min,max} can't tell which
       one is smaller/larger */
    if(min) while(min->left && XPOS_EQ(min, min->left, y)) {
        min = min->left;
    }
    if(max) while(max->right && XPOS_EQ(max, max->right, y)) {
        max = max->right;
    }
    range->segmin = min;
    range->segmax = max;
}
static void segrange_test_segment_min(segrange_t*range, segment_t*seg, int32_t y)
{
    if(!seg) return;
    /* we need to calculate the xpos anew (and can't use start coordinate or
       intersection coordinate), because we need the xpos exactly at the end of
       this scanline.
     */
    double x = XPOS(seg, y);
    if(!range->segmin || x<range->xmin) {
        range->segmin = seg;
        range->xmin = x;
    }
}
static void segrange_test_segment_max(segrange_t*range, segment_t*seg, int32_t y)
{
    if(!seg) return;
    double x = XPOS(seg, y);
    if(!range->segmax || x>range->xmax) {
        range->segmax = seg;
        range->xmax = x;
    }
}

/*
   SLOPE_POSITIVE:
      \+     \ +
------ I      \I
      -I\----  I
       I \   --I\---
       I  \    I \  -------
       +   \   +  \
*/
static void add_points_to_positively_sloped_segments(status_t*status, int32_t y, segrange_t*range)
{
    segment_t*first=0, *last = 0;
    int t;
    for(t=0;t<status->xrow->num;t++) {
        box_t box = box_new(status->xrow->x[t], y);
        segment_t*seg = actlist_find(status->actlist, box.left2, box.left2);

        seg = actlist_right(status->actlist, seg);
        while(seg) {
            if(seg->a.y == y) {
                // this segment started in this scanline, ignore it
                seg->changed = 1;last = seg;if(!first) {first=seg;}
            } else if(seg->delta.x <= 0) {
                // ignore segment w/ negative slope
            } else {
                last = seg;if(!first) {first=seg;}
                double d1 = LINE_EQ(box.right1, seg);
                double d2 = LINE_EQ(box.right2, seg);
                if(d1>0 || d2>=0) {
                    seg->changed = 1;
                    insert_point_into_segment(status, seg, box.right2);
                } else {
                    /* we unfortunately can't break here- the active list is sorted according
                       to the *bottom* of the scanline. hence pretty much everything that's still
                       coming might reach into our box */
                    //break;
                }
            }
            seg = seg->right;
        }
    }
    segrange_test_segment_min(range, first, y);
    segrange_test_segment_max(range, last, y);
}
/* SLOPE_NEGATIVE:
   |   +   /|  +  /    /
   |   I  / |  I /    /
   |   I /  |  I/    /
   |   I/   |  I    /
   |   I    | /I   /
   |  /+    |/ +  /
*/
static void add_points_to_negatively_sloped_segments(status_t*status, int32_t y, segrange_t*range)
{
    segment_t*first=0, *last = 0;
    int t;
    for(t=status->xrow->num-1;t>=0;t--) {
        box_t box = box_new(status->xrow->x[t], y);
        segment_t*seg = actlist_find(status->actlist, box.right2, box.right2);

        while(seg) {
            if(seg->a.y == y) {
                // this segment started in this scanline, ignore it
                seg->changed = 1;last = seg;if(!first) {first=seg;}
            } else if(seg->delta.x > 0) {
                // ignore segment w/ positive slope
            } else {
                last = seg;if(!first) {first=seg;}
                double d1 = LINE_EQ(box.left1, seg);
                double d2 = LINE_EQ(box.left2, seg);
                if(d1<0 || d2<0) {
                    seg->changed = 1;
                    insert_point_into_segment(status, seg, box.right2);
                } else {
                    //break;
                }
            }
            seg = seg->left;
        }
    }
    segrange_test_segment_min(range, last, y);
    segrange_test_segment_max(range, first, y);
}

