1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
|
\section{Introduction}
\newcommand{\glb}[1]{{\bf #1}\index{#1}}
XPCE has been developed as a GUI environment that can easily be
connected to an arbitrary application language. Currently, XPCE is
targeted first of all to Prolog. The C++ interface described in this
document has been added to allow XPCE users using C++ for defining new,
high-performance, XPCE classes, or XPCE encapsulation of (OS) features
accessible from C/C++.
XPCE is a dynamically typed object-oriented system. (Graphical) objects
may be manipulated using the generic operations \cfunc{new}{} to create an XPCE
instance of an XPCE class, \cfunc{send}{} to invoke a `procedure' method on an
instance, \cfunc{get}{} for a `function' method and \cfunc{free}{} to destroy an object.
The interface between XPCE and an application language is responsible
for:
\begin{itemize}
\item Conversion of application-language data to XPCE data
\item Conversion of XPCE data to application-language data
\item Calling the XPCE generic operations
\item Allowing XPCE to call functionality in the application-language
\end{itemize}
XPCE has been successfully connected to various Prolog and Lisp systems.
These systems are also symbolically typed and the runtime environment
can map predicate/function-names onto the implementation (i.e. the
runtime environment can call a predicate/function given the name and
arguments).
The C++ language has neither of these features: if a function is
defined as untyped, there is no general way to find the type of the
actual arguments at runtime. Also (within the language), C++ can't
map the \strong{name} of a function onto the address of the function.
The C++ \strong{compiler} however can reason about types and the
language allows for the definition of new types as well as the
conversion between types. The interface described in this document
exploits these features to define an interface that is equally
robust and practical to use as the Prolog and Lisp interfaces.%
\footnote{We also considered a C-interface. The C language both
lacks runtime and compile-time type-detection. As a
consequence the user has to specify the appropriate type
conversions explicitly. This process is
considered too error-prone.}
\section{Motivation}
Below are a number of issues to motivate an interface to C++:
\begin{itemlist}
\item [XPCE may be used as a graphical library for C++]
XPCE provides high-level support for dialog windows, but also for
interactive graphics, text and Unix process interaction. In this
respect XPCE is an alternative for other C++ connected (GUI) libraries
with its own strong and weak points.
The learning-curve for GIU libraries is generally long due to the
large number of functions and options provided by such libraries. If
XPCE can be connected to the language the application-programmer
prefers for a particular application, s/he does not have to learn a
new GUI library.
\item [XPCE may be used as `glue' in a multi-language application]
XPCE can not only be connected to various different languages, it can
also be connected to various programming environments at the same time.
Each of the programming environments can call XPCE behaviour without
considering the language in which the behaviour is realised. For
example, C++ can activate an XPCE class defined in Prolog and visa
versa.
Time-critical and stable parts of the application may be modelled as
C++ defined XPCE classes, while the overall control of the application
may be defined in Prolog or Lisp.
\item [C++ may be used to implement efficient XPCE classes]
When communicating with Prolog or Lisp, a considerable amount of time
is lost in data-transformations and control-transfer between XPCE and
the Prolog or Lisp environment. With C++ this transformation is not
necessary, making C++ the ideal language for defining performance
critical XPCE classes.
\item [Making other packages available to XPCE]
Many systems and libraries provide an interface to C and/or C++.
XPCE's C++ interface may be used as an efficient intermediate
between XPCE and such an (operating-) system or library.
\end{itemlist}
\section{Capabilities of the interface}
The interface between XPCE and C++ is fully transparent. It allows
C++ code to create and manipulate XPCE objects. C++ functions can
be called from XPCE code objects so that the message of a button object
can call a C++ function {\bf and} pass arguments to this function.
Although, in principle, this interface suffices for defining XPCE
classes in C++, a more friendly and efficient mechanism is provided for
this.
The interface is built around the C++ class \cclass{PceArg}. An instance
of this class represents an anonymous XPCE object. Class \cclass{PceArg}
defines member functions that allow the C++ programmer to activate PCE
methods on the object. Class PceArg also defines the type-conversion
between raw C data-types and XPCE's dynamically typed data objects.
