1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/****************************************************************************
*
* NAME: smsPitchScale.cp
* VERSION: 1.01
* HOME URL: http://www.dspdimension.com
* KNOWN BUGS: none
*
* SYNOPSIS: Routine for doing pitch scaling while maintaining
* duration using the Short Time Fourier Transform.
*
* DESCRIPTION: The routine takes a pitchScale factor value which is between 0.5
* (one octave down) and 2. (one octave up). A value of exactly 1 does not change
* the pitch. numSampsToProcess tells the routine how many samples in indata[0...
* numSampsToProcess-1] should be pitch scaled and moved to outdata[0 ...
* numSampsToProcess-1]. The two buffers can be identical (ie. it can process the
* data in-place). fftFrameLength defines the FFT frame size used for the
* processing. Typical values are 1024, 2048 and 4096. It may be any value <=
* MAX_FFT_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
* oversampling factor which also determines the overlap between adjacent STFT
* frames. It should at least be 4 for moderate scaling ratios. A value of 32 is
* recommended for best quality. sampleRate takes the sample rate for the signal
* in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in
* indata[] should be in the range [-1.0, 1.0), which is also the output range
* for the data.
*
* COPYRIGHT 1999 Stephan M. Sprenger <sms@dspdimension.com>
*
* The Wide Open License (WOL)
*
* Permission to use, copy, modify, distribute and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice and this license appear in all source copies.
* THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF
* ANY KIND. See http://www.dspguru.com/wol.htm for more information.
*
*****************************************************************************/
#include <string.h>
#include "../config.h"
#include <math.h>
#include "pitchscale.h"
static float ps_in[MAX_FRAME_LENGTH*2], ps_out[MAX_FRAME_LENGTH*2];
static fft_plan aplan = NULL, splan = NULL;
void pitch_scale(sbuffers *buffers, const double pitchScale, const long
fftFrameLength, const long osamp, const long numSampsToProcess,
const double sampleRate, const float *indata, float *outdata,
const int adding, const float gain) {
/*
Routine smsPitchScale(). See top of file for explanation Purpose: doing
pitch scaling while maintaining duration using the Short Time Fourier
Transform. Author: (c)1999 Stephan M. Sprenger <sms@dspdimension.com>
*/
double magn, phase, tmp;
double freqPerBin, expct;
long i,k, qpd, index, inFifoLatency, stepSize,
fftFrameSize2;
double phaseArr[MAX_FRAME_LENGTH];
float ri[16];
float *gInFIFO = buffers->gInFIFO;
float *gOutFIFO = buffers->gOutFIFO;
float *gLastPhase = buffers->gLastPhase;
float *gSumPhase = buffers->gSumPhase;
float *gOutputAccum = buffers->gOutputAccum;
float *gAnaFreq = buffers->gAnaFreq;
float *gAnaMagn = buffers->gAnaMagn;
float *gSynFreq = buffers->gSynFreq;
float *gSynMagn = buffers->gSynMagn;
float *gWindow = buffers->gWindow;
long gRover = buffers->gRover;
if (aplan == NULL) {
int i;
for (i=0; i<fftFrameLength; i++) {
ps_in[i + fftFrameLength] = 0.0f;
}
#ifdef FFTW3
