1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
<?xml version="1.0"?>
<!DOCTYPE ladspa SYSTEM "ladspa-swh.dtd">
<?xml-stylesheet href="ladspa.css" type="text/css"?>
<ladspa>
<global>
<meta name="maker" value="Steve Harris <steve@plugin.org.uk>"/>
<meta name="copyright" value="GPL"/>
<meta name="properties" value="HARD_RT_CAPABLE"/>
<code><![CDATA[
#include <math.h>
#include "ladspa-util.h"
#define SIN_T_SIZE 1024
#define D_SIZE 256
#define NZEROS 200
/* The non-zero taps of the Hilbert transformer */
static float xcoeffs[] = {
+0.0008103736f, +0.0008457886f, +0.0009017196f, +0.0009793364f,
+0.0010798341f, +0.0012044365f, +0.0013544008f, +0.0015310235f,
+0.0017356466f, +0.0019696659f, +0.0022345404f, +0.0025318040f,
+0.0028630784f, +0.0032300896f, +0.0036346867f, +0.0040788644f,
+0.0045647903f, +0.0050948365f, +0.0056716186f, +0.0062980419f,
+0.0069773575f, +0.0077132300f, +0.0085098208f, +0.0093718901f,
+0.0103049226f, +0.0113152847f, +0.0124104218f, +0.0135991079f,
+0.0148917649f, +0.0163008758f, +0.0178415242f, +0.0195321089f,
+0.0213953037f, +0.0234593652f, +0.0257599469f, +0.0283426636f,
+0.0312667947f, +0.0346107648f, +0.0384804823f, +0.0430224431f,
+0.0484451086f, +0.0550553725f, +0.0633242001f, +0.0740128560f,
+0.0884368322f, +0.1090816773f, +0.1412745301f, +0.1988673273f,
+0.3326528346f, +0.9997730178f, -0.9997730178f, -0.3326528346f,
-0.1988673273f, -0.1412745301f, -0.1090816773f, -0.0884368322f,
-0.0740128560f, -0.0633242001f, -0.0550553725f, -0.0484451086f,
-0.0430224431f, -0.0384804823f, -0.0346107648f, -0.0312667947f,
-0.0283426636f, -0.0257599469f, -0.0234593652f, -0.0213953037f,
-0.0195321089f, -0.0178415242f, -0.0163008758f, -0.0148917649f,
-0.0135991079f, -0.0124104218f, -0.0113152847f, -0.0103049226f,
-0.0093718901f, -0.0085098208f, -0.0077132300f, -0.0069773575f,
-0.0062980419f, -0.0056716186f, -0.0050948365f, -0.0045647903f,
-0.0040788644f, -0.0036346867f, -0.0032300896f, -0.0028630784f,
-0.0025318040f, -0.0022345404f, -0.0019696659f, -0.0017356466f,
-0.0015310235f, -0.0013544008f, -0.0012044365f, -0.0010798341f,
-0.0009793364f, -0.0009017196f, -0.0008457886f, -0.0008103736f,
};
]]></code>
</global>
<plugin label="bodeShifter" id="1431" class="SpectralPlugin">
<name>Bode frequency shifter</name>
<p>A Bode/Moog Frequency Shifter is a popular analogue synth module, it works by shifting all the frequencies of an input signal up or down by a specified frequency. This version shifts in both directions at the same time as its almost no extra work and its often useful to have both directions.</p>
<p>It doesn't actually work in the same way as an analogue Bode/Moog, which use Dome filters as the core, it uses a Hilbert Transformer, which is much simpler to implement in digital systems. The output is very similar though, and people are familiar with the name Bode.</p>
<p>The theory of operation is pretty simple, and uses some clever maths to cancel out the upper or lower sidebands of a ringmodulator applied to the input signal. Read the source if you want more information. The Hilbert Transformet coefficents came from mkfilter, the excellent filter calculator, available at \url{http://www-users.cs.york.ac.uk/~fisher/mkfilter/}.</p>
<callback event="instantiate"><![CDATA[
unsigned int i;