/* segments ending in the current scanline need xrow treatment like everything else.
   (consider an intersection taking place just above a nearly horizontal segment
   ending on the current scanline- the intersection would snap down *below* the
   ending segment if we don't add the intersection point to the latter right away)
   we need to treat ending segments seperately, however. we have to delete them from
   the active list right away to make room for intersect operations (which might
   still be in the current scanline- consider two 45° polygons and a vertical polygon
   intersecting on an integer coordinate). but once they're no longer in the active list,
   we can't use the add_points_to_*_sloped_segments() functions anymore, and re-adding
   them to the active list just for point snapping would be overkill.
   (One other option to consider, however, would be to create a new active list only
    for ending segments)
*/
static void add_points_to_ending_segments(status_t*status, int32_t y)
{
    segment_t*seg = status->ending_segments;
    while(seg) {
        segment_t*next = seg->right;seg->right=0;

        assert(seg->b.y == status->y);

        if(status->xrow->num == 1) {
            // shortcut
	    assert(seg->b.x == status->xrow->x[0]);
            point_t p = {status->xrow->x[0], y};
            insert_point_into_segment(status, seg, p);
        } else {
            int t;
            int start=0,end=status->xrow->num,dir=1;
            if(seg->delta.x < 0) {
                start = status->xrow->num-1;
                end = dir = -1;
            }
#ifdef CHECKS
	    char ok = 0;
#endif
            for(t=start;t!=end;t+=dir) {
                box_t box = box_new(status->xrow->x[t], y);
                double d0 = LINE_EQ(box.left1, seg);
                double d1 = LINE_EQ(box.left2, seg);
                double d2 = LINE_EQ(box.right1, seg);
                double d3 = LINE_EQ(box.right2, seg);
                if(!(d0>=0 && d1>=0 && d2>=0 && d3>0 ||
                     d0<=0 && d1<=0 && d2<=0 && d3<0)) {
                    insert_point_into_segment(status, seg, box.right2);
                    //break;
#ifdef CHECKS
		    ok = 1;
#endif
                }
            }

#ifdef CHECKS
            /* we *need* to find a point to insert. the segment's own end point
               is in that list, for Pete's sake. */
            assert(ok);
#endif
        }
        // now that this is done, too, we can also finally free this segment
        segment_destroy(seg);
        seg = next;
    }
    status->ending_segments = 0;
}

static void recalculate_windings(status_t*status, segrange_t*range)
{
#ifdef DEBUG
    fprintf(stderr, "range: [%d]..[%d]\n", SEGNR(range->segmin), SEGNR(range->segmax));
#endif
    segrange_adjust_endpoints(range, status->y);

    segment_t*s = range->segmin;
    segment_t*end = range->segmax;
    segment_t*last = 0;

#ifdef DEBUG
    s = actlist_leftmost(status->actlist);
    while(s) {
        fprintf(stderr, "[%d]%d%s ", s->nr, s->changed,
            s == range->segmin?"S":(
            s == range->segmax?"E":""));
        s = s->right;
    }
    fprintf(stderr, "\n");
    s = range->segmin;
#endif
#ifdef CHECKS
    /* test sanity: verify that we don't have changed segments
       outside of the given range */
    s = actlist_leftmost(status->actlist);
    while(s && s!=range->segmin) {
        assert(!s->changed);
        s = s->right;
    }
    s = actlist_rightmost(status->actlist);
    while(s && s!=range->segmax) {
        assert(!s->changed);
        s = s->left;
    }
    /* in check mode, go through the whole interval so we can test
       that all polygons where the edgestyle changed also have seg->changed=1 */
    s = actlist_leftmost(status->actlist);
    end = 0;
#endif

    if(end)
        end = end->right;
    while(s!=end) {
#ifndef CHECKS
        if(s->changed)
#endif
        {
            segment_t* left = actlist_left(status->actlist, s);
            windstate_t wind = left?left->wind:status->windrule->start(status->context);
            s->wind = status->windrule->add(status->context, wind, s->fs, s->dir, s->polygon_nr);
            edgestyle_t*fs_old = s->fs_out;
            s->fs_out = status->windrule->diff(&wind, &s->wind);

#ifdef DEBUG
            fprintf(stderr, "[%d] dir=%s wind=%d wind.filled=%s fs_old/new=%s/%s %s\n", s->nr, s->dir==DIR_UP?"up":"down", s->wind.wind_nr, s->wind.is_filled?"fill":"nofill", 
		    fs_old?"draw":"omit", s->fs_out?"draw":"omit",
		    fs_old!=s->fs_out?"CHANGED":"");
#endif
            assert(!(!s->changed && fs_old!=s->fs_out));
            s->changed = 0;

#ifdef CHECKS
            s->fs_out_ok = 1;
#endif
        }
        s = s->right;
    }
}

/* we need to handle horizontal lines in order to add points to segments
   we otherwise would miss during the windrule re-evaluation */
static void intersect_with_horizontal(status_t*status, segment_t*h)
{
    segment_t* left = actlist_find(status->actlist, h->a, h->a);
    segment_t* right = actlist_find(status->actlist, h->b, h->b);

