1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
|
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <limits.h>
#include <time.h>
#include "../mem.h"
#include "../types.h"
#include "poly.h"
#include "active.h"
#include "xrow.h"
#include "wind.h"
#include "convert.h"
#include "heap.h"
#include "moments.h"
#ifdef HAVE_MD5
#include "MD5.h"
#endif
static gfxpoly_t*current_polygon = 0;
void gfxpoly_fail(char*expr, char*file, int line, const char*function)
{
if(!current_polygon) {
fprintf(stderr, "assert(%s) failed in %s in line %d: %s\n", expr, file, line, function);
exit(1);
}
char filename[32+4+1];
#ifdef HAVE_MD5
void*md5 = initialize_md5();
int s,t;
gfxpolystroke_t*stroke = current_polygon->strokes;
for(;stroke;stroke=stroke->next) {
for(t=0;t<stroke->num_points;t++) {
update_md5(md5, (unsigned char*)&stroke->points[t].x, sizeof(stroke->points[t].x));
update_md5(md5, (unsigned char*)&stroke->points[t].y, sizeof(stroke->points[t].y));
}
}
unsigned char h[16];
finish_md5(md5, h);
sprintf(filename, "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x.ps",
h[0],h[1],h[2],h[3],h[4],h[5],h[6],h[7],h[8],h[9],h[10],h[11],h[12],h[13],h[14],h[15]);
#else
sprintf(filename, "%d", (int)time(0));
#endif
fprintf(stderr, "assert(%s) failed in %s in line %d: %s\n", expr, file, line, function);
fprintf(stderr, "I'm saving a debug file \"%s\" to the current directory.\n", filename);
gfxpoly_save(current_polygon, filename);
exit(1);
}
static char point_equals(const void*o1, const void*o2)
{
const point_t*p1 = o1;
const point_t*p2 = o2;
return p1->x == p2->x && p1->y == p2->y;
}
static unsigned int point_hash(const void*o)
{
const point_t*p = o;
return p->x^p->y;
}
static void* point_dup(const void*o)
{
const point_t*p = o;
point_t*n = malloc(sizeof(point_t));
n->x = p->x;
n->y = p->y;
return n;
}
static void point_free(void*o)
{
point_t*p = o;
p->x = 0;
p->y = 0;
free(p);
}
type_t point_type = {
equals: point_equals,
hash: point_hash,
dup: point_dup,
free: point_free,
};
typedef struct _event {
eventtype_t type;
point_t p;
segment_t*s1;
segment_t*s2;
} event_t;
/* compare_events_simple differs from compare_events in that it schedules
events from left to right regardless of type. It's only used in horizontal
processing, in order to get an x-wise sorting of the current scanline */
static inline int compare_events_simple(const void*_a,const void*_b)
{
event_t* a = (event_t*)_a;
event_t* b = (event_t*)_b;
int d = b->p.y - a->p.y;
if(d) return d;
d = b->p.x - a->p.x;
if(d) return d;
return 0;
}
static inline int compare_events(const void*_a,const void*_b)
{
event_t* a = (event_t*)_a;
event_t* b = (event_t*)_b;
int d = b->p.y - a->p.y;
if(d) return d;
/* we need to schedule end after intersect (so that a segment about
to end has a chance to tear up a few other segs first) and start
events after end (in order not to confuse the intersection check, which
assumes there's an actual y overlap between active segments, and
because ending segments in the active list make it difficult to insert
starting segments at the right position)).
Horizontal lines come last, because the only purpose
they have is to create snapping coordinates for the segments (still)
existing in this scanline.
*/
d = b->type - a->type;
if(d) return d;
return 0;
/* I don't see any reason why we would need to order by x- at least as long
as we do horizontal lines in a seperate pass */
//d = b->p.x - a->p.x;
//return d;
}
#define COMPARE_EVENTS(x,y) (compare_events(x,y)>0)
#define COMPARE_EVENTS_SIMPLE(x,y) (compare_events_simple(x,y)>0)
HEAP_DEFINE(queue,event_t,COMPARE_EVENTS);
HEAP_DEFINE(hqueue,event_t,COMPARE_EVENTS_SIMPLE);
typedef struct _horizontal {
int32_t y;
int32_t x1, x2;
edgestyle_t*fs;
segment_dir_t dir;
int polygon_nr;
int xpos;
int pos;
} horizontal_t;
typedef struct _horizdata {
horizontal_t*data;
int num;
int size;
} horizdata_t;
typedef struct _status {
int32_t y;
double gridsize;
actlist_t*actlist;
queue_t queue;
xrow_t*xrow;
windrule_t*windrule;
windcontext_t*context;
segment_t*ending_segments;
horizdata_t horiz;
gfxpolystroke_t*strokes;
#ifdef CHECKS
dict_t*seen_crossings; //list of crossing we saw so far
dict_t*intersecting_segs; //list of segments intersecting in this scanline
dict_t*segs_with_point; //lists of segments that received a point in this scanline
#endif
} status_t;
int gfxpoly_num_segments(gfxpoly_t*poly)
{
gfxpolystroke_t*stroke = poly->strokes;
int count = 0;
for(;stroke;stroke=stroke->next) {
count++;
}
return count;
}
int gfxpoly_size(gfxpoly_t*poly)
{
int s,t;
int edges = 0;
gfxpolystroke_t*stroke = poly->strokes;
for(;stroke;stroke=stroke->next) {
edges += stroke->num_points-1;
}
return edges;
}
char gfxpoly_check(gfxpoly_t*poly, char updown)
{
dict_t*d1 = dict_new2(&point_type);
dict_t*d2 = dict_new2(&point_type);
int s,t;
gfxpolystroke_t*stroke = poly->strokes;
for(;stroke;stroke=stroke->next) {
/* In order to not confuse the fill/wind logic, existing segments must have
a non-zero edge style */
assert(stroke->fs);
/* put all the segments into dictionaries so that we can check
that the endpoint multiplicity is two */
for(s=0;s<stroke->num_points;s++) {
point_t p = stroke->points[s];
int num_xor = (s>=1 && s<stroke->num_points-1)?2:1; // mid points are two points (start+end)
int num_circ = (s>=1 && s<stroke->num_points-1)?0:(s==0?1:-1);
if(stroke->dir==DIR_UP)
num_circ=-num_circ;
if(!dict_contains(d1, &p)) {
dict_put(d1, &p, (void*)(ptroff_t)num_xor);
if(updown) {
assert(!dict_contains(d2, &p));
dict_put(d2, &p, (void*)(ptroff_t)num_circ);
}
} else {
int count = (ptroff_t)dict_lookup(d1, &p);
dict_del(d1, &p);
count+=num_xor;
dict_put(d1, &p, (void*)(ptroff_t)count);
if(updown) {
assert(dict_contains(d2, &p));
