1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
<?xml version="1.0" ?>
<!DOCTYPE ladspa SYSTEM "ladspa-swh.dtd">
<?xml-stylesheet href="ladspa.css" type="text/css" ?>
<ladspa>
<global>
<meta name="maker" value="Steve Harris <steve@plugin.org.uk>"/>
<meta name="copyright" value="GPL"/>
<meta name="properties" value="HARD_RT_CAPABLE"/>
<code><![CDATA[
#include "config.h"
#ifdef FFTW3
#include <fftw3.h>
typedef fftwf_plan fft_plan;
typedef float fftw_real;
#else
#ifdef EXPLICIT_S
#include <srfftw.h>
#else
#include <rfftw.h>
#endif //EXPLICIT_S
typedef rfftw_plan fft_plan;
#endif //FFTW3
#include "ladspa-util.h"
#define FFT_LENGTH 1024
#define OVER_SAMP 4
#define BANDS 15
float bands[BANDS] =
{ 50.00f, 100.00f, 155.56f, 220.00f, 311.13f,
440.00f, 622.25f, 880.00f, 1244.51f, 1760.00f, 2489.02f,
3519.95, 4978.04f, 9956.08f, 19912.16f };
]]></code>
</global>
<plugin label="mbeq" id="1197" class="MultiEQPlugin">
<name>Multiband EQ</name>
<p>This is a fairly typical multiband graphical equalizer. It's implemented using a FFT, so it takes quite a lot of CPU power, but should have less phase effects than an equivalent filter implementation.</p>
<p>If the input signal is at too low a sample rate then the top bands will be ignored, the highest useful band will always be a high shelf.</p>
<callback event="instantiate"><![CDATA[
int i, bin;
float last_bin, next_bin;
float db;
float hz_per_bin = (float)s_rate / (float)FFT_LENGTH;
in_fifo = calloc(FFT_LENGTH, sizeof(LADSPA_Data));
out_fifo = calloc(FFT_LENGTH, sizeof(LADSPA_Data));
out_accum = calloc(FFT_LENGTH * 2, sizeof(LADSPA_Data));
real = calloc(FFT_LENGTH, sizeof(fftw_real));
comp = calloc(FFT_LENGTH, sizeof(fftw_real));
window = calloc(FFT_LENGTH, sizeof(float));
bin_base = calloc(FFT_LENGTH/2, sizeof(int));
bin_delta = calloc(FFT_LENGTH/2, sizeof(float));
fifo_pos = 0;
#ifdef FFTW3
plan_rc = fftwf_plan_r2r_1d(FFT_LENGTH, real, comp, FFTW_R2HC, FFTW_MEASURE);
plan_cr = fftwf_plan_r2r_1d(FFT_LENGTH, comp, real, FFTW_HC2R, FFTW_MEASURE);
#else
plan_rc = rfftw_create_plan(FFT_LENGTH, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE);
plan_cr = rfftw_create_plan(FFT_LENGTH, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE);
#endif
// Create raised cosine window table
for (i=0; i < FFT_LENGTH; i++) {
window[i] = -0.5f*cos(2.0f*M_PI*(double)i/(double)FFT_LENGTH)+0.5f;
window[i] *= 2.0f;
}
// Create db->coeffiecnt lookup table
db_table = malloc(1000 * sizeof(float));
for (i=0; i < 1000; i++) {
db = ((float)i/10) - 70;
db_table[i] = pow(10.0f, db/20.0f);
}
// Create FFT bin -> band + delta tables
bin = 0;
while (bin <= bands[0]/hz_per_bin) {
bin_base[bin] = 0;
bin_delta[bin++] = 0.0f;
}
for (i = 1; i < BANDS-1 && bin < (FFT_LENGTH/2)-1 && bands[i+1] < s_rate/2; i++) {
last_bin = bin;
next_bin = (bands[i+1])/hz_per_bin;
while (bin <= next_bin) {
bin_base[bin] = i;
bin_delta[bin] = (float)(bin - last_bin) / (float)(next_bin - last_bin);
bin++;
}
}
for (; bin < (FFT_LENGTH/2); bin++) {
bin_base[bin] = BANDS-1;
bin_delta[bin] = 0.0f;
}
]]></callback>
<callback event="activate"><![CDATA[
fifo_pos = 0;
]]></callback>
<callback event="cleanup"><![CDATA[
free(plugin_data->in_fifo);
free(plugin_data->out_fifo);
free(plugin_data->out_accum);
free(plugin_data->real);
free(plugin_data->comp);
free(plugin_data->window);
free(plugin_data->bin_base);
free(plugin_data->bin_delta);
free(plugin_data->db_table);
]]></callback>
<callback event="run"><![CDATA[
int i, bin, gain_idx;
float gains[BANDS + 1] =
{ band_1, band_2, band_3, band_4, band_5, band_6, band_7, band_8, band_9,
band_10, band_11, band_12, band_13, band_14, band_15, 0.0f };
float coefs[FFT_LENGTH / 2];
unsigned long pos;
int step_size = FFT_LENGTH / OVER_SAMP;
int fft_latency = FFT_LENGTH - step_size;
// Convert gains from dB to co-efficents
for (i = 0; i < BANDS; i++) {
gain_idx = (int)((gains[i] * 10) + 700);
gains[i] = db_table[LIMIT(gain_idx, 0, 999)];
}
// Calculate coefficients for each bin of FFT
coefs[0] = 0.0f;
for (bin=1; bin < (FFT_LENGTH/2-1); bin++) {