    /* h->a.x is not strictly necessary, as it's also done by the event */
    xrow_add(status->xrow, h->a.x);
    xrow_add(status->xrow, h->b.x);

    if(!right) {
        assert(!left);
        return;
    }

    left = actlist_right(status->actlist, left); //first seg to the right of h->a
    right = right->right; //first seg to the right of h->b
    segment_t* s = left;

    point_t o = h->a;
    while(s!=right) {
        assert(s);
        int32_t x = XPOS_INT(s, status->y);
	point_t p = {x, status->y};
#ifdef DEBUG
        fprintf(stderr, "...intersecting with [%d] (%.2f,%.2f) -> (%.2f,%.2f) at (%.2f,%.2f)\n", 
		s->nr,
                s->a.x * status->gridsize, s->a.y * status->gridsize,
                s->b.x * status->gridsize, s->b.y * status->gridsize,
                x * status->gridsize, status->y * status->gridsize
                );
#endif
        assert(x >= h->a.x);
        assert(x <= h->b.x);
        assert(s->delta.x > 0 && x >= s->a.x || s->delta.x <= 0 && x <= s->a.x);
        assert(s->delta.x > 0 && x <= s->b.x || s->delta.x <= 0 && x >= s->b.x);
        xrow_add(status->xrow, x);

	o = p;
        s = s->right;
    }
}

/* while, for a scanline, we need both starting as well as ending segments in order
   to *reconstruct* horizontal lines, we only need one or the other to *process*
   horizontal lines from the input data.

   So horizontal lines are processed twice: first they create hotpixels by intersecting
   all segments on the scanline (EVENT_HORIZTONAL). Secondly, they are processed for
   their actual content. The second also happens for all segments that received more than
   one point in this scanline.
*/
void horiz_reset(horizdata_t*horiz)
{
    horiz->num = 0;
}

void horiz_destroy(horizdata_t*horiz)
{
    if(horiz->data) rfx_free(horiz->data);
    horiz->data = 0;
}

static windstate_t get_horizontal_first_windstate(status_t*status, int x1, int x2)
{
    point_t p1 = {x1,status->y};
    point_t p2 = {x2,status->y};
    segment_t*left = actlist_find(status->actlist, p1, p2);

    segment_t*a = actlist_right(status->actlist, left);
    while(a) {
	if(a->pos.y == status->y) {
	    /* we need to iterate through all segments that received a point in this
	       scanline, as actlist_find above will miss (positively sloped) segments 
	       that are to the right of (x1,y) only as long as we don't take the 
	       hotpixel re-routing into account 
               TODO: this is inefficient, we should probably be iterating through the
	       hotpixels on this scanline.
	     */
	    if(a->pos.x == x1)
		left = a;
	    if(a->pos.x > x1)
		break;
	}
	a = a->right;
    }

    assert(!left || left->fs_out_ok);
#ifdef DEBUG
    fprintf(stderr, "  fragment %.2f..%.2f\n", 
	    x1 * status->gridsize,
	    x2 * status->gridsize);
    if(left) {
	fprintf(stderr, "    segment [%d] (%.2f,%.2f -> %.2f,%2f, at %.2f,%.2f) is to the left\n", 
		SEGNR(left), 
		left->a.x * status->gridsize,
		left->a.y * status->gridsize,
		left->b.x * status->gridsize,
		left->b.y * status->gridsize,
		left->pos.x * status->gridsize,
		left->pos.y * status->gridsize
		);
	/* this segment might be a distance away from the left point
	   of the horizontal line if the horizontal line belongs to a stroke
	   with segments that just ended (so this horizontal line appears to
	   be "floating in space" from our current point of view)
	assert(left->pos.y == h->y && left->pos.x == h->x1);
	*/
    }
#endif
    return left?left->wind:status->windrule->start(status->context);
}

static windstate_t process_horizontal_fragment(status_t*status, horizontal_t*h, int x1, int x2, windstate_t below)
{
    windstate_t above = status->windrule->add(status->context, below, h->fs, h->dir, h->polygon_nr);
    edgestyle_t*fs = status->windrule->diff(&above, &below);
	
    segment_dir_t dir = above.is_filled?DIR_DOWN:DIR_UP;
    point_t p1 = {x1,h->y};
    point_t p2 = {x2,h->y};

