1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
|
<?xml version="1.0" ?>
<!DOCTYPE ladspa SYSTEM "ladspa-swh.dtd">
<?xml-stylesheet href="ladspa.css" type="text/css" ?>
<ladspa>
<global>
<meta name="maker" value="Steve Harris <steve@plugin.org.uk>"/>
<meta name="copyright" value="GPL"/>
<meta name="properties" value="HARD_RT_CAPABLE"/>
<code><![CDATA[
#include "ladspa-util.h"
#include "util/blo.h"
// Return the value of the LDO's for given coeffs
#define LFO(a,b) (a*lfo1 + b*lfo2)
// Ampmod / ringmod two signals together with given depth
#define RINGMOD(c,m,d) (c * ((d * 0.5f) * m + (2.0f - d)))
// Stuff needed for the soft clipping code
#define MAX_AMP 1.0f
#define CLIP 0.8f
#define CLIP_A ((MAX_AMP - CLIP) * (MAX_AMP - CLIP))
#define CLIP_B (MAX_AMP - 2.0f * CLIP)
// Constants to match filter types
#define F_LP 1
#define F_HP 2
#define F_BP 3
#define F_BR 4
#define F_AP 5
// Number of filter oversamples
#define F_R 3
// Magic number
#define NOISE 23
LADSPA_Data *sin_tbl, *tri_tbl, *saw_tbl, *squ_tbl;
int tbl_ref_count = 0;
long sample_rate;
/* Structure to hold parameters for SV filter */
typedef struct {
float f; // 2.0*sin(PI*fs/(fc*r));
float q; // 2.0*cos(pow(q, 0.1)*PI*0.5);
float qnrm; // sqrt(m/2.0f+0.01f);
float h; // high pass output
float b; // band pass output
float l; // low pass output
float p; // peaking output (allpass with resonance)
float n; // notch output
float *op; // pointer to output value
} sv_filter;
inline float soft_clip(float sc_in) {
if ((sc_in < CLIP) && (sc_in > -CLIP)) {
return sc_in;
} else if (sc_in > 0.0f) {
return MAX_AMP - (CLIP_A / (CLIP_B + sc_in));
} else {
return -(MAX_AMP - (CLIP_A / (CLIP_B - sc_in)));
}
}
/* Store data in SVF struct, takes the sampling frequency, cutoff frequency
and Q, and fills in the structure passed */
inline void setup_svf(sv_filter *sv, float fs, float fc, float q, int t) {
sv->f = 2.0f * sinf(M_PI * fc / (float)(fs * F_R));
sv->q = 2.0f * cosf(powf(q, 0.1f) * M_PI * 0.5f);
sv->qnrm = sqrtf(sv->q*0.5f + 0.01f);
switch(t) {
case F_LP:
sv->op = &(sv->l);
break;
case F_HP:
sv->op = &(sv->h);
break;
case F_BP:
sv->op = &(sv->b);
break;
case F_BR:
sv->op = &(sv->n);
break;
default:
sv->op = &(sv->p);
}
}
/* Change the frequency of a running SVF */
inline void setup_f_svf(sv_filter *sv, const float fs, const float fc) {
sv->f = 2.0f * sin(M_PI * fc / ((float)(fs * F_R)));
}
/* Run one sample through the SV filter. Filter is by andy@vellocet */
inline float run_svf(sv_filter *sv, float in) {
float out;
int i;
in = sv->qnrm * in ;
for (i=0; i < F_R; i++) {
// only needed for pentium chips
in = flush_to_zero(in);
sv->l = flush_to_zero(sv->l);
// very slight waveshape for extra stability
sv->b = sv->b - sv->b * sv->b * sv->b * 0.001f;
// regular state variable code here
// the notch and peaking outputs are optional
sv->h = in - sv->l - sv->q * sv->b;
sv->b = sv->b + sv->f * sv->h;
sv->l = sv->l + sv->f * sv->b;
sv->n = sv->l + sv->h;
sv->p = sv->l - sv->h;
out = *(sv->op);
in = out;
}
return out;
}
inline int wave_tbl(const float wave) {
switch (f_round(wave)) {
case 0:
return BLO_SINE;