count = (ptroff_t)dict_lookup(d2, &p);
dict_del(d2, &p);
count+=num_circ;
dict_put(d2, &p, (void*)(ptroff_t)count);
}
}
}
}
DICT_ITERATE_ITEMS(d1, point_t*, p1, void*, c1) {
int count = (ptroff_t)c1;
if(count&1) {
fprintf(stderr, "Error: Point (%.2f,%.2f) occurs %d times\n", p1->x * poly->gridsize, p1->y * poly->gridsize, count);
dict_destroy(d1);
dict_destroy(d2);
return 0;
}
}
if(updown) {
DICT_ITERATE_ITEMS(d2, point_t*, p2, void*, c2) {
int count = (ptroff_t)c2;
assert(dict_contains(d1, p2));
int ocount = (ptroff_t)dict_lookup(d1, p2);
if(count!=0) {
if(count>0) fprintf(stderr, "Error: Point (%.2f,%.2f) has %d more incoming than outgoing segments (%d incoming, %d outgoing)\n", p2->x * poly->gridsize, p2->y * poly->gridsize, count, (ocount+count)/2, (ocount-count)/2);
if(count<0) fprintf(stderr, "Error: Point (%.2f,%.2f) has %d more outgoing than incoming segments (%d incoming, %d outgoing)\n", p2->x * poly->gridsize, p2->y * poly->gridsize, -count, (ocount+count)/2, (ocount-count)/2);
gfxpolystroke_t*stroke = poly->strokes;
for(;stroke;stroke=stroke->next) {
for(s=0;s<stroke->num_points-1;s++) {
point_t a = stroke->points[s];
point_t b = stroke->points[s+1];
if(a.x == p2->x && a.y == p2->y ||
b.x == p2->x && b.y == p2->y) {
fprintf(stderr, "%.2f,%.2f -> %.2f,%.2f\n",
a.x * poly->gridsize,
a.y * poly->gridsize,
b.x * poly->gridsize,
b.y * poly->gridsize);
}
}
}
dict_destroy(d2);
return 0;
}
}
}
dict_destroy(d1);
dict_destroy(d2);
return 1;
}
void gfxpoly_dump(gfxpoly_t*poly)
{
int s,t;
double g = poly->gridsize;
fprintf(stderr, "polyon %p (gridsize: %.2f)\n", poly, poly->gridsize);
gfxpolystroke_t*stroke = poly->strokes;
for(;stroke;stroke=stroke->next) {
fprintf(stderr, "%11p", stroke);
if(stroke->dir==DIR_UP) {
for(s=stroke->num_points-1;s>=1;s--) {
point_t a = stroke->points[s];
point_t b = stroke->points[s-1];
fprintf(stderr, "%s (%.2f,%.2f) -> (%.2f,%.2f)%s%s\n", s!=stroke->num_points-1?" ":"", a.x*g, a.y*g, b.x*g, b.y*g,
s==1?"]":"", a.y==b.y?"H":"");
}
} else {
for(s=0;s<stroke->num_points-1;s++) {
point_t a = stroke->points[s];
point_t b = stroke->points[s+1];
fprintf(stderr, "%s (%.2f,%.2f) -> (%.2f,%.2f)%s%s\n", s?" ":"", a.x*g, a.y*g, b.x*g, b.y*g,
s==stroke->num_points-2?"]":"", a.y==b.y?"H":"");
}
}
}
}
void gfxpoly_save(gfxpoly_t*poly, const char*filename)
{
FILE*fi = fopen(filename, "wb");
fprintf(fi, "%% gridsize %f\n", poly->gridsize);
fprintf(fi, "%% begin\n");
int s,t;
gfxpolystroke_t*stroke = poly->strokes;
for(;stroke;stroke=stroke->next) {
fprintf(fi, "%g setgray\n", stroke->dir==DIR_UP ? 0.7 : 0);
point_t p = stroke->points[0];
fprintf(fi, "%d %d moveto\n", p.x, p.y);
for(s=1;s<stroke->num_points;s++) {
p = stroke->points[s];
fprintf(fi, "%d %d lineto\n", p.x, p.y);
}
fprintf(fi, "stroke\n");
}
fprintf(fi, "showpage\n");
fclose(fi);
}
void gfxpoly_save_arrows(gfxpoly_t*poly, const char*filename)
{
FILE*fi = fopen(filename, "wb");
fprintf(fi, "%% gridsize %f\n", poly->gridsize);
fprintf(fi, "%% begin\n");
int t;
double l = 5.0 / poly->gridsize;
double g = poly->gridsize;
gfxpolystroke_t*stroke = poly->strokes;
for(;stroke;stroke=stroke->next) {
fprintf(fi, "0 setgray\n");
int s = stroke->dir==DIR_UP?stroke->num_points-1:0;
int end = stroke->dir==DIR_UP?-1:stroke->num_points;
int dir = stroke->dir==DIR_UP?-1:1;
point_t p = stroke->points[s];
s+=dir;
point_t o = p;
fprintf(fi, "%f %f moveto\n", p.x * g, p.y * g);
for(;s!=end;s+=dir) {
p = stroke->points[s];
int lx = p.x - o.x;
int ly = p.y - o.y;
double d = sqrt(lx*lx+ly*ly);
if(!d) d=1;
else d = l / d;
double d2 = d*1.5;
fprintf(fi, "%f %f lineto\n", (p.x - lx*d2) * g, (p.y - ly*d2) * g);
fprintf(fi, "%f %f lineto\n", (p.x - lx*d2 + (ly*d))*g,
(p.y - ly*d2 - (lx*d))*g);
fprintf(fi, "%f %f lineto\n", p.x * g, p.y * g);
fprintf(fi, "%f %f lineto\n", (p.x - lx*d2 - (ly*d))*g,
(p.y - ly*d2 + (lx*d))*g);
fprintf(fi, "%f %f lineto\n", (p.x - lx*d2) * g, (p.y - ly*d2) * g);
fprintf(fi, "%f %f moveto\n", p.x * g, p.y * g);
o = p;
}
fprintf(fi, "stroke\n");
}
fprintf(fi, "showpage\n");
fclose(fi);
}
inline static event_t* event_new()
{
event_t*e = rfx_calloc(sizeof(event_t));
return e;
}
inline static void event_free(event_t*e)
{
free(e);
}
static void event_dump(status_t*status, event_t*e)
{
if(e->type == EVENT_HORIZONTAL) {
fprintf(stderr, "Horizontal [%d] (%.2f,%.2f) -> (%.2f,%.2f)\n", (int)e->s1->nr,
e->s1->a.x * status->gridsize, e->s1->a.y * status->gridsize, e->s1->b.x * status->gridsize, e->s1->b.y * status->gridsize);
} else if(e->type == EVENT_START) {
fprintf(stderr, "event: segment [%d] starts at (%.2f,%.2f)\n", (int)e->s1->nr,
e->p.x * status->gridsize, e->p.y * status->gridsize);
} else if(e->type == EVENT_END) {
fprintf(stderr, "event: segment [%d] ends at (%.2f,%.2f)\n", (int)e->s1->nr,
e->p.x * status->gridsize, e->p.y * status->gridsize);
} else if(e->type == EVENT_CROSS) {
fprintf(stderr, "event: segment [%d] and [%d] intersect at (%.2f,%.2f)\n", (int)e->s1->nr, (int)e->s2->nr,
e->p.x * status->gridsize, e->p.y * status->gridsize);
} else {
assert(0);
}
}
static inline int32_t max32(int32_t v1, int32_t v2) {return v1>v2?v1:v2;}
static inline int32_t min32(int32_t v1, int32_t v2) {return v1<v2?v1:v2;}
static void segment_dump(segment_t*s)
{
fprintf(stderr, "[%d] (%d,%d)->(%d,%d) ", (int)s->nr, s->a.x, s->a.y, s->b.x, s->b.y);
fprintf(stderr, " dx:%d dy:%d k:%f dx/dy=%f fs=%p\n", s->delta.x, s->delta.y, s->k,
(double)s->delta.x / s->delta.y, s->fs);
}
static void segment_init(segment_t*s, int32_t x1, int32_t y1, int32_t x2, int32_t y2, int polygon_nr, segment_dir_t dir)
{
static int segment_count=0;
s->nr = segment_count++;
s->dir = dir;
if(y1!=y2) {
assert(y1<y2);
} else {
/* We need to make sure horizontal segments always go from left to right.