    if(fs) {
	//append_stroke(status, p1, p2, DIR_INVERT(h->dir), fs);
	append_stroke(status, p1, p2, dir, fs);
    }
#ifdef DEBUG
    fprintf(stderr, "    ...%s (below: (wind_nr=%d, filled=%d), above: (wind_nr=%d, filled=%d) %s %d-%d\n",
	    fs?"storing":"ignoring",
	    below.wind_nr, below.is_filled,
	    above.wind_nr, above.is_filled, 
	    dir==DIR_UP?"up":"down", x1, x2);
#endif
    return above;
}

typedef enum {hevent_hotpixel,hevent_end,hevent_start} horizontal_event_type_t;
typedef struct _hevent {
    int32_t x;
    horizontal_t*h;
    horizontal_event_type_t type;
} hevent_t;

typedef struct _hevents {
    hevent_t*events;
    int num;
} hevents_t;

static int compare_hevents(const void *_e1, const void *_e2)
{
    hevent_t*e1 = (hevent_t*)_e1;
    hevent_t*e2 = (hevent_t*)_e2;
    int diff = e1->x - e2->x;
    if(diff) return diff;
    return e1->type - e2->type; //schedule hotpixel before hend
}

static hevents_t hevents_fill(status_t*status)
{
    horizdata_t*horiz = &status->horiz;
    xrow_t*xrow = status->xrow;

    hevents_t e;
    e.events = malloc(sizeof(hevent_t)*(horiz->num*2 + xrow->num));
    e.num = 0;

    int t;
    for(t=0;t<horiz->num;t++) {
	assert(horiz->data[t].x1 != horiz->data[t].x2);
	e.events[e.num].x = horiz->data[t].x1;
	e.events[e.num].h = &horiz->data[t];
	e.events[e.num].type = hevent_start;
	e.num++;
	e.events[e.num].x = horiz->data[t].x2;
	e.events[e.num].h = &horiz->data[t];
	e.events[e.num].type = hevent_end;
	e.num++;
    }
    for(t=0;t<xrow->num;t++) {
	e.events[e.num].x = status->xrow->x[t];
	e.events[e.num].h = 0;
	e.events[e.num].type = hevent_hotpixel;
	e.num++;
    }
    qsort(e.events, e.num, sizeof(hevent_t), compare_hevents);
    return e;

}

static void process_horizontals(status_t*status)
{
    horizdata_t*horiz = &status->horiz;

    if(!horiz->num)
	return;

    hevents_t events = hevents_fill(status);
    int num_open = 0;
    horizontal_t**open = malloc(sizeof(horizontal_t*)*horiz->num);

    int s,t;
    for(t=0;t<events.num;t++) {
	hevent_t*e = &events.events[t];
	switch(e->type) {
	    case hevent_start:
		e->h->pos = num_open;
		open[num_open++] = e->h;
#ifdef DEBUG
		fprintf(stderr, "horizontal (y=%.2f): %.2f -> %.2f dir=%s fs=%p\n", 
			e->h->y * status->gridsize,
			e->h->x1 * status->gridsize,
			e->h->x2 * status->gridsize,
			e->h->dir==DIR_UP?"up":"down", e->h->fs);
#endif
		assert(e->h->y == status->y);
		assert(xrow_contains(status->xrow, e->h->x1));
		assert(xrow_contains(status->xrow, e->h->x2));
	    break;
	    case hevent_end:
		num_open--;
		if(num_open) {
		    open[num_open]->pos = e->h->pos;
		    open[e->h->pos] = open[num_open];
		}
	    break;
	    case hevent_hotpixel:
	        {
		    windstate_t	below;
		    for(s=0;s<num_open;s++) {
			int x1 = open[s]->xpos;
			int x2 = e->x;
			assert(status->y == open[s]->y);
			if(!s)
			    below = get_horizontal_first_windstate(status, x1, x2);
			open[s]->xpos = e->x;
			assert(x1 < x2);
			below = process_horizontal_fragment(status, open[s], x1, x2, below);
		    }
		}
	    break;
	}
    }
    free(open);
    free(events.events);
}

static void store_horizontal(status_t*status, point_t p1, point_t p2, edgestyle_t*fs, segment_dir_t dir, int polygon_nr)
{
    assert(p1.y == p2.y);
    assert(p1.x != p2.x); // TODO: can this happen?

    if(p1.x > p2.x) {
	dir = DIR_INVERT(dir);
	point_t p_1 = p1;
	point_t p_2 = p2;
	p1 = p_2;
	p2 = p_1;
    }

