File: retro_flange_1208.xml

package info (click to toggle)
swh-plugins 0.4.17-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,264 kB
  • sloc: ansic: 23,551; xml: 12,633; perl: 1,114; sh: 964; makefile: 218
file content (194 lines) | stat: -rw-r--r-- 5,994 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
<?xml version="1.0" ?>
<!DOCTYPE ladspa SYSTEM "ladspa-swh.dtd">
<?xml-stylesheet href="ladspa.css" type="text/css" ?>
<ladspa>
	<global>
		<meta name="maker" value="Steve Harris &lt;steve@plugin.org.uk&gt;"/>
		<meta name="copyright" value="GPL"/>
		<meta name="properties" value="HARD_RT_CAPABLE"/>

		<code><![CDATA[
#include "ladspa-util.h"

#define BASE_BUFFER 0.001 // Base buffer length (s)

static inline LADSPA_Data sat(LADSPA_Data x, float q,  float dist) {
	if (x == q) {
		return 1.0f / dist + q / (1.0f - f_exp(dist * q));
	}
	return ((x - q) / (1.0f - f_exp(-dist * (x - q))) + q /
	 (1.0f - f_exp(dist * q)));
}

		]]></code>
	</global>

	<plugin label="retroFlange" id="1208" class="FlangerPlugin">
		<name>Retro Flanger</name>
		<p>A model of someone flanging the input.</p>
		<p>Models the tape saturation effects, and frequency smear of a manual flanger. The results are a slightly distorted, but more subtle flanger sound that you get from a normal digital flanger.</p>

		<callback event="instantiate"><![CDATA[
sample_rate = s_rate;
buffer_size = BASE_BUFFER * s_rate;
buffer = calloc(buffer_size, sizeof(LADSPA_Data));
phase = 0;
last_phase = 0;
last_in = 0.0f;
max_law_p = s_rate*2;
last_law_p = -1;
delay_line_length = sample_rate * 0.01f;
delay_line = calloc(sizeof(float), delay_line_length);

delay_pos = 0;
count = 0;

prev_law_peak = 0.0f;
next_law_peak = 1.0f;
prev_law_pos = 0;
next_law_pos = 10;

z0 = 0.0f;
z1 = 0.0f;
z2 = 0.0f;
		]]></callback>

		<callback event="activate"><![CDATA[
memset(delay_line, 0, sizeof(float) * delay_line_length);
memset(buffer, 0, sizeof(LADSPA_Data) * buffer_size);
z0 = 0.0f;
z1 = 0.0f;
z2 = 0.0f;

prev_law_peak = 0.0f;
next_law_peak = 1.0f;
prev_law_pos = 0;
next_law_pos = 10;
		]]></callback>

		<callback event="cleanup"><![CDATA[
free(plugin_data->delay_line);
free(plugin_data->buffer);
		]]></callback>

		<callback event="run"><![CDATA[
long int pos;
int law_p = f_trunc(LIMIT(sample_rate / f_clamp(law_freq, 0.0001f, 100.0f), 1, max_law_p));
float increment;
float lin_int, lin_inc;
int track;
int fph;
LADSPA_Data out = 0.0f;
const float dda_c = f_clamp(delay_depth_avg, 0.0f, 10.0f);
int dl_used = (dda_c * sample_rate) / 1000;
float inc_base = 1000.0f * (float)BASE_BUFFER;
const float delay_depth = 2.0f * dda_c;
float n_ph, p_ph, law;

for (pos = 0; pos < sample_count; pos++) {
	// Write into the delay line
	delay_line[delay_pos] = input[pos];
	z0 = delay_line[MOD(delay_pos - dl_used, delay_line_length)] + 0.12919609397f*z1 - 0.31050847f*z2;
	out = sat(z0*0.20466966f + z1*0.40933933f + z2*0.40933933f,
	                -0.23f, 3.3f);
	z2 = z1; z1 = z0;
	delay_pos = (delay_pos + 1) % delay_line_length;

