1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /home/cvs/giga/ladspa-swh/gsm/lpc.c,v 1.1 2001/06/10 21:36:51 swh Exp $ */
#include <stdio.h>
#include <assert.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
#undef P
/*
* 4.2.4 .. 4.2.7 LPC ANALYSIS SECTION
*/
/* 4.2.4 */
static void Autocorrelation P2((s, L_ACF),
word * s, /* [0..159] IN/OUT */
longword * L_ACF) /* [0..8] OUT */
/*
* The goal is to compute the array L_ACF[k]. The signal s[i] must
* be scaled in order to avoid an overflow situation.
*/
{
register int k, i;
word temp, smax, scalauto;
#ifdef USE_FLOAT_MUL
float float_s[160];
#endif
/* Dynamic scaling of the array s[0..159]
*/
/* Search for the maximum.
*/
smax = 0;
for (k = 0; k <= 159; k++) {
temp = GSM_ABS( s[k] );
if (temp > smax) smax = temp;
}
/* Computation of the scaling factor.
*/
if (smax == 0) scalauto = 0;
else {
assert(smax > 0);
scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */
}
/* Scaling of the array s[0...159]
*/
if (scalauto > 0) {
# ifdef USE_FLOAT_MUL
# define SCALE(n) \
case n: for (k = 0; k <= 159; k++) \
float_s[k] = (float) \
(s[k] = GSM_MULT_R(s[k], 16384 >> (n-1)));\
break;
# else
# define SCALE(n) \
case n: for (k = 0; k <= 159; k++) \
s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\
break;
# endif /* USE_FLOAT_MUL */
switch (scalauto) {
SCALE(1)
SCALE(2)
SCALE(3)
SCALE(4)
}
# undef SCALE
}
# ifdef USE_FLOAT_MUL
else for (k = 0; k <= 159; k++) float_s[k] = (float) s[k];
# endif
/* Compute the L_ACF[..].
*/
{
# ifdef USE_FLOAT_MUL
register float * sp = float_s;
register float sl = *sp;
# define STEP(k) L_ACF[k] += (longword)(sl * sp[ -(k) ]);
# else
word * sp = s;
word sl = *sp;
# define STEP(k) L_ACF[k] += ((longword)sl * sp[ -(k) ]);
# endif
# define NEXTI sl = *++sp
for (k = 9; k--; L_ACF[k] = 0) ;
STEP (0);
NEXTI;
STEP(0); STEP(1);
NEXTI;
STEP(0); STEP(1); STEP(2);
NEXTI;
STEP(0); STEP(1); STEP(2); STEP(3);
NEXTI;
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4);
NEXTI;
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5);
NEXTI;
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6);
NEXTI;
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7);
for (i = 8; i <= 159; i++) {
NEXTI;
STEP(0);
STEP(1); STEP(2); STEP(3); STEP(4);
STEP(5); STEP(6); STEP(7); STEP(8);
}
for (k = 9; k--; L_ACF[k] <<= 1) ;
}
/* Rescaling of the array s[0..159]
*/
if (scalauto > 0) {
assert(scalauto <= 4);
for (k = 160; k--; *s++ <<= scalauto) ;
}
}
#if defined(USE_FLOAT_MUL) && defined(FAST)
static void Fast_Autocorrelation P2((s, L_ACF),
word * s, /* [0..159] IN/OUT */
longword * L_ACF) /* [0..8] OUT */
{
register int k, i;
float f_L_ACF[9];
float scale;
float s_f[160];
register float *sf = s_f;
for (i = 0; i < 160; ++i) sf[i] = s[i];
for (k = 0; k <= 8; k++) {
register float L_temp2 = 0;
register float *sfl = sf - k;
for (i = k; i < 160; ++i) L_temp2 += sf[i] * sfl[i];
f_L_ACF[k] = L_temp2;
}
scale = MAX_LONGWORD / f_L_ACF[0];
for (k = 0; k <= 8; k++) {
L_ACF[k] = f_L_ACF[k] * scale;
}
}
#endif /* defined (USE_FLOAT_MUL) && defined (FAST) */
/* 4.2.5 */
static void Reflection_coefficients P2( (L_ACF, r),
longword * L_ACF, /* 0...8 IN */
register word * r /* 0...7 OUT */
)
{
register int i, m, n;
register word temp;
register longword ltmp;
word ACF[9]; /* 0..8 */
word P[ 9]; /* 0..8 */
word K[ 9]; /* 2..8 */
/* Schur recursion with 16 bits arithmetic.