break;
case 1:
return BLO_TRI;
break;
case 2:
return BLO_SAW;
break;
case 3:
return BLO_SQUARE;
break;
}
return NOISE;
}
]]></code>
</global>
<plugin label="hermesFilter" id="1200" class="FilterPlugin">
<name>Hermes Filter</name>
<p>This plugin is a simulation of a modern analogue synth called a Pro Tone, with some extra features bolted on, like a crossover. I tried to make it as comprehensive as possible, without requiring ludicrous amounts of CPU juice.</p>
<p>N.B. as far as I know, noone has tried to use this (I certainly haven't), so it may be full of bugs and what not. The parameters are all undocumented, but there is a diagram of the routing on the website. Without a custom interface however it would be very hard to use.</p>
<p>Historical note: the name is a bad pun, it comes from the name Hermes Trimegistus given to the Egyptian god Thoth by the greeks, it means Thrice Blessed, or something similar.</p>
<callback event="instantiate">
long i;
sample_rate = s_rate;
count = 0;
tables = blo_h_tables_new(1024);
osc1_d = blo_h_new(tables, BLO_SINE, (float)s_rate);
osc2_d = blo_h_new(tables, BLO_SINE, (float)s_rate);
lfo1_d = blo_h_new(tables, BLO_SINE, (float)s_rate);
lfo2_d = blo_h_new(tables, BLO_SINE, (float)s_rate);
xover_b1_data = calloc(1, sizeof(sv_filter));
xover_b2_data = calloc(1, sizeof(sv_filter));
dela_data = malloc(3 * sizeof(float));
dela_pos = malloc(3 * sizeof(int));
filt_data = malloc(3 * sizeof(sv_filter *));
for (i = 0; i < 3; i++) {
dela_data[i] = malloc(sample_rate * 2 * sizeof(float));
dela_pos[i] = 0;
filt_data[i] = calloc(1, sizeof(sv_filter));
}
lfo1 = 0.0f;
lfo2 = 0.0f;
lfo1_phase = 0.0f;
lfo2_phase = 0.0f;
</callback>
<callback event="activate">
setup_svf(filt_data[0], 0, 0, 0, 0);
setup_svf(filt_data[1], 0, 0, 0, 0);
setup_svf(filt_data[2], 0, 0, 0, 0);
setup_svf(xover_b1_data, sample_rate, 1000.0, 0.0, F_HP);
setup_svf(xover_b2_data, sample_rate, 100.0, 0.0, F_LP);
memset(dela_data[0], 0, sample_rate * 2 * sizeof(float));
memset(dela_data[1], 0, sample_rate * 2 * sizeof(float));
memset(dela_data[2], 0, sample_rate * 2 * sizeof(float));
dela_pos[0] = 0;
dela_pos[1] = 0;
dela_pos[2] = 0;
/*
osc1_d->ph.all = 0;
osc2_d->ph.all = 0;
lfo1_d->ph.all = 0;
lfo2_d->ph.all = 0;
*/
count = 0;
lfo1 = 0.0f;
lfo2 = 0.0f;
lfo1_phase = 0.0f;
lfo2_phase = 0.0f;
</callback>
<callback event="cleanup">
free(plugin_data->filt_data[0]);
free(plugin_data->filt_data[1]);
free(plugin_data->filt_data[2]);
free(plugin_data->dela_data[0]);
free(plugin_data->dela_data[1]);
free(plugin_data->dela_data[2]);
free(plugin_data->filt_data);
free(plugin_data->dela_data);
free(plugin_data->dela_pos);
free(plugin_data->xover_b1_data);
free(plugin_data->xover_b2_data);
blo_h_free(plugin_data->osc1_d);
blo_h_free(plugin_data->osc2_d);
blo_h_free(plugin_data->lfo1_d);
blo_h_free(plugin_data->lfo2_d);
blo_h_tables_free(plugin_data->tables);
</callback>
<callback event="run"><![CDATA[
unsigned long pos;
int i;
// dB gains converted to coefficients
float osc1_gain, rm1_gain, osc2_gain, rm2_gain, in_gain, rm3_gain;
// Output values for the oscilators etc.