aplan = fftwf_plan_r2r_1d(fftFrameLength, ps_in, ps_out, FFTW_R2HC, FFTW_MEASURE);
splan = fftwf_plan_r2r_1d(fftFrameLength, ps_in, ps_out, FFTW_HC2R, FFTW_MEASURE);
#else
aplan = rfftw_create_plan(fftFrameLength, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE);
splan = rfftw_create_plan(fftFrameLength, FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE);
#endif
}
/* set up some handy variables */
fftFrameSize2 = fftFrameLength/2;
stepSize = fftFrameLength/osamp;
freqPerBin = sampleRate*2.0/(double)fftFrameLength;
expct = 2.0*M_PI*(double)stepSize/(double)fftFrameLength;
inFifoLatency = fftFrameLength-stepSize;
if (gRover == false) gRover = inFifoLatency;
/* main processing loop */
for (i = 0; i < numSampsToProcess; i++){
/* As long as we have not yet collected enough data just read in */
gInFIFO[gRover] = indata[i];
if (adding) {
outdata[i] += (gOutFIFO[gRover-inFifoLatency] * gain);
} else {
outdata[i] = gOutFIFO[gRover-inFifoLatency];
}
gRover++;
/* As long as we have not yet collected enough data just read in */
/* now we have enough data for processing */
if (gRover >= fftFrameLength) {
gRover = inFifoLatency;
/* do windowing and store */
for (k = 0; k < fftFrameLength; k++) {
ps_in[k] = gInFIFO[k] * gWindow[k];
}
/* As long as we have not yet collected enough data just read in */
/* ***************** ANALYSIS ******************* */
/* do transform */
#ifdef FFTW3
fftwf_execute(aplan);
#else
rfftw_one(aplan, ps_in, ps_out);
#endif
/* this is the analysis step */
/* Hard math first, we can 3dnow this */
for (k = 1; k <= fftFrameSize2; k+=8) {
float *mb = &gAnaMagn[k];
ri[0] = ps_out[k];
ri[2] = ps_out[k+1];
ri[4] = ps_out[k+2];
ri[6] = ps_out[k+3];
ri[8] = ps_out[k+4];
ri[10] = ps_out[k+5];
ri[12] = ps_out[k+6];
ri[14] = ps_out[k+7];
ri[1] = ps_out[fftFrameLength - k];
ri[3] = ps_out[fftFrameLength - (k + 1)];
ri[5] = ps_out[fftFrameLength - (k + 2)];
ri[7] = ps_out[fftFrameLength - (k + 3)];
ri[9] = ps_out[fftFrameLength - (k + 4)];
ri[11] = ps_out[fftFrameLength - (k + 5)];
ri[13] = ps_out[fftFrameLength - (k + 6)];
ri[15] = ps_out[fftFrameLength - (k + 7)];
/* compute magnitude and phase. */
#ifdef ACCEL_3DNOW
#warning Using processor specific 3DNow! accelerations
__asm__ __volatile__ (
" \n\
femms \n\
movq (%%eax), %%mm0 \n\
movq 8(%%eax), %%mm1 \n\
movq 16(%%eax), %%mm2 \n\
movq 24(%%eax), %%mm3 \n\
movq 32(%%eax), %%mm4 \n\
movq 40(%%eax), %%mm5 \n\
movq 48(%%eax), %%mm6 \n\
movq 56(%%eax), %%mm7 \n\
# do the squares and add \n\
pfmul %%mm0, %%mm0 \n\
pfacc %%mm0, %%mm0 \n\
pfmul %%mm1, %%mm1 \n\
pfacc %%mm1, %%mm1 \n\
pfmul %%mm2, %%mm2 \n\
pfacc %%mm2, %%mm2 \n\
pfmul %%mm3, %%mm3 \n\
pfacc %%mm3, %%mm3 \n\
pfmul %%mm4, %%mm4 \n\
pfacc %%mm4, %%mm4 \n\
pfmul %%mm5, %%mm5 \n\
pfacc %%mm5, %%mm5 \n\
pfmul %%mm6, %%mm6 \n\
pfacc %%mm6, %%mm6 \n\
pfmul %%mm7, %%mm7 \n\
pfacc %%mm7, %%mm7 \n\
# Recip square roots. \n\
pfrsqrt %%mm0, %%mm0 \n\
pfrsqrt %%mm1, %%mm1 \n\
pfrsqrt %%mm2, %%mm2 \n\
pfrsqrt %%mm3, %%mm3 \n\
pfrsqrt %%mm4, %%mm4 \n\
pfrsqrt %%mm5, %%mm5 \n\
pfrsqrt %%mm6, %%mm6 \n\
pfrsqrt %%mm7, %%mm7 \n\
pfrcp %%mm0, %%mm0 \n\
pfrcp %%mm1, %%mm1 \n\
pfrcp %%mm2, %%mm2 \n\
pfrcp %%mm3, %%mm3 \n\
pfrcp %%mm4, %%mm4 \n\
pfrcp %%mm5, %%mm5 \n\