    /* TODO: convert this into a linked list */
    if(status->horiz.size == status->horiz.num) {
	if(!status->horiz.size)
	    status->horiz.size = 16;
	status->horiz.size *= 2;
	status->horiz.data = rfx_realloc(status->horiz.data, sizeof(status->horiz.data[0])*status->horiz.size);
    }
    horizontal_t*h = &status->horiz.data[status->horiz.num++];
    h->y = p1.y;
    h->xpos = p1.x;
    h->x1 = p1.x;
    h->x2 = p2.x;
    h->fs = fs;
    h->dir = dir;
    h->polygon_nr = polygon_nr;
}


static void event_apply(status_t*status, event_t*e)
{
#ifdef DEBUG
    event_dump(status, e);
#endif

    switch(e->type) {
        case EVENT_HORIZONTAL: {
            segment_t*s = e->s1;
            intersect_with_horizontal(status, s);
	    store_horizontal(status, s->a, s->b, s->fs, s->dir, s->polygon_nr);
	    advance_stroke(&status->queue, 0, s->stroke, s->polygon_nr, s->stroke_pos, status->gridsize);
            segment_destroy(s);e->s1=0;
            break;
        }
        case EVENT_END: {
            //delete segment from list
            segment_t*s = e->s1;
#ifdef CHECKS
            dict_del(status->intersecting_segs, s);
            dict_del(status->segs_with_point, s);
            assert(!dict_contains(status->intersecting_segs, s));
            assert(!dict_contains(status->segs_with_point, s));
#endif
            segment_t*left = s->left;
            segment_t*right = s->right;
            actlist_delete(status->actlist, s);
            if(left && right)
                schedule_crossing(status, left, right);

	    /* schedule segment for xrow handling */
            s->left = 0; s->right = status->ending_segments;
            status->ending_segments = s;
	    advance_stroke(&status->queue, 0, s->stroke, s->polygon_nr, s->stroke_pos, status->gridsize);
            break;
        }
        case EVENT_START: {
            //insert segment into list
            segment_t*s = e->s1;
	    assert(e->p.x == s->a.x && e->p.y == s->a.y);
            actlist_insert(status->actlist, s->a, s->b, s);
            segment_t*left = s->left;
            segment_t*right = s->right;
            if(left)
                schedule_crossing(status, left, s);
            if(right)
                schedule_crossing(status, s, right);
            schedule_endpoint(status, s);
            break;
        }
        case EVENT_CROSS: {
            // exchange two segments
            if(e->s1->right == e->s2) {
		assert(e->s2->left == e->s1);
                exchange_two(status, e);
            } else {
		assert(e->s2->left != e->s1);
#ifdef DEBUG
		fprintf(stderr, "Ignore this crossing ([%d] not next to [%d])\n", e->s1->nr, e->s2->nr);
#endif
#ifndef DONT_REMEMBER_CROSSINGS
                /* ignore this crossing for now (there are some line segments in between).
                   it'll get rescheduled as soon as the "obstacles" are gone */
                char del1 = dict_del(&e->s1->scheduled_crossings, (void*)(ptroff_t)e->s2->nr);
                char del2 = dict_del(&e->s2->scheduled_crossings, (void*)(ptroff_t)e->s1->nr);
                assert(del1 && del2);
#endif
#ifdef CHECKS
                point_t pair;
                pair.x = e->s1->nr;
                pair.y = e->s2->nr;
#ifndef DONT_REMEMBER_CROSSINGS
                assert(dict_contains(status->seen_crossings, &pair));
                dict_del(status->seen_crossings, &pair);
#endif
#endif
            }
        }
    }
}

#ifdef CHECKS
static void check_status(status_t*status)
{
    DICT_ITERATE_KEY(status->intersecting_segs, segment_t*, s) {
        if((s->pos.x != s->b.x ||
            s->pos.y != s->b.y) &&
           !dict_contains(status->segs_with_point, s)) {
            fprintf(stderr, "Error: segment [%d] (%sslope) intersects in scanline %d, but it didn't receive a point\n",
                    SEGNR(s),
                    s->delta.x<0?"-":"+",
                    status->y);
            assert(0);
        }
    }
}
#endif

gfxpoly_t* gfxpoly_process(gfxpoly_t*poly1, gfxpoly_t*poly2, windrule_t*windrule, windcontext_t*context, moments_t*moments)
{
    current_polygon = poly1;

    status_t status;
    memset(&status, 0, sizeof(status_t));
    status.gridsize = poly1->gridsize;
    status.windrule = windrule;
    status.context = context;
    status.actlist = actlist_new();

    queue_init(&status.queue);
    gfxpoly_enqueue(poly1, &status.queue, 0, /*polygon nr*/0);
    if(poly2) {
	assert(poly1->gridsize == poly2->gridsize);
	gfxpoly_enqueue(poly2, &status.queue, 0, /*polygon nr*/1);
    }