float osc1, osc2, in, rm1, rm2, rm3, mixer1;
// Outputs from xover
float xover[3], band_gain[3];
// Output values for disortions
float dist[3];
// Stuff for distortions
float drive[3];
// Stuff for filters
float filt[3];
float filt_freq[3];
float filt_res[3];
float filt_lfo1[3];
float filt_lfo2[3];
int filt_t[3];
// Values for delays
float dela[3], dela_wet[3], dela_fb[3];
int dela_offset[3];
// Output of mixer2
float mixer2;
// X overs
const float xover_ufreq = f_clamp(xover_ufreqp, 200.0f, (float)(sample_rate / 6));
const float xover_lfreq = f_clamp(xover_lfreqp, 0.0f, xover_ufreq);
setup_f_svf(xover_b1_data, sample_rate, xover_ufreq);
setup_f_svf(xover_b2_data, sample_rate, xover_lfreq);
// Calculate delay offsets
dela_offset[0] = dela1_length * sample_rate;
dela_offset[1] = dela2_length * sample_rate;
dela_offset[2] = dela3_length * sample_rate;
for (i = 0; i < 3; i++) {
if (dela_offset[i] > sample_rate * 2 || dela_offset[i] < 0) {
dela_offset[i] = 0;
}
dela[i] = 0.0f;
filt_t[i] = 0;
}
// Convert dB gains to coefficients
osc1_gain = DB_CO(osc1_gain_db);
osc2_gain = DB_CO(osc2_gain_db);
in_gain = DB_CO(in_gain_db);
rm1_gain = DB_CO(rm1_gain_db);
rm2_gain = DB_CO(rm2_gain_db);
rm3_gain = DB_CO(rm3_gain_db);
band_gain[0] = DB_CO(band1_gain_db);
band_gain[1] = DB_CO(band2_gain_db);
band_gain[2] = DB_CO(band3_gain_db);
osc1_d->wave = wave_tbl(osc1_wave);
osc2_d->wave = wave_tbl(osc2_wave);
lfo1_d->wave = wave_tbl(lfo1_wave);
lfo2_d->wave = wave_tbl(lfo2_wave);
blo_hd_set_freq(osc1_d, osc1_freq);
blo_hd_set_freq(osc2_d, osc2_freq);
blo_hd_set_freq(lfo1_d, lfo1_freq * 16);
blo_hd_set_freq(lfo2_d, lfo2_freq * 16);
#define SETUP_F(n,f,q,t) setup_svf(filt_data[n], sample_rate, f, q, (int)t)
// Set filter stuff
SETUP_F(0, filt1_freq, filt1_q, filt1_type);
SETUP_F(1, filt2_freq, filt2_q, filt2_type);
SETUP_F(2, filt3_freq, filt3_q, filt3_type);
filt_freq[0] = filt1_freq;
filt_freq[1] = filt2_freq;
filt_freq[2] = filt3_freq;
filt_res[0] = filt1_res;
filt_res[1] = filt2_res;
filt_res[2] = filt3_res;
filt_lfo1[0] = filt1_lfo1;
filt_lfo1[1] = filt2_lfo1;
filt_lfo1[2] = filt3_lfo1;
filt_lfo2[0] = filt1_lfo2;
filt_lfo2[1] = filt2_lfo2;
filt_lfo2[2] = filt3_lfo2;
// Setup distortions
drive[0] = drive1;
drive[1] = drive2;
drive[2] = drive3;
// Setup delays
dela_wet[0] = dela1_wet;
dela_wet[1] = dela2_wet;
dela_wet[2] = dela3_wet;
dela_fb[0] = dela1_fb;
dela_fb[1] = dela2_fb;
dela_fb[2] = dela3_fb;
tables = tables; // To shut up gcc
for (pos = 0; pos < sample_count; pos++) {
count++; // Count of number of samples processed
// Calculate oscilator values for this sample
if (osc1_d->wave == NOISE) {
osc1 = rand() * (0.5f/(float)RAND_MAX) - 1.0f;
} else {
osc1 = blo_hd_run_lin(osc1_d);
}
if (osc2_d->wave == NOISE) {
osc2 = rand() * (0.5f/(float)RAND_MAX) - 1.0f;
} else {
osc2 = blo_hd_run_lin(osc2_d);
}
// Calculate LFO values every 16 samples
if ((count & 15) == 1) {
// Calculate lfo values
if (lfo1_d->wave == NOISE) {
lfo1_phase += lfo1_freq;
if (lfo1_phase >= sample_rate) {
lfo1_phase -= sample_rate;
lfo1 = rand() * (0.5f/(float)RAND_MAX) - 1.0f;
}
} else {
lfo1 = blo_hd_run_lin(lfo1_d);
}
if (lfo2_d->wave == NOISE) {
lfo2_phase += lfo1_freq;
if (lfo2_phase >= sample_rate) {
lfo2_phase -= sample_rate;
lfo2 = rand() * (0.5f/(float)RAND_MAX) - 1.0f;
