1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
<?xml version="1.0"?>
<!DOCTYPE ladspa SYSTEM "ladspa-swh.dtd">
<?xml-stylesheet href="ladspa.css" type="text/css"?>
<ladspa>
<global>
<meta name="maker" value="Steve Harris <steve@plugin.org.uk>"/>
<meta name="copyright" value="GPL"/>
<meta name="properties" value="HARD_RT_CAPABLE"/>
<code>
#include "ladspa-util.h"
#include "util/db.h"
/* Minimum buffer size in seconds */
#define BUFFER_TIME 0.15f
</code>
</global>
<plugin label="lookaheadLimiterConst" id="1906" class="LimiterPlugin">
<name>Lookahead limiter (fixed latency)</name>
<p>A lookahead limiter - similar to the original Lookahead Limiter, but
with a constant latency of around 150ms and a reduced maximum lookahead
time.</p>
<callback event="instantiate"><![CDATA[
buffer_len = 4096;
buffer_pos = 0;
fs = s_rate;
db_init();
/* Find size for power-of-two interleaved delay buffer */
while(buffer_len < s_rate * BUFFER_TIME) {
buffer_len *= 2;
}
buffer_mask = buffer_len * 2 - 1;
buffer = calloc(buffer_len * 2, sizeof(LADSPA_Data));
amp_buffer = calloc(buffer_len, sizeof(float));
peak = 0.0f;
peak_dist = 1;
atten = 0.0f;
last_delay = -1.0f;
]]></callback>
<callback event="activate"><![CDATA[
int i;
memset(buffer, 0, buffer_len * 2 * sizeof(float));
for (i=0; i<buffer_len; i++) amp_buffer[i] = 1.0f;
buffer_pos = 0;
peak = 0.0f;
peak_dist = 1;
atten = 0.0f;
last_delay = -1.0f;
]]></callback>
<callback event="run"><![CDATA[
unsigned long pos;
const float max = DB_CO(limit);
float sig, gain;
float delay = last_delay;
float delay_delta;
float a, b;
if (delay < 0.0f) {
delay = delay_s * fs;
delay_delta = 0.0f;
} else {
delay_delta = (delay_s * fs - last_delay) / (sample_count - 1);
}
for (pos = 0; pos < sample_count; pos++) {
delay += delay_delta;
buffer[(buffer_pos * 2) & buffer_mask] = in_1[pos];
buffer[(buffer_pos * 2 + 1) & buffer_mask] = in_2[pos];
a = fabs(buffer[((buffer_pos + f_round(delay)) * 2) & buffer_mask]);
b = fabs(buffer[((buffer_pos + f_round(delay)) * 2 + 1) & buffer_mask]);
sig = a > b ? a : b;
/* XXX
sig = fabs(in_1[pos]) > fabs(in_2[pos]) ? fabs(in_1[pos]) :
fabs(in_2[pos]);
*/
if (sig > max) {
const float rel = lin2db(sig) - limit;
if (rel / delay > peak / (float)peak_dist) {
peak_dist = delay;
peak = rel;
}
}
/* Incremenatlly approach the correct attenuation for the next peak */
atten -= (atten - peak) / (float)(peak_dist + 1);
if (peak_dist-- == 0) {
peak_dist = f_round(delay);
peak = 0.0f;
}
/* Cacluate the apropriate gain reduction and write it back into the
* buffer */
gain = amp_buffer[(buffer_pos - f_round(delay)) & (buffer_len - 1)];
amp_buffer[(buffer_pos - f_round(delay)) & (buffer_len - 1)] =
1.0f / db2lin(atten);
gain=1.0f / db2lin(atten);
buffer_write(out_1[pos], buffer[(2 * (buffer_pos + 1)) &
buffer_mask] * gain);
buffer_write(out_2[pos], buffer[(2 * (buffer_pos + 1)+1) &
buffer_mask] * gain);
/* Ensure that the signal really can't be over the limit */
#if 0
XXX FIXME XXX
if (out_1[pos] < -max) {
buffer_write(out_1[pos], -max);
} else if (out_1[pos] > max) {
buffer_write(out_1[pos], max);
}
if (out_2[pos] < -max) {
buffer_write(out_2[pos], -max);
} else if (out_2[pos] > max) {
buffer_write(out_2[pos], max);
}
#endif
buffer_pos++;
}
plugin_data->buffer_pos = buffer_pos;
plugin_data->peak = peak;
plugin_data->peak_dist = peak_dist;
plugin_data->atten = atten;
plugin_data->last_delay = delay;
*(plugin_data->attenuation) = atten;
*(plugin_data->latency) = buffer_len - 1;
]]></callback>
<callback event="cleanup"><![CDATA[
free(plugin_data->buffer);
free(plugin_data->amp_buffer);
]]></callback>
<port label="limit" dir="input" type="control" hint="default_0">
<name>Limit (dB)</name>
<p>The maximum output amplitude. Peaks over this level will be attenuated as smoothly as possible to bring them as close as possible to this level.</p>
<range min="-20" max="0"/>
</port>
<port label="delay_s" dir="input" type="control" hint="default_middle">
<name>Lookahead time (s)</name>
<p>The delay time used by the lookahead predictor. The longer the time the smoother the limiting will be, but will tend to make the changes in dynamic range more obvious.</p>
<range min="0.001" max="0.15"/>
</port>
<port label="attenuation" dir="output" type="control">
<name>Attenuation (dB)</name>
<p>The current limiting attenuation of the signal coming out of the delay
buffer.</p>
<range min="0" max="12"/>
</port>
<port label="in_1" dir="input" type="audio">
<name>Input 1</name>
</port>
<port label="in_2" dir="input" type="audio">
<name>Input 2</name>
</port>
<port label="out_1" dir="output" type="audio">
<name>Output 1</name>
</port>
<port label="out_2" dir="output" type="audio">
<name>Output 2</name>
</port>
<port label="latency" dir="output" type="control">
<name>latency</name>
</port>
<instance-data label="buffer" type="LADSPA_Data *" />
<instance-data label="amp_buffer" type="float *" />
<instance-data label="buffer_len" type="unsigned int" />
<instance-data label="buffer_mask" type="unsigned int" />
<instance-data label="buffer_pos" type="unsigned int" />
<instance-data label="fs" type="unsigned int" />
<!-- running value for the attenuation -->
<instance-data label="atten" type="float" />
<!-- the next peak, relative to the limit -->
<instance-data label="peak" type="float" />
<!-- the number of sample until the next peak -->
<instance-data label="peak_dist" type="unsigned int" />
<instance-data label="last_delay" type="float" />
</plugin>
</ladspa>
|