pfrcp %%mm6, %%mm6 \n\
pfrcp %%mm7, %%mm7 \n\
# ship em out \n\
movd %%mm0, (%%edx) \n\
movd %%mm1, 4(%%edx) \n\
movd %%mm2, 8(%%edx) \n\
movd %%mm3, 12(%%edx) \n\
movd %%mm4, 16(%%edx) \n\
movd %%mm5, 20(%%edx) \n\
movd %%mm6, 24(%%edx) \n\
movd %%mm7, 28(%%edx) \n\
femms \n\
"
:
: "a" (ri), "d" (mb)
: "memory");
#else
mb[0] = sqrt(ri[0]*ri[0]+ ri[1]*ri[1]);
mb[1] = sqrt(ri[2]*ri[2] + ri[3]*ri[3]);
mb[2] = sqrt(ri[4]*ri[4] + ri[5]*ri[5]);
mb[3] = sqrt(ri[6]*ri[6] + ri[7]*ri[7]);
#endif
phaseArr[k] = atan2(ri[1], ri[0]);
phaseArr[k+1] = atan2(ri[3], ri[2]);
phaseArr[k+2] = atan2(ri[5], ri[4]);
phaseArr[k+3] = atan2(ri[7], ri[6]);
phaseArr[k+4] = atan2(ri[9], ri[8]);
phaseArr[k+5] = atan2(ri[11], ri[10]);
phaseArr[k+6] = atan2(ri[13], ri[12]);
phaseArr[k+7] = atan2(ri[15], ri[14]);
}
for (k = 1; k <= fftFrameSize2; k++) {
/* compute phase difference */
tmp = phaseArr[k] - gLastPhase[k];
gLastPhase[k] = phaseArr[k];
/* subtract expected phase difference */
tmp -= (double)k*expct;
/* map delta phase into +/- Pi interval */
qpd = tmp/M_PI;
if (qpd >= 0) qpd += qpd&1;
else qpd -= qpd&1;
tmp -= M_PI*(double)qpd;
/* get deviation from bin frequency from the +/- Pi interval */
tmp = osamp*tmp/(2.0f*M_PI);
/* compute the k-th partials' true frequency */
tmp = (double)k*freqPerBin + tmp*freqPerBin;
/* store magnitude and true frequency in analysis arrays */
gAnaFreq[k] = tmp;
}
/* ***************** PROCESSING ******************* */
/* this does the actual pitch scaling */
memset(gSynMagn, 0, fftFrameLength*sizeof(float));
memset(gSynFreq, 0, fftFrameLength*sizeof(float));
for (k = 0; k <= fftFrameSize2; k++) {
index = k/pitchScale;
if (index <= fftFrameSize2) {
/* new bin overrides existing if magnitude is higher */
if (gAnaMagn[index] > gSynMagn[k]) {
gSynMagn[k] = gAnaMagn[index];
gSynFreq[k] = gAnaFreq[index] * pitchScale;
}
/* fill empty bins with nearest neighbour */
if ((gSynFreq[k] == 0.) && (k > 0)) {
gSynFreq[k] = gSynFreq[k-1];
gSynMagn[k] = gSynMagn[k-1];
}
}
}
/* ***************** SYNTHESIS ******************* */
/* this is the synthesis step */
for (k = 1; k <= fftFrameSize2; k++) {
/* get magnitude and true frequency from synthesis arrays */
magn = gSynMagn[k];
tmp = gSynFreq[k];
/* subtract bin mid frequency */
tmp -= (double)k*freqPerBin;
/* get bin deviation from freq deviation */
tmp /= freqPerBin;
/* take osamp into account */
tmp = 2.*M_PI*tmp/osamp;
/* add the overlap phase advance back in */
tmp += (double)k*expct;
/* accumulate delta phase to get bin phase */
gSumPhase[k] += tmp;
phase = gSumPhase[k];
ps_in[k] = magn*cosf(phase);
ps_in[fftFrameLength - k] = magn*sinf(phase);
}
/* do inverse transform */
#ifdef FFTW3
fftwf_execute(splan);
#else
rfftw_one(splan, ps_in, ps_out);
#endif
/* do windowing and add to output accumulator */
for(k=0; k < fftFrameLength; k++) {
gOutputAccum[k] += 2.0f*gWindow[k]*ps_out[k]/(fftFrameSize2*osamp);
}
for (k = 0; k < stepSize; k++) gOutFIFO[k] = gOutputAccum[k];
/* shift accumulator */
memmove(gOutputAccum, gOutputAccum+stepSize, fftFrameLength*sizeof(float));
/* move input FIFO */
for (k = 0; k < inFifoLatency; k++) gInFIFO[k] = gInFIFO[k+stepSize];
}
}
buffers->gRover = gRover;
}
|