\section{Argument-type conversion}
\subsection{C to XPCE}
The C++ class \cclass{PceArg} defines constructors for translating raw C
data-types into dynamically-typed XPCE data objects. The mapping
defined by these constructors is given in \tabref{c2pce}.
\begin{table}
\begin{center}
\begin{tabular}{|l|l|}
\hline
\bf C & \bf XPCE \\
\hline
char, short, int, long & int \\
char * & name object \\
float, double & real object \\
\hline
\end{tabular}
\end{center}
\caption{Conversion of C data into XPCE data objects}
\label{tab:c2pce}
\end{table}
\subsection{XPCE to C}
The C++ class \cclass{PceArg} defines cast operators to convert
dynamically typed XPCE data objects into primitive C objects. These cast
operators define the mapping given in \tabref{pce2c}. If the requested
type is \type{char *}, the value should be copied unless the converted
object is \strong{known} to be an XPCE name object.
\begin{table}
\begin{center}
\begin{tabular}{|l|l|p{3in}|}
\hline
\bf requested C-type & \bf XPCE & Remarks\\
\hline
int & int, number & PCE int only has 30 bits \\
int & real & rounded value \\
int & char_array & value if convertible \\
float, double & real & real is a float \\
float, double & int, number & converted value \\
float, double & char_array & value if convertible \\
char * & name & pointer to const char * \\
char * & string & pointer is valid as long as
string lives \\
char * & int, number & '\%d' formatted value in static
area \\
char * & real & '\%g' formatted value in static
area \\
\hline
\end{tabular}
\end{center}
\caption{Conversion of XPCE data objects to C}
\label{tab:pce2c}
\end{table}
C++ interface functions that pass control to XPCE generally accept
arguments of the type \cclass{PceArg}. The C++ type-conversion mechanism
ensures that the C-primitive types are passed correctly to XPCE. The
user should provide additional cast operators for application-types.
Examples of using type-conversions are given in the subsequent sections.
\subsection{Pointers}
C-Pointers may be represented using the XPCE class \class{c_pointer}.
On various occasions, C++ applications will have to store pointers
to C++ data in XPCE, for example to pass the value of \const{this}
to a \cclass{PceCall}. See \secref{cppmethod}. The interface defines
\cclass{PcePointer} in \file{<pce/Pointer.h>}. \cclass{PcePointer} is
a derived class from \cclass{PceArg}. The value of a \cclass{PceArg}
that represents a pointer is extracted using \cfunc{PceArg::pointer}{}.
\begin{description}
\cfunction{}{PcePointer::PcePointer}{void *ptr}
Encapsulate a C/C++ pointer into an XPCE \class{c_pointer} object and
return a reference to the latter.
\cfunction{void *}{PceArg::pointer}{}
If the argument contains a \class{c_pointer} object, return the value
of the pointer. Otherwise return \const{NULL}.
\end{description}
\section{Invoking XPCE methods}
Besides type-conversion, the C++ class \cclass{PceArg} defines the
generic XPCE operations \cfunc{send}{}, \cfunc{get}{} and \cfunc{free}{}
as member functions. The PCE \cfunc{send}{} and \cfunc{get}{} operations
take a list of arguments. Up to 10 arguments may be specified using
overloaded versions of the member functions \cfunc{send}{} and
\cfunc{get}{} as defines on class \cclass{PceArg}. More arguments may be
specified using \cfunc{sendv}{} and \cfunc{getv}{} that accept an array
of arguments.
The following examples show how the x-coordinate of the \cclass{PceArg}
object `point' is changed and how the selection of a text-item
is changed:
\begin{code}
PceArg point, text_item;
...
point.send("x", 10);
text_item.send("selection", "gnat");
...
\end{code}
The member function \cfunc{PceArg::send}{} takes arguments of the type
\cclass{PceArg}. The first argument of \cfunc{send}{} is interpreted as the
selector, while the remaining arguments are interpreted as the arguments
to the send-operation. The argument \verb$10$ is converted into an XPCE
\type{int} datum, while the \verb$"gnat"$ argument is converted into an
XPCE name object.