}
} else {
lfo2 = blo_hd_run_lin(lfo2_d);
}
}
in = input[pos];
rm1 = RINGMOD(osc2, osc1, rm1_depth);
rm2 = RINGMOD(in, osc2, rm2_depth);
rm3 = RINGMOD(osc1, in, rm3_depth);
mixer1 = (osc1 * osc1_gain) + (osc2 * osc2_gain) + (in * in_gain) +
(rm1 * rm1_gain) + (rm2 * rm2_gain) + (rm3 * rm3_gain);
mixer1 = soft_clip(mixer1);
// Higpass off the top band
xover[0] = run_svf(xover_b1_data, mixer1);
// Lowpass off the bottom band
xover[2] = run_svf(xover_b2_data, mixer1);
// The middle band is whats left
xover[1] = mixer1 - xover[0] - xover[2];
mixer2 = 0.0f;
for (i = 0; i < 3; i++) {
dist[i] = xover[i]*(fabs(xover[i]) + drive1)/(xover[i]*xover[i] + (drive[i]-1)*fabs(xover[i]) + 1.0f);
if (filt_t[i] == 0) {
filt[i] = dist[i];
} else {
if (count % 16 == 1) {
setup_f_svf(filt_data[i], sample_rate, filt_freq[i]+LFO(filt_lfo1[i], filt_lfo2[i]));
}
filt[i] = run_svf(filt_data[i], dist[i] + (filt_res[i] * (filt_data[i])->b));
}
dela[i] = (dela_data[i][dela_pos[i]] * dela_wet[i]) + filt[i];
dela_data[i][(dela_pos[i] + dela_offset[i]) %
(2 * sample_rate)] = filt[i] + (dela[i] * dela_fb[i]);
dela_pos[i] = (dela_pos[i] + 1) % (2 * sample_rate);
mixer2 += band_gain[i] * dela[i];
}
buffer_write(output[pos], soft_clip(mixer2));
}
plugin_data->count = count;
plugin_data->lfo1 = lfo1;
plugin_data->lfo2 = lfo2;
plugin_data->lfo1_phase = lfo1_phase;
plugin_data->lfo2_phase = lfo2_phase;
]]></callback>
<!-- LFO control -->
<port label="lfo1_freq" dir="input" type="control" hint="default_low">
<name>LFO1 freq (Hz)</name>
<range min="0" max="1000"/>
</port>
<port label="lfo1_wave" dir="input" type="control" hint="integer,default_0">
<name>LFO1 wave (0 = sin, 1 = tri, 2 = saw, 3 = squ, 4 = s&h)</name>
<range min="0" max="4"/>
</port>
<port label="lfo2_freq" dir="input" type="control" hint="default_low">
<name>LFO2 freq (Hz)</name>
<range min="0" max="1000"/>
</port>
<port label="lfo2_wave" dir="input" type="control" hint="integer,default_0">
<name>LFO2 wave (0 = sin, 1 = tri, 2 = saw, 3 = squ, 4 = s&h)</name>
<range min="0" max="4"/>
</port>
<!-- osc control -->
<port label="osc1_freq" dir="input" type="control" hint="default_440">
<name>Osc1 freq (Hz)</name>
<range min="0" max="4000"/>
</port>
<port label="osc1_wave" dir="input" type="control" hint="integer,default_0">
<name>Osc1 wave (0 = sin, 1 = tri, 2 = saw, 3 = squ, 4 = noise)</name>
<range min="0" max="4"/>
</port>
<port label="osc2_freq" dir="input" type="control" hint="default_440">
<name>Osc2 freq (Hz)</name>
<range min="0" max="4000"/>
</port>
<port label="osc2_wave" dir="input" type="control" hint="integer,default_0">
<name>Osc2 wave (0 = sin, 1 = tri, 2 = saw, 3 = squ, 4 = noise)</name>
<range min="0" max="4"/>
</port>
<!-- ringmod control -->
<port label="rm1_depth" dir="input" type="control" hint="default_0">
<name>Ringmod 1 depth (0=none, 1=AM, 2=RM)</name>
<range min="0" max="2"/>
</port>
<port label="rm2_depth" dir="input" type="control" hint="default_0">
<name>Ringmod 2 depth (0=none, 1=AM, 2=RM)</name>
<range min="0" max="2"/>
</port>
<port label="rm3_depth" dir="input" type="control" hint="default_0">
<name>Ringmod 3 depth (0=none, 1=AM, 2=RM)</name>
<range min="0" max="2"/>
</port>
<!-- mixer1 control -->
<port label="osc1_gain_db" dir="input" type="control" hint="default_minimum">