fs = (float)s_rate;
delay = calloc(D_SIZE, sizeof(LADSPA_Data));
sint = calloc(SIN_T_SIZE + 4, sizeof(float));
dptr = 0;
phi = 0.0f;
last_shift = 0.0f;
for (i = 0; i < SIN_T_SIZE + 4; i++) {
sint[i] = sinf(2.0f * M_PI * (float)i / (float)SIN_T_SIZE);
}
]]></callback>
<callback event="cleanup"><![CDATA[
free(plugin_data->delay);
free(plugin_data->sint);
]]></callback>
<callback event="run"><![CDATA[
unsigned long pos;
unsigned int i;
float hilb, rm1, rm2;
float shift_i = last_shift;
int int_p;
float frac_p;
const float shift_c = f_clamp(shift, 0.0f, 10000.0f);
const float shift_inc = (shift_c - last_shift) / (float)sample_count;
const float freq_fix = (float)SIN_T_SIZE / fs;
for (pos = 0; pos < sample_count; pos++) {
delay[dptr] = input[pos];
/* Perform the Hilbert FIR convolution
* (probably FFT would be faster) */
hilb = 0.0f;
for (i = 0; i < NZEROS/2; i++) {
hilb += (xcoeffs[i] * delay[(dptr - i*2) & (D_SIZE - 1)]);
}
/* Calcuate the table positions for the sine modulator */
int_p = f_round(floor(phi));
/* Calculate ringmod1, the transformed input modulated with a shift Hz
* sinewave. This creates a +180 degree sideband at source-shift Hz and
* a 0 degree sindeband at source+shift Hz */
frac_p = phi - int_p;
/* the Hilbert has a gain of pi/2, which we have to correct for, thanks
* Fons! */
rm1 = hilb * 0.63661978f * cube_interp(frac_p, sint[int_p],
sint[int_p+1], sint[int_p+2], sint[int_p+3]);
/* Calcuate the table positions for the cosine modulator */
int_p = (int_p + SIN_T_SIZE / 4) & (SIN_T_SIZE - 1);
/* Calculate ringmod2, the delayed input modulated with a shift Hz
* cosinewave. This creates a 0 degree sideband at source+shift Hz
* and a -180 degree sindeband at source-shift Hz */
rm2 = delay[(dptr - 99) & (D_SIZE - 1)] * cube_interp(frac_p,
sint[int_p], sint[int_p+1], sint[int_p+2], sint[int_p+3]);
/* Output the sum and differences of the ringmods. The +/-180 degree
* sidebands cancel (more of less) and just leave the shifted
* components */
buffer_write(dout[pos], (rm2 - rm1) * 0.5f);
buffer_write(uout[pos], (rm2 + rm1) * 0.5f);
dptr = (dptr + 1) & (D_SIZE - 1);
phi += shift_i * freq_fix;
while (phi > SIN_T_SIZE) {
phi -= SIN_T_SIZE;
}
shift_i += shift_inc;
}
plugin_data->dptr = dptr;
plugin_data->phi = phi;
plugin_data->last_shift = shift_c;
*(plugin_data->latency) = 99;
]]></callback>
<port label="shift" dir="input" type="control" hint="default_0">
<name>Frequency shift</name>
<p>Controls the frequency shift applied to the input signal, in Hz. Note, this is not a pitch shift, so you not get natural sounding results out, it is an audio effect popular with modular synthesists.</p>
<range min="0" max="5000"/>
</port>
<port label="input" dir="input" type="audio">
<name>Input</name>
</port>
<port label="dout" dir="output" type="audio">
<name>Down out</name>
</port>
<port label="uout" dir="output" type="audio">
<name>Up out</name>
</port>
<port label="latency" dir="output" type="control">
<name>latency</name>
</port>
<instance-data label="delay" type="LADSPA_Data *" />
<instance-data label="dptr" type="unsigned int" />
<instance-data label="phi" type="float" />
<instance-data label="fs" type="float" />
<instance-data label="last_shift" type="float" />
<instance-data label="sint" type="float *" />
</plugin>
</ladspa>
|