"up/down" for horizontal segments is handled by "rotating"
them 90° counterclockwise in screen coordinates (tilt your head to
the right). In other words, the "normal" direction (what's positive dy for
vertical segments) is positive dx for horizontal segments ("down" is right).
*/
if(x1>x2) {
s->dir = DIR_INVERT(s->dir);
int32_t x = x1;x1=x2;x2=x;
int32_t y = y1;y1=y2;y2=y;
}
#ifdef DEBUG
fprintf(stderr, "Scheduling horizontal segment [%d] (%.2f,%.2f) -> (%.2f,%.2f) %s\n",
segment_count,
x1 * 0.05, y1 * 0.05, x2 * 0.05, y2 * 0.05, s->dir==DIR_UP?"up":"down");
#endif
}
s->a.x = x1;
s->a.y = y1;
s->b.x = x2;
s->b.y = y2;
s->k = (double)x1*y2-(double)x2*y1;
s->left = s->right = 0;
s->delta.x = x2-x1;
s->delta.y = y2-y1;
s->minx = min32(x1,x2);
s->maxx = max32(x1,x2);
s->pos = s->a;
s->polygon_nr = polygon_nr;
#ifdef CHECKS
/* notice: on some systems (with some compilers), for the line
(1073741823,-1073741824)->(1073741823,1073741823)
we get LINE_EQ(s->a, s) == 1.
That's why we now clamp to 26 bit.
*/
assert(LINE_EQ(s->a, s) == 0);
assert(LINE_EQ(s->b, s) == 0);
/* check that all signs are in order:
a a
|\ /|
| \ / |
minx-b b--maxx
< 0 > 0
*/
point_t p = s->b;
p.x = min32(s->a.x, s->b.x);
assert(LINE_EQ(p, s) <= 0);
p.x = max32(s->a.x, s->b.x);
assert(LINE_EQ(p, s) >= 0);
#endif
#ifndef DONT_REMEMBER_CROSSINGS
dict_init2(&s->scheduled_crossings, &ptr_type, 0);
#endif
}
static segment_t* segment_new(point_t a, point_t b, int polygon_nr, segment_dir_t dir)
{
segment_t*s = (segment_t*)rfx_calloc(sizeof(segment_t));
segment_init(s, a.x, a.y, b.x, b.y, polygon_nr, dir);
return s;
}
static void segment_clear(segment_t*s)
{
#ifndef DONT_REMEMBER_CROSSINGS
dict_clear(&s->scheduled_crossings);
#endif
}
static void segment_destroy(segment_t*s)
{
segment_clear(s);
free(s);
}
static void advance_stroke(queue_t*queue, hqueue_t*hqueue, gfxpolystroke_t*stroke, int polygon_nr, int pos, double gridsize)
{
if(!stroke)
return;
segment_t*s = 0;
/* we need to queue multiple segments at once because we need to process start events
before horizontal events */
while(pos < stroke->num_points-1) {
assert(stroke->points[pos].y <= stroke->points[pos+1].y);
s = segment_new(stroke->points[pos], stroke->points[pos+1], polygon_nr, stroke->dir);
s->fs = stroke->fs;
pos++;
s->stroke = 0;
s->stroke_pos = 0;
#ifdef DEBUG
/*if(l->tmp)
s->nr = l->tmp;*/
fprintf(stderr, "[%d] (%.2f,%.2f) -> (%.2f,%.2f) %s (stroke %p, %d more to come)\n",
s->nr, s->a.x * gridsize, s->a.y * gridsize,
s->b.x * gridsize, s->b.y * gridsize,
s->dir==DIR_UP?"up":"down", stroke, stroke->num_points - 1 - pos);
#endif
event_t* e = event_new();
e->type = s->delta.y ? EVENT_START : EVENT_HORIZONTAL;
e->p = s->a;
e->s1 = s;
e->s2 = 0;
if(queue) queue_put(queue, e);
else hqueue_put(hqueue, e);
if(e->type != EVENT_HORIZONTAL) {
break;
}
}
if(s) {
s->stroke = stroke;
s->stroke_pos = pos;
}
}
static void gfxpoly_enqueue(gfxpoly_t*p, queue_t*queue, hqueue_t*hqueue, int polygon_nr)
{
int t;
gfxpolystroke_t*stroke = p->strokes;
for(;stroke;stroke=stroke->next) {
assert(stroke->num_points > 1);
#ifdef CHECKS
int s;
for(s=0;s<stroke->num_points-1;s++) {
assert(stroke->points[s].y <= stroke->points[s+1].y);
}
#endif
advance_stroke(queue, hqueue, stroke, polygon_nr, 0, p->gridsize);
}
}
static void schedule_endpoint(status_t*status, segment_t*s)
{
// schedule end point of segment
assert(s->b.y > status->y);
event_t*e = event_new();
e->type = EVENT_END;
e->p = s->b;
e->s1 = s;
e->s2 = 0;
queue_put(&status->queue, e);
}
static void schedule_crossing(status_t*status, segment_t*s1, segment_t*s2)
{
/* the code that's required (and the checks you can perform) before
it can be said with 100% certainty that we indeed have a valid crossing
amazes me every time. -mk */
#ifdef CHECKS
assert(s1!=s2);
assert(s1->right == s2);
assert(s2->left == s1);
int32_t miny1 = min32(s1->a.y,s1->b.y);
int32_t maxy1 = max32(s1->a.y,s1->b.y);
int32_t miny2 = min32(s2->a.y,s2->b.y);
int32_t maxy2 = max32(s2->a.y,s2->b.y);
int32_t minx1 = min32(s1->a.x,s1->b.x);
int32_t minx2 = min32(s2->a.x,s2->b.x);
int32_t maxx1 = max32(s1->a.x,s1->b.x);
int32_t maxx2 = max32(s2->a.x,s2->b.x);
/* check that precomputation is sane */
assert(minx1 == s1->minx && minx2 == s2->minx);
assert(maxx1 == s1->maxx && maxx2 == s2->maxx);
/* both segments are active, so this can't happen */
assert(!(maxy1 <= miny2 || maxy2 <= miny1));
/* we know that right now, s2 is to the right of s1, so there's
no way the complete bounding box of s1 is to the right of s1 */
assert(!(s1->minx > s2->maxx));
assert(s1->minx != s2->maxx || (!s1->delta.x && !s2->delta.x));
#endif
if(s1->maxx <= s2->minx) {
#ifdef DEBUG
fprintf(stderr, "[%d] doesn't intersect with [%d] because: bounding boxes don't intersect\n", s1->nr, s2->nr);
#endif
/* bounding boxes don't intersect */
return;
}
#ifndef DONT_REMEMBER_CROSSINGS
if(dict_contains(&s1->scheduled_crossings, (void*)(ptroff_t)s2->nr)) {
/* FIXME: this whole segment hashing thing is really slow */
#ifdef DEBUG
fprintf(stderr, "[%d] doesn't intersect with [%d] because: we already scheduled this intersection\n", s1->nr, s2->nr);
// DICT_ITERATE_KEY(&s1->scheduled_crossings, void*, x) {