coefs[bin] = ((1.0f-bin_delta[bin]) * gains[bin_base[bin]])
+ (bin_delta[bin] * gains[bin_base[bin]+1]);
}
if (fifo_pos == 0) {
fifo_pos = fft_latency;
}
for (pos = 0; pos < sample_count; pos++) {
in_fifo[fifo_pos] = input[pos];
buffer_write(output[pos], out_fifo[fifo_pos-fft_latency]);
fifo_pos++;
// If the FIFO is full
if (fifo_pos >= FFT_LENGTH) {
fifo_pos = fft_latency;
// Window input FIFO
for (i=0; i < FFT_LENGTH; i++) {
real[i] = in_fifo[i] * window[i];
}
// Run the real->complex transform
#ifdef FFTW3
fftwf_execute(plan_rc);
#else
rfftw_one(plan_rc, real, comp);
#endif
// Multiply the bins magnitudes by the coeficients
comp[0] *= coefs[0];
for (i = 1; i < FFT_LENGTH/2; i++) {
comp[i] *= coefs[i];
comp[FFT_LENGTH-i] *= coefs[i];
}
// Run the complex->real transform
#ifdef FFTW3
fftwf_execute(plan_cr);
#else
rfftw_one(plan_cr, comp, real);
#endif
// Window into the output accumulator
for (i = 0; i < FFT_LENGTH; i++) {
out_accum[i] += 0.9186162f * window[i] * real[i]/(FFT_LENGTH * OVER_SAMP);
}
for (i = 0; i < step_size; i++) {
out_fifo[i] = out_accum[i];
}
// Shift output accumulator
memmove(out_accum, out_accum + step_size, FFT_LENGTH*sizeof(LADSPA_Data));
// Shift input fifo
for (i = 0; i < fft_latency; i++) {
in_fifo[i] = in_fifo[i+step_size];
}
}
}
// Store the fifo_position
plugin_data->fifo_pos = fifo_pos;
*(plugin_data->latency) = fft_latency;
]]></callback>
<port label="band_1" dir="input" type="control" hint="default_0">
<name>50Hz gain (low shelving)</name>
<range min="-70" max="+30"/>
</port>
<port label="band_2" dir="input" type="control" hint="default_0">
<name>100Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_3" dir="input" type="control" hint="default_0">
<name>156Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_4" dir="input" type="control" hint="default_0">
<name>220Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_5" dir="input" type="control" hint="default_0">
<name>311Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_6" dir="input" type="control" hint="default_0">
<name>440Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_7" dir="input" type="control" hint="default_0">
<name>622Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_8" dir="input" type="control" hint="default_0">
<name>880Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_9" dir="input" type="control" hint="default_0">
<name>1250Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_10" dir="input" type="control" hint="default_0">
<name>1750Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_11" dir="input" type="control" hint="default_0">
<name>2500Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_12" dir="input" type="control" hint="default_0">
<name>3500Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_13" dir="input" type="control" hint="default_0">
<name>5000Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_14" dir="input" type="control" hint="default_0">
<name>10000Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="band_15" dir="input" type="control" hint="default_0">
<name>20000Hz gain</name>
<range min="-70" max="+30"/>
</port>
<port label="input" dir="input" type="audio">
<name>Input</name>
</port>
<port label="output" dir="output" type="audio">
<name>Output</name>
</port>
<port label="latency" dir="output" type="control">
<name>latency</name>
</port>
<instance-data label="in_fifo" type="LADSPA_Data *"/>
<instance-data label="out_fifo" type="LADSPA_Data *"/>
<instance-data label="out_accum" type="LADSPA_Data *"/>
<instance-data label="real" type="fftw_real *"/>
<instance-data label="comp" type="fftw_real *"/>
<instance-data label="window" type="float *"/>
<instance-data label="fifo_pos" type="long"/>
<instance-data label="db_table" type="float *"/>
<instance-data label="bin_base" type="int *"/>
<instance-data label="bin_delta" type="float *"/>
<instance-data label="plan_rc" type="fft_plan"/>
<instance-data label="plan_cr" type="fft_plan"/>
<!-- static fft_plan plan_rc = NULL, plan_cr = NULL; -->
</plugin>
</ladspa>
|