<name>Osc1 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="rm1_gain_db" dir="input" type="control" hint="default_minimum">
<name>RM1 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="osc2_gain_db" dir="input" type="control" hint="default_minimum">
<name>Osc2 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="rm2_gain_db" dir="input" type="control" hint="default_minimum">
<name>RM2 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="in_gain_db" dir="input" type="control" hint="default_0">
<name>Input gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="rm3_gain_db" dir="input" type="control" hint="default_minimum">
<name>RM3 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<!-- xover control -->
<port label="xover_lfreqp" dir="input" type="control" hint="default_low">
<name>Xover lower freq</name>
<range min="50" max="6000"/>
</port>
<port label="xover_ufreqp" dir="input" type="control" hint="default_high">
<name>Xover upper freq</name>
<range min="1000" max="10000"/>
</port>
<!-- distortion control -->
<port label="drive1" dir="input" type="control" hint="default_0">
<name>Dist1 drive</name>
<range min="0" max="3"/>
</port>
<port label="drive2" dir="input" type="control" hint="default_0">
<name>Dist2 drive</name>
<range min="0" max="3"/>
</port>
<port label="drive3" dir="input" type="control" hint="default_0">
<name>Dist3 drive</name>
<range min="0" max="3"/>
</port>
<!-- filter control -->
<port label="filt1_type" dir="input" type="control" hint="integer,default_0">
<name>Filt1 type (0=none, 1=LP, 2=HP, 3=BP, 4=BR, 5=AP)</name>
<range min="0" max="5"/>
</port>
<port label="filt1_freq" dir="input" type="control" hint="default_440">
<name>Filt1 freq</name>
<range min="0" max="8000"/>
</port>
<port label="filt1_q" dir="input" type="control" hint="default_0">
<name>Filt1 q</name>
<range min="0" max="1"/>
</port>
<port label="filt1_res" dir="input" type="control" hint="default_0">
<name>Filt1 resonance</name>
<range min="0" max="1"/>
</port>
<port label="filt1_lfo1" dir="input" type="control" hint="default_0">
<name>Filt1 LFO1 level</name>
<range min="-500" max="500"/>
</port>
<port label="filt1_lfo2" dir="input" type="control" hint="default_0">
<name>Filt1 LFO2 level</name>
<range min="-500" max="500"/>
</port>
<port label="filt2_type" dir="input" type="control" hint="integer,default_0">
<name>Filt2 type (0=none, 1=LP, 2=HP, 3=BP, 4=BR, 5=AP)</name>
<range min="0" max="5"/>
</port>
<port label="filt2_freq" dir="input" type="control" hint="default_440">
<name>Filt2 freq</name>
<range min="0" max="8000"/>
</port>
<port label="filt2_q" dir="input" type="control" hint="default_0">
<name>Filt2 q</name>
<range min="0" max="1"/>
</port>
<port label="filt2_res" dir="input" type="control" hint="default_0">
<name>Filt2 resonance</name>
<range min="0" max="1"/>
</port>
<port label="filt2_lfo1" dir="input" type="control" hint="default_0">
<name>Filt2 LFO1 level</name>
<range min="-500" max="500"/>
</port>
<port label="filt2_lfo2" dir="input" type="control" hint="default_0">
<name>Filt2 LFO2 level</name>
<range min="-500" max="500"/>
</port>
<port label="filt3_type" dir="input" type="control" hint="integer,default_0">
<name>Filt3 type (0=none, 1=LP, 2=HP, 3=BP, 4=BR, 5=AP)</name>
<range min="0" max="5"/>