// fprintf(stderr, "[%d]<->[%d]\n", s1->nr, (int)(ptroff_t)x);
// }
#endif
return; // we already know about this one
}
#endif
double det = (double)s1->delta.x*s2->delta.y - (double)s1->delta.y*s2->delta.x;
if(!det) {
if(s1->k == s2->k) {
// lines are exactly on top of each other (ignored)
#ifdef DEBUG
fprintf(stderr, "Notice: segments [%d] and [%d] are exactly on top of each other\n", s1->nr, s2->nr);
#endif
return;
} else {
#ifdef DEBUG
fprintf(stderr, "[%d] doesn't intersect with [%d] because: they are parallel to each other\n", s1->nr, s2->nr);
#endif
/* lines are parallel */
return;
}
}
double asign2 = LINE_EQ(s1->a, s2);
if(asign2==0) {
// segment1 touches segment2 in a single point (ignored)
#ifdef DEBUG
fprintf(stderr, "Notice: segment [%d]'s start point touches segment [%d]\n", s1->nr, s2->nr);
#endif
return;
}
double bsign2 = LINE_EQ(s1->b, s2);
if(bsign2==0) {
// segment1 touches segment2 in a single point (ignored)
#ifdef DEBUG
fprintf(stderr, "Notice: segment [%d]'s end point touches segment [%d]\n", s1->nr, s2->nr);
#endif
return;
}
if(asign2<0 && bsign2<0) {
// segment1 is completely to the left of segment2
#ifdef DEBUG
fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s1->nr, s2->nr);
#endif
return;
}
if(asign2>0 && bsign2>0) {
// segment1 is completely to the right of segment2
#ifndef DONT_REMEMBER_CROSSINGS
assert(0);
#endif
#ifdef DEBUG
fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s2->nr, s1->nr);
#endif
return;
}
double asign1 = LINE_EQ(s2->a, s1);
if(asign1==0) {
// segment2 touches segment1 in a single point (ignored)
#ifdef DEBUG
fprintf(stderr, "Notice: segment [%d]'s start point touches segment [%d]\n", s2->nr, s1->nr);
#endif
return;
}
double bsign1 = LINE_EQ(s2->b, s1);
if(asign2==0) {
// segment2 touches segment1 in a single point (ignored)
#ifdef DEBUG
fprintf(stderr, "Notice: segment [%d]'s end point touches segment [%d]\n", s2->nr, s1->nr);
#endif
return;
}
if(asign1<0 && bsign1<0) {
// segment2 is completely to the left of segment1
#ifndef DONT_REMEMBER_CROSSINGS
assert(0);
#endif
#ifdef DEBUG
fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s1->nr, s2->nr);
#endif
return;
}
if(asign1>0 && bsign1>0) {
// segment2 is completely to the right of segment1
#ifdef DEBUG
fprintf(stderr, "[%d] doesn't intersect with [%d] because: [%d] is completely to the left of [%d]\n", s1->nr, s2->nr, s2->nr, s1->nr);
#endif
return;
}
#ifdef DONT_REMEMBER_CROSSINGS
/* s2 crosses s1 from *left* to *right*. This is a crossing we already processed-
there's not way s2 would be to the left of s1 otherwise */
if(asign1<0 && bsign1>0) return;
if(asign2>0 && bsign2<0) return;
#endif
assert(!(asign1<0 && bsign1>0));
assert(!(asign2>0 && bsign2<0));
/* TODO: should we precompute these? */
double la = (double)s1->a.x*(double)s1->b.y - (double)s1->a.y*(double)s1->b.x;
double lb = (double)s2->a.x*(double)s2->b.y - (double)s2->a.y*(double)s2->b.x;
point_t p;
p.x = (int32_t)ceil((-la*s2->delta.x + lb*s1->delta.x) / det);
p.y = (int32_t)ceil((+lb*s1->delta.y - la*s2->delta.y) / det);
assert(p.y >= status->y);
#ifdef CHECKS
assert(p.x >= s1->minx && p.x <= s1->maxx);
assert(p.x >= s2->minx && p.x <= s2->maxx);
point_t pair;
pair.x = s1->nr;
pair.y = s2->nr;
#ifndef DONT_REMEMBER_CROSSINGS
assert(!dict_contains(status->seen_crossings, &pair));
dict_put(status->seen_crossings, &pair, 0);
#endif
#endif
#ifdef DEBUG
fprintf(stderr, "schedule crossing between [%d] and [%d] at (%d,%d)\n", s1->nr, s2->nr, p.x, p.y);
#endif
#ifndef DONT_REMEMBER_CROSSINGS
/* we insert into each other's intersection history because these segments might switch
places and we still want to look them up quickly after they did */
dict_put(&s1->scheduled_crossings, (void*)(ptroff_t)(s2->nr), 0);
dict_put(&s2->scheduled_crossings, (void*)(ptroff_t)(s1->nr), 0);
#endif
event_t* e = event_new();
e->type = EVENT_CROSS;
e->p = p;
e->s1 = s1;
e->s2 = s2;
queue_put(&status->queue, e);
return;
}
static void exchange_two(status_t*status, event_t*e)
{
//exchange two segments in list
segment_t*s1 = e->s1;
segment_t*s2 = e->s2;
#ifdef CHECKS
if(!dict_contains(status->intersecting_segs, s1))
dict_put(status->intersecting_segs, s1, 0);
if(!dict_contains(status->intersecting_segs, s2))
dict_put(status->intersecting_segs, s2, 0);
#endif
assert(s2->left == s1);
assert(s1->right == s2);
actlist_swap(status->actlist, s1, s2);
assert(s2->right == s1);
assert(s1->left == s2);
segment_t*left = s2->left;
segment_t*right = s1->right;
if(left)
schedule_crossing(status, left, s2);
if(right)
schedule_crossing(status, s1, right);
}
typedef struct _box {
point_t left1, left2, right1, right2;
} box_t;
static inline box_t box_new(int32_t x, int32_t y)
{
box_t box;
box.right1.x = box.right2.x = x;
box.left1.x = box.left2.x = x-1;
box.left1.y = box.right1.y = y-1;
box.left2.y = box.right2.y = y;
return box;
}
static void store_horizontal(status_t*status, point_t p1, point_t p2, edgestyle_t*fs, segment_dir_t dir, int polygon_nr);
static void append_stroke(status_t*status, point_t a, point_t b, segment_dir_t dir, edgestyle_t*fs)
{
gfxpolystroke_t*stroke = status->strokes;
/* find a stoke to attach this segment to. It has to have an endpoint