*/
if (L_ACF[0] == 0) {
for (i = 8; i--; *r++ = 0) ;
return;
}
assert( L_ACF[0] != 0 );
temp = gsm_norm( L_ACF[0] );
assert(temp >= 0 && temp < 32);
/* ? overflow ? */
for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 );
/* Initialize array P[..] and K[..] for the recursion.
*/
for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ];
for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ];
/* Compute reflection coefficients
*/
for (n = 1; n <= 8; n++, r++) {
temp = P[1];
temp = GSM_ABS(temp);
if (P[0] < temp) {
for (i = n; i <= 8; i++) *r++ = 0;
return;
}
*r = gsm_div( temp, P[0] );
assert(*r >= 0);
if (P[1] > 0) *r = -*r; /* r[n] = sub(0, r[n]) */
assert (*r != MIN_WORD);
if (n == 8) return;
/* Schur recursion
*/
temp = GSM_MULT_R( P[1], *r );
P[0] = GSM_ADD( P[0], temp );
for (m = 1; m <= 8 - n; m++) {
temp = GSM_MULT_R( K[ m ], *r );
P[m] = GSM_ADD( P[ m+1 ], temp );
temp = GSM_MULT_R( P[ m+1 ], *r );
K[m] = GSM_ADD( K[ m ], temp );
}
}
}
/* 4.2.6 */
static void Transformation_to_Log_Area_Ratios P1((r),
register word * r /* 0..7 IN/OUT */
)
/*
* The following scaling for r[..] and LAR[..] has been used:
*
* r[..] = integer( real_r[..]*32768. ); -1 <= real_r < 1.
* LAR[..] = integer( real_LAR[..] * 16384 );
* with -1.625 <= real_LAR <= 1.625
*/
{
register word temp;
register int i;
/* Computation of the LAR[0..7] from the r[0..7]
*/
for (i = 1; i <= 8; i++, r++) {
temp = *r;
temp = GSM_ABS(temp);
assert(temp >= 0);
if (temp < 22118) {
temp >>= 1;
} else if (temp < 31130) {
assert( temp >= 11059 );
temp -= 11059;
} else {
assert( temp >= 26112 );
temp -= 26112;
temp <<= 2;
}
*r = *r < 0 ? -temp : temp;
assert( *r != MIN_WORD );
}
}
/* 4.2.7 */
static void Quantization_and_coding P1((LAR),
register word * LAR /* [0..7] IN/OUT */
)
{
register word temp;
longword ltmp;
/* This procedure needs four tables; the following equations
* give the optimum scaling for the constants:
*
* A[0..7] = integer( real_A[0..7] * 1024 )
* B[0..7] = integer( real_B[0..7] * 512 )
* MAC[0..7] = maximum of the LARc[0..7]
* MIC[0..7] = minimum of the LARc[0..7]
*/
# undef STEP
# define STEP( A, B, MAC, MIC ) \
temp = GSM_MULT( A, *LAR ); \
temp = GSM_ADD( temp, B ); \
temp = GSM_ADD( temp, 256 ); \
temp = SASR( temp, 9 ); \
*LAR = temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \
LAR++;
STEP( 20480, 0, 31, -32 );
STEP( 20480, 0, 31, -32 );
STEP( 20480, 2048, 15, -16 );
STEP( 20480, -2560, 15, -16 );
STEP( 13964, 94, 7, -8 );
STEP( 15360, -1792, 7, -8 );
STEP( 8534, -341, 3, -4 );
STEP( 9036, -1144, 3, -4 );
# undef STEP
}
void Gsm_LPC_Analysis P3((S, s,LARc),
struct gsm_state *S,
word * s, /* 0..159 signals IN/OUT */
word * LARc) /* 0..7 LARc's OUT */
{
longword L_ACF[9];
#if defined(USE_FLOAT_MUL) && defined(FAST)
if (S->fast) Fast_Autocorrelation (s, L_ACF );
else
#endif
Autocorrelation (s, L_ACF );
Reflection_coefficients (L_ACF, LARc );
Transformation_to_Log_Area_Ratios (LARc);
Quantization_and_coding (LARc);
}
|