1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
<?xml version="1.0"?>
<!DOCTYPE ladspa SYSTEM "ladspa-swh.dtd">
<?xml-stylesheet href="ladspa.css" type="text/css"?>
<ladspa>
<global>
<meta name="maker" value="Steve Harris <steve@plugin.org.uk>"/>
<meta name="copyright" value="GPL"/>
<meta name="properties" value="HARD_RT_CAPABLE"/>
<code><![CDATA[
#include "ladspa-util.h"
]]></code>
</global>
<plugin label="flanger" id="1191" class="FlangerPlugin">
<name>Flanger</name>
<p>A digital flanger implementation. Uses a novel zero excursion, controlled bandwidth modulation function, which should make the modulation less repetitive and noticeable.</p>
<p>This effect is similar in character to a phaser (see section \ref{lfoPhaser}). The main difference is that a phaser sounds more regular and stable.</p>
<callback event="instantiate"><![CDATA[
int min_size;
sample_rate = s_rate;
prev_law_peak = 0.0f;
next_law_peak = 1.0f;
prev_law_pos = 0;
next_law_pos = 10;
min_size = sample_rate * 0.04f;
for (delay_size = 1024; delay_size < min_size; delay_size *= 2);
delay_tbl = malloc(sizeof(LADSPA_Data) * delay_size);
delay_pos = 0;
count = 0;
old_d_base = 0;
]]></callback>
<callback event="activate"><![CDATA[
memset(delay_tbl, 0, sizeof(LADSPA_Data) * delay_size);
delay_pos = 0;
count = 0;
old_d_base = 0;
]]></callback>
<callback event="cleanup"><![CDATA[
free(plugin_data->delay_tbl);
]]></callback>
<callback event="run"><![CDATA[
unsigned long pos;
long d_base, new_d_base;
LADSPA_Data out;
float delay_depth;
float dp; // float delay position
float dp_frac; // fractional part
long dp_idx; // integer delay index
long law_p; // period of law
float frac = 0.0f, step; // Portion the way through the block
float law; /* law amplitude */
float n_ph, p_ph;
const float fb = f_clamp(feedback, -0.999f, 0.999f);
// Set law params
law_p = (float)sample_rate / law_freq;
if (law_p < 1) {
law_p = 1;
}
// Calculate base delay size in samples
new_d_base = (LIMIT(f_round(delay_base), 0, 25) * sample_rate) / 1000;
// Calculate delay depth in samples
delay_depth = f_clamp(detune * (float)sample_rate * 0.001f, 0.0f, delay_size - new_d_base - 1.0f);
step = 1.0f/sample_count;
for (pos = 0; pos < sample_count; pos++) {
if (count % law_p == 0) {
// Value for amplitude of law peak
next_law_peak = (float)rand() / (float)RAND_MAX;
next_law_pos = count + law_p;
} else if (count % law_p == law_p / 2) {
// Value for amplitude of law peak
prev_law_peak = (float)rand() / (float)RAND_MAX;
prev_law_pos = count + law_p;
}
// Calculate position in delay table
d_base = LIN_INTERP(frac, old_d_base, new_d_base);
n_ph = (float)(law_p - abs(next_law_pos - count))/(float)law_p;
p_ph = n_ph + 0.5f;
while (p_ph > 1.0f) {
p_ph -= 1.0f;
}
law = f_sin_sq(3.1415926f*p_ph)*prev_law_peak +
f_sin_sq(3.1415926f*n_ph)*next_law_peak;
dp = (float)(delay_pos - d_base) - (delay_depth * law);
// Get the integer part
dp_idx = f_round(dp - 0.5f);
// Get the fractional part
dp_frac = dp - dp_idx;
// Accumulate into output buffer
out = cube_interp(dp_frac, delay_tbl[(dp_idx-1) & (delay_size-1)], delay_tbl[dp_idx & (delay_size-1)], delay_tbl[(dp_idx+1) & (delay_size-1)], delay_tbl[(dp_idx+2) & (delay_size-1)]);
// Store new delayed value
delay_tbl[delay_pos] = flush_to_zero(input[pos] + (fb * out));
// Sometimes the delay can pick up NaN values, I'm not sure why
// and this is easier than fixing it
if (isnan(delay_tbl[delay_pos])) {
delay_tbl[delay_pos] = 0.0f;
}
out = f_clamp(delay_tbl[delay_pos] * 0.707f, -1.0, 1.0);
buffer_write(output[pos], out);
frac += step;
delay_pos = (delay_pos + 1) & (delay_size-1);
count++;
}
plugin_data->count = count;
plugin_data->prev_law_peak = prev_law_peak;
plugin_data->next_law_peak = next_law_peak;
plugin_data->prev_law_pos = prev_law_pos;
plugin_data->next_law_pos = next_law_pos;
plugin_data->delay_pos = delay_pos;
plugin_data->old_d_base = new_d_base;
]]></callback>
<port label="delay_base" dir="input" type="control" hint="default_low">
<name>Delay base (ms)</name>
<range min="0.1" max="25"/>
<p>This is the offset from the input time that the detune delay moves around.</p>
<p>10 is probably a good starting value.</p>
</port>
<port label="detune" dir="input" type="control" hint="default_low">
<name>Max slowdown (ms)</name>
<range min="0" max="10"/>
<p>This is the maximum delay that will be applied to the delayed signal, relative to the dry signal.</p>
</port>
<port label="law_freq" dir="input" type="control" hint="default_low,logarithmic">
<name>LFO frequency (Hz)</name>
<range min="0.05" max="100"/>
<p>This is the core frequency that the 'LFO' will move at. The LFO isn't actually an oscillator, but it does vary periodically.</p>
</port>
<port label="feedback" dir="input" type="control" hint="default_0">
<name>Feedback</name>
<range min="-1" max="1"/>
<p>Feedback applied from the output to the input, increases the depth of the effect, but makes it sound less like a real flanger.</p>
</port>
<port label="input" dir="input" type="audio">
<name>Input</name>
</port>
<port label="output" dir="output" type="audio">
<name>Output</name>
</port>
<instance-data label="sample_rate" type="long"/>
<instance-data label="count" type="long"/>
<instance-data label="prev_law_peak" type="float"/>
<instance-data label="next_law_peak" type="float"/>
<instance-data label="prev_law_pos" type="int"/>
<instance-data label="next_law_pos" type="int"/>
<instance-data label="delay_tbl" type="LADSPA_Data *"/>
<instance-data label="delay_pos" type="long"/>
<instance-data label="delay_size" type="long"/>
<instance-data label="old_d_base" type="long"/>
</plugin>
</ladspa>
|