matching our start point, and a matching edgestyle */
while(stroke) {
point_t p = stroke->points[stroke->num_points-1];
if(p.x == a.x && p.y == a.y && stroke->fs == fs && stroke->dir == dir)
break;
stroke = stroke->next;
}
if(!stroke) {
stroke = rfx_calloc(sizeof(gfxpolystroke_t));
stroke->dir = dir;
stroke->fs = fs;
stroke->next = status->strokes;
status->strokes = stroke;
stroke->points_size = 2;
stroke->points = rfx_calloc(sizeof(point_t)*stroke->points_size);
stroke->points[0] = a;
stroke->num_points = 1;
} else if(stroke->num_points == stroke->points_size) {
assert(stroke->fs);
stroke->points_size *= 2;
stroke->points = rfx_realloc(stroke->points, sizeof(point_t)*stroke->points_size);
}
stroke->points[stroke->num_points++] = b;
}
static void insert_point_into_segment(status_t*status, segment_t*s, point_t p)
{
assert(s->pos.x != p.x || s->pos.y != p.y);
#ifdef CHECKS
if(!dict_contains(status->segs_with_point, s))
dict_put(status->segs_with_point, s, 0);
assert(s->fs_out_ok);
#endif
if(s->pos.y != p.y) {
/* non horizontal line- copy to output */
if(s->fs_out) {
segment_dir_t dir = s->wind.is_filled?DIR_DOWN:DIR_UP;
#ifdef DEBUG
fprintf(stderr, "[%d] receives next point (%.2f,%.2f)->(%.2f,%.2f) (drawing (%s))\n", s->nr,
s->pos.x * status->gridsize, s->pos.y * status->gridsize,
p.x * status->gridsize, p.y * status->gridsize,
dir==DIR_UP?"up":"down"
);
#endif
assert(s->pos.y != p.y);
append_stroke(status, s->pos, p, dir, s->fs_out);
} else {
#ifdef DEBUG
fprintf(stderr, "[%d] receives next point (%.2f,%.2f) (omitting)\n", s->nr,
p.x * status->gridsize,
p.y * status->gridsize);
#endif
}
} else {
/* horizontal line. we need to look at this more closely at the end of this
scanline */
store_horizontal(status, s->pos, p, s->fs, s->dir, s->polygon_nr);
}
s->pos = p;
}
typedef struct _segrange {
double xmin;
segment_t*segmin;
double xmax;
segment_t*segmax;
} segrange_t;
static void segrange_adjust_endpoints(segrange_t*range, int32_t y)
{
#define XPOS_EQ(s1,s2,ypos) (XPOS((s1),(ypos))==XPOS((s2),(ypos)))
segment_t*min = range->segmin;
segment_t*max = range->segmax;
/* we need this because if two segments intersect exactly on
the scanline, segrange_test_segment_{min,max} can't tell which
one is smaller/larger */
if(min) while(min->left && XPOS_EQ(min, min->left, y)) {
min = min->left;
}
if(max) while(max->right && XPOS_EQ(max, max->right, y)) {
max = max->right;
}
range->segmin = min;
range->segmax = max;
}
static void segrange_test_segment_min(segrange_t*range, segment_t*seg, int32_t y)
{
if(!seg) return;
/* we need to calculate the xpos anew (and can't use start coordinate or
intersection coordinate), because we need the xpos exactly at the end of
this scanline.
*/
double x = XPOS(seg, y);
if(!range->segmin || x<range->xmin) {
range->segmin = seg;
range->xmin = x;
}
}
static void segrange_test_segment_max(segrange_t*range, segment_t*seg, int32_t y)
{
if(!seg) return;
double x = XPOS(seg, y);
if(!range->segmax || x>range->xmax) {
range->segmax = seg;
range->xmax = x;
}
}
/*
SLOPE_POSITIVE:
\+ \ +
------ I \I
-I\---- I
I \ --I\---
I \ I \ -------
+ \ + \
*/
static void add_points_to_positively_sloped_segments(status_t*status, int32_t y, segrange_t*range)
{
segment_t*first=0, *last = 0;
int t;
for(t=0;t<status->xrow->num;t++) {
box_t box = box_new(status->xrow->x[t], y);
segment_t*seg = actlist_find(status->actlist, box.left2, box.left2);
seg = actlist_right(status->actlist, seg);
while(seg) {
if(seg->a.y == y) {
// this segment started in this scanline, ignore it
seg->changed = 1;last = seg;if(!first) {first=seg;}
} else if(seg->delta.x <= 0) {
// ignore segment w/ negative slope
} else {
last = seg;if(!first) {first=seg;}
double d1 = LINE_EQ(box.right1, seg);
double d2 = LINE_EQ(box.right2, seg);
if(d1>0 || d2>=0) {
seg->changed = 1;
insert_point_into_segment(status, seg, box.right2);
} else {
/* we unfortunately can't break here- the active list is sorted according
to the *bottom* of the scanline. hence pretty much everything that's still
coming might reach into our box */
//break;
}
}
seg = seg->right;
}
}
segrange_test_segment_min(range, first, y);
segrange_test_segment_max(range, last, y);
}
/* SLOPE_NEGATIVE:
| + /| + / /
| I / | I / /
| I / | I/ /
| I/ | I /
| I | /I /
| /+ |/ + /
*/
static void add_points_to_negatively_sloped_segments(status_t*status, int32_t y, segrange_t*range)
{
segment_t*first=0, *last = 0;
int t;
for(t=status->xrow->num-1;t>=0;t--) {
box_t box = box_new(status->xrow->x[t], y);
segment_t*seg = actlist_find(status->actlist, box.right2, box.right2);
while(seg) {
if(seg->a.y == y) {
// this segment started in this scanline, ignore it
seg->changed = 1;last = seg;if(!first) {first=seg;}
} else if(seg->delta.x > 0) {
// ignore segment w/ positive slope
} else {
last = seg;if(!first) {first=seg;}
double d1 = LINE_EQ(box.left1, seg);
double d2 = LINE_EQ(box.left2, seg);
if(d1<0 || d2<0) {
seg->changed = 1;
insert_point_into_segment(status, seg, box.right2);
} else {
//break;
}
}
seg = seg->left;
}
}
segrange_test_segment_min(range, last, y);
segrange_test_segment_max(range, first, y);
}
/* segments ending in the current scanline need xrow treatment like everything else.