        if ((count++ % law_p) == 0) {
		// Value for amplitude of law peak
		next_law_peak = (float)rand() / (float)RAND_MAX;
		next_law_pos = count + law_p;
	} else if (count % law_p == law_p / 2) {
		// Value for amplitude of law peak
		prev_law_peak = (float)rand() / (float)RAND_MAX;
		prev_law_pos = count + law_p;
        }

        n_ph = (float)(law_p - abs(next_law_pos - count))/(float)law_p;
        p_ph = n_ph + 0.5f;
        if (p_ph > 1.0f) {
                p_ph -= 1.0f;
        }
        law = f_sin_sq(3.1415926f*p_ph)*prev_law_peak +
                f_sin_sq(3.1415926f*n_ph)*next_law_peak;

	increment = inc_base / (delay_depth * law + 0.2);
	fph = f_trunc(phase);
	last_phase = fph;
	lin_int = phase - (float)fph;
	out += LIN_INTERP(lin_int, buffer[(fph+1) % buffer_size],
	 buffer[(fph+2) % buffer_size]);
	phase += increment;
	lin_inc = 1.0f / (floor(phase) - last_phase + 1);
	lin_inc = lin_inc > 1.0f ? 1.0f : lin_inc;
	lin_int = 0.0f;
	for (track = last_phase; track < phase; track++) {
		lin_int += lin_inc;
		buffer[track % buffer_size] =
		 LIN_INTERP(lin_int, last_in, input[pos]);
	}
	last_in = input[pos];
	buffer_write(output[pos], out * 0.707f);
	if (phase >= buffer_size) {
		phase -= buffer_size;
	}
}

// Store current phase in instance
plugin_data->phase = phase;
plugin_data->prev_law_peak = prev_law_peak;
plugin_data->next_law_peak = next_law_peak;
plugin_data->prev_law_pos = prev_law_pos;
plugin_data->next_law_pos = next_law_pos;
plugin_data->last_phase = last_phase;
plugin_data->last_in = last_in;
plugin_data->count = count;
plugin_data->last_law_p = last_law_p;
plugin_data->delay_pos = delay_pos;
plugin_data->z0 = z0;
plugin_data->z1 = z1;
plugin_data->z2 = z2;
		]]></callback>

		<port label="delay_depth_avg" dir="input" type="control" hint="default_low">
			<name>Average stall (ms)</name>
			<range min="0" max="10"/>
			<p>The average time difference between the two tapes, per stall</p>
		</port>

		<port label="law_freq" dir="input" type="control" hint="default_1">
			<name>Flange frequency (Hz)</name>
			<range min="0.5" max="8"/>
			<p>The rate the tape is stalled at.</p>
		</port>

		<port label="input" dir="input" type="audio">
			<name>Input</name>
		</port>

		<port label="output" dir="output" type="audio">
			<name>Output</name>
		</port>

		<instance-data label="buffer" type="LADSPA_Data *"/>
		<instance-data label="phase" type="float"/>
		<instance-data label="last_phase" type="int"/>
		<instance-data label="last_in" type="LADSPA_Data"/>
		<instance-data label="buffer_size" type="long"/>
		<instance-data label="sample_rate" type="long"/>
		<instance-data label="count" type="long"/>
		<instance-data label="max_law_p" type="int"/>
		<instance-data label="last_law_p" type="int"/>
		<instance-data label="delay_pos" type="int"/>
		<instance-data label="delay_line_length" type="int"/>
		<instance-data label="delay_line" type="LADSPA_Data *"/>
		<instance-data label="z0" type="LADSPA_Data"/>
		<instance-data label="z1" type="LADSPA_Data"/>
		<instance-data label="z2" type="LADSPA_Data"/>
		<instance-data label="prev_law_peak" type="float"/>
		<instance-data label="next_law_peak" type="float"/>
		<instance-data label="prev_law_pos" type="int"/>
		<instance-data label="next_law_pos" type="int"/>

	</plugin>
</ladspa>