#ifdef CHECKS
    status.seen_crossings = dict_new2(&point_type);
#endif
    int32_t lasty = INT_MIN;
    if(moments) {
        memset(moments, 0, sizeof(moments_t));
    }

    status.xrow = xrow_new();

    event_t*e = queue_get(&status.queue);
    while(e) {
	assert(e->s1->fs);
        status.y = e->p.y;
#ifdef CHECKS
	assert(status.y > lasty);
        status.intersecting_segs = dict_new2(&ptr_type);
        status.segs_with_point = dict_new2(&ptr_type);
#endif

#ifdef DEBUG
        fprintf(stderr, "----------------------------------- %.2f\n", status.y * status.gridsize);
        actlist_dump(status.actlist, status.y-1, status.gridsize);
#endif
#ifdef CHECKS
        actlist_verify(status.actlist, status.y-1);
#endif
        if(moments && lasty > INT_MIN) {
            moments_update(moments, status.actlist, lasty, status.y);
        }

        xrow_reset(status.xrow);
	horiz_reset(&status.horiz);

        do {
            xrow_add(status.xrow, e->p.x);
            event_apply(&status, e);
	    event_free(e);
            e = queue_get(&status.queue);
        } while(e && status.y == e->p.y);

        xrow_sort(status.xrow);
        segrange_t range;
        memset(&range, 0, sizeof(range));
#ifdef DEBUG
        actlist_dump(status.actlist, status.y, status.gridsize);
	xrow_dump(status.xrow, status.gridsize);
#endif
        add_points_to_positively_sloped_segments(&status, status.y, &range);
        add_points_to_negatively_sloped_segments(&status, status.y, &range);
        add_points_to_ending_segments(&status, status.y);

        recalculate_windings(&status, &range);
        
	actlist_verify(status.actlist, status.y);
	process_horizontals(&status);
#ifdef CHECKS
        check_status(&status);
        dict_destroy(status.intersecting_segs);
        dict_destroy(status.segs_with_point);
#endif
	lasty = status.y;
    }
#ifdef CHECKS
    dict_destroy(status.seen_crossings);
#endif
    actlist_destroy(status.actlist);
    queue_destroy(&status.queue);
    horiz_destroy(&status.horiz);
    xrow_destroy(status.xrow);

    gfxpoly_t*p = (gfxpoly_t*)malloc(sizeof(gfxpoly_t));
    p->gridsize = poly1->gridsize;
    p->strokes = status.strokes;

#ifdef CHECKS
    /* we only add segments with non-empty edgestyles to strokes in
       recalculate_windings, but better safe than sorry */
    gfxpolystroke_t*stroke = p->strokes;
    while(stroke) {
	assert(stroke->fs);
	stroke = stroke->next;
    }
#endif
    return p;
}

static windcontext_t onepolygon = {1};
static windcontext_t twopolygons = {2};
gfxpoly_t* gfxpoly_intersect(gfxpoly_t*p1, gfxpoly_t*p2)
{
    return gfxpoly_process(p1, p2, &windrule_intersect, &twopolygons, 0);
}
gfxpoly_t* gfxpoly_union(gfxpoly_t*p1, gfxpoly_t*p2)
{
    return gfxpoly_process(p1, p2, &windrule_union, &twopolygons, 0);
}
double gfxpoly_area(gfxpoly_t*p)
{
    moments_t moments;
    gfxpoly_t*p2 = gfxpoly_process(p, 0, &windrule_evenodd, &onepolygon, &moments);
    gfxpoly_destroy(p2);
    moments_normalize(&moments, p->gridsize);
    return moments.area;
}
double gfxpoly_intersection_area(gfxpoly_t*p1, gfxpoly_t*p2)
{
    moments_t moments;
    gfxpoly_t*p3 = gfxpoly_process(p1, p2, &windrule_intersect, &twopolygons, &moments);
    gfxpoly_destroy(p3);

    moments_normalize(&moments, p1->gridsize);
    return moments.area;
}