(consider an intersection taking place just above a nearly horizontal segment
ending on the current scanline- the intersection would snap down *below* the
ending segment if we don't add the intersection point to the latter right away)
we need to treat ending segments seperately, however. we have to delete them from
the active list right away to make room for intersect operations (which might
still be in the current scanline- consider two 45° polygons and a vertical polygon
intersecting on an integer coordinate). but once they're no longer in the active list,
we can't use the add_points_to_*_sloped_segments() functions anymore, and re-adding
them to the active list just for point snapping would be overkill.
(One other option to consider, however, would be to create a new active list only
for ending segments)
*/
static void add_points_to_ending_segments(status_t*status, int32_t y)
{
segment_t*seg = status->ending_segments;
while(seg) {
segment_t*next = seg->right;seg->right=0;
assert(seg->b.y == status->y);
if(status->xrow->num == 1) {
// shortcut
assert(seg->b.x == status->xrow->x[0]);
point_t p = {status->xrow->x[0], y};
insert_point_into_segment(status, seg, p);
} else {
int t;
int start=0,end=status->xrow->num,dir=1;
if(seg->delta.x < 0) {
start = status->xrow->num-1;
end = dir = -1;
}
#ifdef CHECKS
char ok = 0;
#endif
for(t=start;t!=end;t+=dir) {
box_t box = box_new(status->xrow->x[t], y);
double d0 = LINE_EQ(box.left1, seg);
double d1 = LINE_EQ(box.left2, seg);
double d2 = LINE_EQ(box.right1, seg);
double d3 = LINE_EQ(box.right2, seg);
if(!(d0>=0 && d1>=0 && d2>=0 && d3>0 ||
d0<=0 && d1<=0 && d2<=0 && d3<0)) {
insert_point_into_segment(status, seg, box.right2);
//break;
#ifdef CHECKS
ok = 1;
#endif
}
}
#ifdef CHECKS
/* we *need* to find a point to insert. the segment's own end point
is in that list, for Pete's sake. */
assert(ok);
#endif
}
// now that this is done, too, we can also finally free this segment
segment_destroy(seg);
seg = next;
}
status->ending_segments = 0;
}
static void recalculate_windings(status_t*status, segrange_t*range)
{
#ifdef DEBUG
fprintf(stderr, "range: [%d]..[%d]\n", SEGNR(range->segmin), SEGNR(range->segmax));
#endif
segrange_adjust_endpoints(range, status->y);
segment_t*s = range->segmin;
segment_t*end = range->segmax;
segment_t*last = 0;
#ifdef DEBUG
s = actlist_leftmost(status->actlist);
while(s) {
fprintf(stderr, "[%d]%d%s ", s->nr, s->changed,
s == range->segmin?"S":(
s == range->segmax?"E":""));
s = s->right;
}
fprintf(stderr, "\n");
s = range->segmin;
#endif
#ifdef CHECKS
/* test sanity: verify that we don't have changed segments
outside of the given range */
s = actlist_leftmost(status->actlist);
while(s && s!=range->segmin) {
assert(!s->changed);
s = s->right;
}
s = actlist_rightmost(status->actlist);
while(s && s!=range->segmax) {
assert(!s->changed);
s = s->left;
}
/* in check mode, go through the whole interval so we can test
that all polygons where the edgestyle changed also have seg->changed=1 */
s = actlist_leftmost(status->actlist);
end = 0;
#endif
if(end)
end = end->right;
while(s!=end) {
#ifndef CHECKS
if(s->changed)
#endif
{
segment_t* left = actlist_left(status->actlist, s);
windstate_t wind = left?left->wind:status->windrule->start(status->context);
s->wind = status->windrule->add(status->context, wind, s->fs, s->dir, s->polygon_nr);
edgestyle_t*fs_old = s->fs_out;
s->fs_out = status->windrule->diff(&wind, &s->wind);
#ifdef DEBUG
fprintf(stderr, "[%d] dir=%s wind=%d wind.filled=%s fs_old/new=%s/%s %s\n", s->nr, s->dir==DIR_UP?"up":"down", s->wind.wind_nr, s->wind.is_filled?"fill":"nofill",
fs_old?"draw":"omit", s->fs_out?"draw":"omit",
fs_old!=s->fs_out?"CHANGED":"");
#endif
assert(!(!s->changed && fs_old!=s->fs_out));
s->changed = 0;
#ifdef CHECKS
s->fs_out_ok = 1;
#endif
}
s = s->right;
}
}
/* we need to handle horizontal lines in order to add points to segments
we otherwise would miss during the windrule re-evaluation */
static void intersect_with_horizontal(status_t*status, segment_t*h)
{
segment_t* left = actlist_find(status->actlist, h->a, h->a);
segment_t* right = actlist_find(status->actlist, h->b, h->b);
/* h->a.x is not strictly necessary, as it's also done by the event */
xrow_add(status->xrow, h->a.x);
xrow_add(status->xrow, h->b.x);
if(!right) {
assert(!left);
return;
}
left = actlist_right(status->actlist, left); //first seg to the right of h->a
right = right->right; //first seg to the right of h->b
segment_t* s = left;
point_t o = h->a;
while(s!=right) {
assert(s);
int32_t x = XPOS_INT(s, status->y);
point_t p = {x, status->y};
#ifdef DEBUG
fprintf(stderr, "...intersecting with [%d] (%.2f,%.2f) -> (%.2f,%.2f) at (%.2f,%.2f)\n",
s->nr,
s->a.x * status->gridsize, s->a.y * status->gridsize,
s->b.x * status->gridsize, s->b.y * status->gridsize,
x * status->gridsize, status->y * status->gridsize
);
#endif
assert(x >= h->a.x);
assert(x <= h->b.x);
assert(s->delta.x > 0 && x >= s->a.x || s->delta.x <= 0 && x <= s->a.x);
assert(s->delta.x > 0 && x <= s->b.x || s->delta.x <= 0 && x >= s->b.x);
xrow_add(status->xrow, x);
o = p;
s = s->right;
}
}
/* while, for a scanline, we need both starting as well as ending segments in order
to *reconstruct* horizontal lines, we only need one or the other to *process*
horizontal lines from the input data.
So horizontal lines are processed twice: first they create hotpixels by intersecting
all segments on the scanline (EVENT_HORIZTONAL). Secondly, they are processed for
their actual content. The second also happens for all segments that received more than
one point in this scanline.
*/
void horiz_reset(horizdata_t*horiz)
{
horiz->num = 0;
}
void horiz_destroy(horizdata_t*horiz)
{
if(horiz->data) rfx_free(horiz->data);
horiz->data = 0;
}
static windstate_t get_horizontal_first_windstate(status_t*status, int x1, int x2)
{
point_t p1 = {x1,status->y};
point_t p2 = {x2,status->y};
segment_t*left = actlist_find(status->actlist, p1, p2);
segment_t*a = actlist_right(status->actlist, left);
while(a) {
if(a->pos.y == status->y) {
/* we need to iterate through all segments that received a point in this
scanline, as actlist_find above will miss (positively sloped) segments
that are to the right of (x1,y) only as long as we don't take the
hotpixel re-routing into account
TODO: this is inefficient, we should probably be iterating through the
hotpixels on this scanline.