</port>
<port label="filt3_freq" dir="input" type="control" hint="default_440">
<name>Filt3 freq</name>
<range min="0" max="8000"/>
</port>
<port label="filt3_q" dir="input" type="control" hint="default_0">
<name>Filt3 q</name>
<range min="0" max="1"/>
</port>
<port label="filt3_res" dir="input" type="control" hint="default_0">
<name>Filt3 resonance</name>
<range min="0" max="1"/>
</port>
<port label="filt3_lfo1" dir="input" type="control" hint="default_0">
<name>Filt3 LFO1 level</name>
<range min="-500" max="500"/>
</port>
<port label="filt3_lfo2" dir="input" type="control" hint="default_0">
<name>Filt3 LFO2 level</name>
<range min="-500" max="500"/>
</port>
<!-- delay control -->
<port label="dela1_length" dir="input" type="control" hint="default_0">
<name>Delay1 length (s)</name>
<range min="0" max="2"/>
</port>
<port label="dela1_fb" dir="input" type="control" hint="default_0">
<name>Delay1 feedback</name>
<range min="0" max="1"/>
</port>
<port label="dela1_wet" dir="input" type="control" hint="default_0">
<name>Delay1 wetness</name>
<range min="0" max="1"/>
</port>
<port label="dela2_length" dir="input" type="control" hint="default_0">
<name>Delay2 length (s)</name>
<range min="0" max="2"/>
</port>
<port label="dela2_fb" dir="input" type="control" hint="default_0">
<name>Delay2 feedback</name>
<range min="0" max="1"/>
</port>
<port label="dela2_wet" dir="input" type="control" hint="default_0">
<name>Delay2 wetness</name>
<range min="0" max="1"/>
</port>
<port label="dela3_length" dir="input" type="control" hint="default_0">
<name>Delay3 length (s)</name>
<range min="0" max="2"/>
</port>
<port label="dela3_fb" dir="input" type="control" hint="default_0">
<name>Delay3 feedback</name>
<range min="0" max="1"/>
</port>
<port label="dela3_wet" dir="input" type="control" hint="default_0">
<name>Delay3 wetness</name>
<range min="0" max="1"/>
</port>
<!-- mixer2 -->
<port label="band1_gain_db" dir="input" type="control" hint="default_0">
<name>Band 1 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="band2_gain_db" dir="input" type="control" hint="default_0">
<name>Band 2 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="band3_gain_db" dir="input" type="control" hint="default_0">
<name>Band 3 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<!-- audio i/o -->
<port label="input" dir="input" type="audio">
<name>Input</name>
<range min="-1" max="+1"/>
</port>
<port label="output" dir="output" type="audio">
<name>Output</name>
<range min="-1" max="+1"/>
</port>
<instance-data label="tables" type="blo_h_tables *"/>
<instance-data label="osc1_d" type="blo_h_osc *"/>
<instance-data label="osc2_d" type="blo_h_osc *"/>
<instance-data label="lfo1_d" type="blo_h_osc *"/>
<instance-data label="lfo2_d" type="blo_h_osc *"/>
<instance-data label="lfo1" type="float"/>
<instance-data label="lfo2" type="float"/>
<instance-data label="lfo1_phase" type="float"/>
<instance-data label="lfo2_phase" type="float"/>
<instance-data label="filt_data" type="sv_filter **"/>
<instance-data label="xover_b1_data" type="sv_filter *"/>
<instance-data label="xover_b2_data" type="sv_filter *"/>
<instance-data label="dela_data" type="float **"/>
<instance-data label="dela_pos" type="int *"/>
<instance-data label="count" type="long"/>
</plugin>
</ladspa>
|