\index{PceStatus}\index{enum}\index{status information}%
The member function \cfunc{PceArg::send}{} returns a value of the
\jargon{enum} type \type{PceStatus}:
\begin{code}
enum PceStatus { FAIL = 0, SUCCEED = 1 };
\end{code}
The member function \cfunc{PceArg::get}{} invokes the XPCE generic
operation \cfunc{get}{}. The return value is made available as a
\cclass{PceArg} again. The global object \glb{TheDisplay} refers to what
is called @display for the Prolog and Lisp interfaces. The following
code fragment identifies XPCE:
\begin{code}
void
identifyPce()
{ TheDisplay.send("inform", "I am XPCE version %s",
ThePce.get("version"));
}
\end{code}
Finally, the member function \cfunc{PceArg::free}{} invokes the
generic XPCE operation \cfunc{free}{} to discard of the XPCE object. It is
equivalent to \exam{obj.send("free")}, except the \cfunc{free}{} may be
used on objects that are already freed.
\begin{description}
\cfunction{PceStatus}{PceArg::send}{PceArg selector, ..., PceArg argN, ...}
Invoke an XPCE send operation. The first argument is used as the
selector, and the remaining arguments are used as arguments to the
method. Using the conversion of \type{char *} to \cclass{PceArg}, the
selector can be written as, for example, \verb$"append"$. If performance
is critical, it is better to store the converted value in a global C++
object:
\begin{code}
static PceArg PcNappend("append");
...,
gnat.send(PcNappend, ...)
...,
\end{code}
The \program{PceEmacs} C++ mode contains commands to gather and replace
all selectors in a file.
\cfunction{PceArg}{PceArg::get}{PceArg selector, ..., PceArg argN, ...}
Similar to \cfunc{PceArg::send}{}, but implements the XPCE get
operation. As the result is a \cclass{PceArg} as well, multiple get
operations may be concatenated:
\begin{code}
{ int screenwidth = TheDisplay.get("size").get("width");
...,
\end{code}
\cfunction{PceStatus}{PceArg::free}{}
Invokes ->free on the receiver if the object exists. Succeeds if the
object is not protected by `object ->protected'. Succeeds silently if
the receiver is no object (i.e.\ an integer), or has already been freed.
\end{description}
\section{Creating objects}
The C++ interface defines derived classes of class \cclass{PceArg} with
different constructors for creating XPCE objects. The most generic
of this is the C++ class \cclass{PceObject}. The first argument (of
type \cclass{PceArg}) defines the name of the XPCE class from which
an instance is to be created. The remaining argument define the
arguments given to the XPCE ->initialise method. The following
fragment defines a dialog windows saying hello to the world:
\index{hello world}
\begin{code}
void
hello()
{ PceObject d("dialog"); // Create an instance of dialog
d.send("append", PceObject("label", "message", "Hello World"));
d.send("open");
}
\end{code}
\index{header files,for classes}
Although the expression \exam{PceObject("<classname>", ...} may be used
to create objects, there are C++ header files for each of the built-in
XPCE classes that define a derived class Pce<CapitalisePceClassName>.
These classes define constructors for all possible arities ($< 10$) of
the class' initialisation method. For example PcePoint (representing an
XPCE point object) defines constructors with 0, 1, and 2 arguments as
`point ->initialise' accepts two optional arguments.
Below is a rewritten version of the hello world program that also
allows the user to delete the window.
\begin{code}
#include <pce/Pce.h>
#include <pce/Label.h>
#include <pce/Button.h>
#include <pce/Message.h>
#include <pce/String.h>
void
hello2()
{ PceDialog d; // Create an instance of dialog
d.send("append", PceLabel("message", PceString("Hello World")));
d.send("append", PceButton("quit", PceMessage(d, "destroy")));
d.send("open");
}
\end{code}
Some XPCE classes have names that cannot be represented as C++
symbols. \Tabref{cppclassnames} defines these names.
\begin{table}
\begin{center}
\begin{tabular}{|l|l|l|}
\hline
\bf XPCE name & \bf C++ Name & \bf Summary \\
\hline
\verb$*$ & PceTimes & Multiplication expression \\
\verb$-$ & PceMinus & Subtraction expression \\
\verb$+$ & PcePlus & Addition expression \\
\verb$/$ & PceDivide & Division expression \\
\verb$:=$ & PceBinding & Name-value pair for argument-list \\
\verb$<$ & PceLess & Compare expressions on less-then \\
\verb$=$ & PceEquation & Identity between two expressions \\
\verb$=<$ & PceLessEqual & Compare expressions on less-or-equal \\
\verb$==$ & PceEqual & Test equivalence of arguments \\
\verb$>$ & PceGreater & Test arithmetic $>$ \\
\verb$>=$ & PceGreaterEqual & Compare expressions on greater-or-equal \\
\verb$?$ & PceObtain & Invoke a get method \\
\verb$\==$ & PceNonEqual & Test non-equivalence of arguments \\
\hline
\end{tabular}
\end{center}
\caption{C++ classnames for XPCE classes with a `symbol' name}
\label{tab:cppclassnames}
\end{table}
\subsection{Global (named) objects}
\index{global objects}%
The C++ derived class \cclass{PceGlobal} allows access to existing named
PCE objects (@display, @arg1, etc.) and allows for the definition of
new named objects. The constructor arguments are:
\begin{code}
PceGlobal::PceGlobal(PceArg name, [PceArg class, PceArg arg1 ...])