*/
if(a->pos.x == x1)
left = a;
if(a->pos.x > x1)
break;
}
a = a->right;
}
assert(!left || left->fs_out_ok);
#ifdef DEBUG
fprintf(stderr, " fragment %.2f..%.2f\n",
x1 * status->gridsize,
x2 * status->gridsize);
if(left) {
fprintf(stderr, " segment [%d] (%.2f,%.2f -> %.2f,%2f, at %.2f,%.2f) is to the left\n",
SEGNR(left),
left->a.x * status->gridsize,
left->a.y * status->gridsize,
left->b.x * status->gridsize,
left->b.y * status->gridsize,
left->pos.x * status->gridsize,
left->pos.y * status->gridsize
);
/* this segment might be a distance away from the left point
of the horizontal line if the horizontal line belongs to a stroke
with segments that just ended (so this horizontal line appears to
be "floating in space" from our current point of view)
assert(left->pos.y == h->y && left->pos.x == h->x1);
*/
}
#endif
return left?left->wind:status->windrule->start(status->context);
}
static windstate_t process_horizontal_fragment(status_t*status, horizontal_t*h, int x1, int x2, windstate_t below)
{
windstate_t above = status->windrule->add(status->context, below, h->fs, h->dir, h->polygon_nr);
edgestyle_t*fs = status->windrule->diff(&above, &below);
segment_dir_t dir = above.is_filled?DIR_DOWN:DIR_UP;
point_t p1 = {x1,h->y};
point_t p2 = {x2,h->y};
if(fs) {
//append_stroke(status, p1, p2, DIR_INVERT(h->dir), fs);
append_stroke(status, p1, p2, dir, fs);
}
#ifdef DEBUG
fprintf(stderr, " ...%s (below: (wind_nr=%d, filled=%d), above: (wind_nr=%d, filled=%d) %s %d-%d\n",
fs?"storing":"ignoring",
below.wind_nr, below.is_filled,
above.wind_nr, above.is_filled,
dir==DIR_UP?"up":"down", x1, x2);
#endif
return above;
}
typedef enum {hevent_hotpixel,hevent_end,hevent_start} horizontal_event_type_t;
typedef struct _hevent {
int32_t x;
horizontal_t*h;
horizontal_event_type_t type;
} hevent_t;
typedef struct _hevents {
hevent_t*events;
int num;
} hevents_t;
static int compare_hevents(const void *_e1, const void *_e2)
{
hevent_t*e1 = (hevent_t*)_e1;
hevent_t*e2 = (hevent_t*)_e2;
int diff = e1->x - e2->x;
if(diff) return diff;
return e1->type - e2->type; //schedule hotpixel before hend
}
static hevents_t hevents_fill(status_t*status)
{
horizdata_t*horiz = &status->horiz;
xrow_t*xrow = status->xrow;
hevents_t e;
e.events = malloc(sizeof(hevent_t)*(horiz->num*2 + xrow->num));
e.num = 0;
int t;
for(t=0;t<horiz->num;t++) {
assert(horiz->data[t].x1 != horiz->data[t].x2);
e.events[e.num].x = horiz->data[t].x1;
e.events[e.num].h = &horiz->data[t];
e.events[e.num].type = hevent_start;
e.num++;
e.events[e.num].x = horiz->data[t].x2;
e.events[e.num].h = &horiz->data[t];
e.events[e.num].type = hevent_end;
e.num++;
}
for(t=0;t<xrow->num;t++) {
e.events[e.num].x = status->xrow->x[t];
e.events[e.num].h = 0;
e.events[e.num].type = hevent_hotpixel;
e.num++;
}
qsort(e.events, e.num, sizeof(hevent_t), compare_hevents);
return e;
}
static void process_horizontals(status_t*status)
{
horizdata_t*horiz = &status->horiz;
if(!horiz->num)
return;
hevents_t events = hevents_fill(status);
int num_open = 0;
horizontal_t**open = malloc(sizeof(horizontal_t*)*horiz->num);
int s,t;
for(t=0;t<events.num;t++) {
hevent_t*e = &events.events[t];
switch(e->type) {
case hevent_start:
e->h->pos = num_open;
open[num_open++] = e->h;
#ifdef DEBUG
fprintf(stderr, "horizontal (y=%.2f): %.2f -> %.2f dir=%s fs=%p\n",
e->h->y * status->gridsize,
e->h->x1 * status->gridsize,
e->h->x2 * status->gridsize,
e->h->dir==DIR_UP?"up":"down", e->h->fs);
#endif
assert(e->h->y == status->y);
assert(xrow_contains(status->xrow, e->h->x1));
assert(xrow_contains(status->xrow, e->h->x2));
break;
case hevent_end:
num_open--;
if(num_open) {
open[num_open]->pos = e->h->pos;
open[e->h->pos] = open[num_open];
}
break;
case hevent_hotpixel:
{
windstate_t below;
for(s=0;s<num_open;s++) {
int x1 = open[s]->xpos;
int x2 = e->x;
assert(status->y == open[s]->y);
if(!s)
below = get_horizontal_first_windstate(status, x1, x2);
open[s]->xpos = e->x;
assert(x1 < x2);
below = process_horizontal_fragment(status, open[s], x1, x2, below);
}
}
break;
}
}
free(open);
free(events.events);
}
static void store_horizontal(status_t*status, point_t p1, point_t p2, edgestyle_t*fs, segment_dir_t dir, int polygon_nr)
{
assert(p1.y == p2.y);
assert(p1.x != p2.x); // TODO: can this happen?
if(p1.x > p2.x) {
dir = DIR_INVERT(dir);
point_t p_1 = p1;
point_t p_2 = p2;
p1 = p_2;
p2 = p_1;
}
/* TODO: convert this into a linked list */
if(status->horiz.size == status->horiz.num) {
if(!status->horiz.size)
status->horiz.size = 16;
status->horiz.size *= 2;
status->horiz.data = rfx_realloc(status->horiz.data, sizeof(status->horiz.data[0])*status->horiz.size);
}
horizontal_t*h = &status->horiz.data[status->horiz.num++];
h->y = p1.y;
h->xpos = p1.x;
h->x1 = p1.x;
h->x2 = p2.x;
h->fs = fs;
h->dir = dir;
h->polygon_nr = polygon_nr;
}
static void event_apply(status_t*status, event_t*e)
{
#ifdef DEBUG
event_dump(status, e);
#endif
switch(e->type) {
case EVENT_HORIZONTAL: {
segment_t*s = e->s1;
intersect_with_horizontal(status, s);
store_horizontal(status, s->a, s->b, s->fs, s->dir, s->polygon_nr);
advance_stroke(&status->queue, 0, s->stroke, s->polygon_nr, s->stroke_pos, status->gridsize);
segment_destroy(s);e->s1=0;
break;
}
case EVENT_END: {
//delete segment from list
segment_t*s = e->s1;
#ifdef CHECKS
dict_del(status->intersecting_segs, s);
dict_del(status->segs_with_point, s);
assert(!dict_contains(status->intersecting_segs, s));
assert(!dict_contains(status->segs_with_point, s));
#endif
segment_t*left = s->left;
segment_t*right = s->right;
actlist_delete(status->actlist, s);
if(left && right)
schedule_crossing(status, left, right);
/* schedule segment for xrow handling */
s->left = 0; s->right = status->ending_segments;
status->ending_segments = s;
advance_stroke(&status->queue, 0, s->stroke, s->polygon_nr, s->stroke_pos, status->gridsize);
break;
}
case EVENT_START: {
//insert segment into list
segment_t*s = e->s1;
assert(e->p.x == s->a.x && e->p.y == s->a.y);
actlist_insert(status->actlist, s->a, s->b, s);
segment_t*left = s->left;
segment_t*right = s->right;
if(left)
schedule_crossing(status, left, s);
if(right)
schedule_crossing(status, s, right);
schedule_endpoint(status, s);
break;
}
case EVENT_CROSS: {
// exchange two segments
if(e->s1->right == e->s2) {
assert(e->s2->left == e->s1);
exchange_two(status, e);
} else {
assert(e->s2->left != e->s1);
#ifdef DEBUG
fprintf(stderr, "Ignore this crossing ([%d] not next to [%d])\n", e->s1->nr, e->s2->nr);
#endif
#ifndef DONT_REMEMBER_CROSSINGS
/* ignore this crossing for now (there are some line segments in between).
it'll get rescheduled as soon as the "obstacles" are gone */
char del1 = dict_del(&e->s1->scheduled_crossings, (void*)(ptroff_t)e->s2->nr);
char del2 = dict_del(&e->s2->scheduled_crossings, (void*)(ptroff_t)e->s1->nr);
assert(del1 && del2);
#endif
#ifdef CHECKS
point_t pair;
pair.x = e->s1->nr;
pair.y = e->s2->nr;
#ifndef DONT_REMEMBER_CROSSINGS
assert(dict_contains(status->seen_crossings, &pair));
dict_del(status->seen_crossings, &pair);
#endif
#endif
}
}
}
}
#ifdef CHECKS
static void check_status(status_t*status)
{
DICT_ITERATE_KEY(status->intersecting_segs, segment_t*, s) {
if((s->pos.x != s->b.x ||
s->pos.y != s->b.y) &&
!dict_contains(status->segs_with_point, s)) {
fprintf(stderr, "Error: segment [%d] (%sslope) intersects in scanline %d, but it didn't receive a point\n",
SEGNR(s),
s->delta.x<0?"-":"+",
status->y);
assert(0);
}
}
}
#endif
gfxpoly_t* gfxpoly_process(gfxpoly_t*poly1, gfxpoly_t*poly2, windrule_t*windrule, windcontext_t*context, moments_t*moments)
{
current_polygon = poly1;
status_t status;
memset(&status, 0, sizeof(status_t));
status.gridsize = poly1->gridsize;
status.windrule = windrule;
status.context = context;
status.actlist = actlist_new();
queue_init(&status.queue);
gfxpoly_enqueue(poly1, &status.queue, 0, /*polygon nr*/0);
if(poly2) {
assert(poly1->gridsize == poly2->gridsize);
gfxpoly_enqueue(poly2, &status.queue, 0, /*polygon nr*/1);
}
#ifdef CHECKS
status.seen_crossings = dict_new2(&point_type);
#endif
int32_t lasty = INT_MIN;
if(moments) {
memset(moments, 0, sizeof(moments_t));
}
status.xrow = xrow_new();
event_t*e = queue_get(&status.queue);
while(e) {
assert(e->s1->fs);
status.y = e->p.y;
#ifdef CHECKS
assert(status.y > lasty);
status.intersecting_segs = dict_new2(&ptr_type);
status.segs_with_point = dict_new2(&ptr_type);
#endif
#ifdef DEBUG
fprintf(stderr, "----------------------------------- %.2f\n", status.y * status.gridsize);
actlist_dump(status.actlist, status.y-1, status.gridsize);
#endif
#ifdef CHECKS
actlist_verify(status.actlist, status.y-1);
#endif
if(moments && lasty > INT_MIN) {
moments_update(moments, status.actlist, lasty, status.y);
}
xrow_reset(status.xrow);
horiz_reset(&status.horiz);
do {
xrow_add(status.xrow, e->p.x);
event_apply(&status, e);
event_free(e);
e = queue_get(&status.queue);
} while(e && status.y == e->p.y);
xrow_sort(status.xrow);
segrange_t range;
memset(&range, 0, sizeof(range));
#ifdef DEBUG
actlist_dump(status.actlist, status.y, status.gridsize);
xrow_dump(status.xrow, status.gridsize);
#endif
add_points_to_positively_sloped_segments(&status, status.y, &range);
add_points_to_negatively_sloped_segments(&status, status.y, &range);
add_points_to_ending_segments(&status, status.y);
recalculate_windings(&status, &range);
actlist_verify(status.actlist, status.y);
process_horizontals(&status);
#ifdef CHECKS
check_status(&status);
dict_destroy(status.intersecting_segs);
dict_destroy(status.segs_with_point);
#endif
lasty = status.y;
}
#ifdef CHECKS
dict_destroy(status.seen_crossings);
#endif
actlist_destroy(status.actlist);
queue_destroy(&status.queue);
horiz_destroy(&status.horiz);
xrow_destroy(status.xrow);
gfxpoly_t*p = (gfxpoly_t*)malloc(sizeof(gfxpoly_t));
p->gridsize = poly1->gridsize;
p->strokes = status.strokes;
#ifdef CHECKS
/* we only add segments with non-empty edgestyles to strokes in
recalculate_windings, but better safe than sorry */
gfxpolystroke_t*stroke = p->strokes;
while(stroke) {
assert(stroke->fs);
stroke = stroke->next;
}
#endif
return p;
}
static windcontext_t onepolygon = {1};
static windcontext_t twopolygons = {2};
gfxpoly_t* gfxpoly_intersect(gfxpoly_t*p1, gfxpoly_t*p2)
{
return gfxpoly_process(p1, p2, &windrule_intersect, &twopolygons, 0);
}
gfxpoly_t* gfxpoly_union(gfxpoly_t*p1, gfxpoly_t*p2)
{
return gfxpoly_process(p1, p2, &windrule_union, &twopolygons, 0);
}
double gfxpoly_area(gfxpoly_t*p)
{
moments_t moments;
gfxpoly_t*p2 = gfxpoly_process(p, 0, &windrule_evenodd, &onepolygon, &moments);
gfxpoly_destroy(p2);
moments_normalize(&moments, p->gridsize);
return moments.area;
}
double gfxpoly_intersection_area(gfxpoly_t*p1, gfxpoly_t*p2)
{
moments_t moments;
gfxpoly_t*p3 = gfxpoly_process(p1, p2, &windrule_intersect, &twopolygons, &moments);
gfxpoly_destroy(p3);
moments_normalize(&moments, p1->gridsize);
return moments.area;
}
|