\end{code}
Some commonly used global objects are bound to globally defined
instances of the C++ class \cclass{PceGlobal}. They are listed in
\tabref{globals}.
\begin{table}
\begin{center}
\begin{tabular}{|l|l|l|}
\hline
\bf Prolog/lisp name & C++ name & Remarks\\
\hline
@display & \glb{TheDisplay} & Represents the X-display \\
@pce & \glb{ThePce} & Represents the environment \\
@nil & \glb{TheNil} & Nil, nothing \\
@default & \glb{TheDefault} & Default value \\
@on & \glb{TheOn} & Boolean true \\
@off & \glb{TheOff} & Boolean false \\
@receiver & \glb{TheReceiver} & Receiver of event/method \\
@event & \glb{TheEvent} & Current event \\
@arg1 ... @arg10 & \glb{TheArg1} \ldots \glb{TheArg10} & Forwarded arguments \\
\hline
\end{tabular}
\end{center}
\caption{Global instances of PceGlobal}
\label{tab:globals}
\end{table}
\section{Callback to a C++ function}
In the sections above, we have discussed how the C++ class
\cclass{PceArg} and its derived classes are used to create an access
objects in the XPCE world from C++. This section describes how a C++
function can be called from XPCE.
\index{call-back (C++)}%
The C++ class \cclass{PceCall} is a derived class of \cclass{PceArg}. It
creates an XPCE code object that, when executed, calls a C++ function.
\cclass{PceCall} `encapsulates' the C++ function in an object that may
be activated from XPCE. The following example illustrates this:
\begin{code}
#include <pce/Pce.h>
#include <pce/Dialog.h>
#include <pce/TextItem.h>
PceStatus
showInstances(PceArg cl)
{ PceArg c;
if ( (c = ThePce.get("convert", cl, "class")) )
{ TheDisplay.send("inform", "Class %s has %d instances",
c.get("name"), c.get("no_created") -
c.get("no_freed"));
}
return SUCCEED;
}
PceStatus
pceInitApplication(int argc, char *argv[])
{ PceDialog d("Show #Instances");
d.send("append", PceTextItem("class", "",
PceCall(showInstances, TheArg1)));
return d.send("open");
}
\end{code}
The C++ class \cclass{PceFuncall} is similar to \cclass{PceCall}, but the
return value of the C++ function is a \cclass{PceArg}. The resulting code
object is an XPCE function object. Such an object may be used from
another language (e.g.\ Prolog) or as part of other code objects for,
for example, a button. The following example defines @getenv as
a function to fetch a Unix environment variable.
\label{getenv}
\begin{code}
#include <pce/Pce.h>
#include <stdlib.h>
PceArg
PceGetenv(PceArg name)
{ char *s = getenv(name);
if ( s )
return s;
else
return FAIL;
}
PceStatus
pceInitApplication(int argc, char *argv[])
{ PceFuncall f(PceGetenv, TheArg1);
f.send("_name_reference", "getenv"); // name the object @getenv
return SUCCEED;
}
\end{code}
The fragment below shows how this code is made available to
Prolog:
\begin{code}
1 ?- pce_load_cxx(getenv).
2 ?- get(@getenv, '_forward', 'USER', X).
X = jan
\end{code}
\subsection{Callback to a C++ member function} \label{sec:cppmethod}
If an application is written using C++ classes and member functions and
one wishes to add XPCE behaviour to this class, it would be desirable
to pass \const{this} and a pointer to a C++ member function to XPCE
for later callback.
Such as system has been implemented in version 0.1 of this interface.
This implementation relied on undefined implementation features of
\program{g++}, where a C++ member function is basically a C function,
where the first argument is a pointer to \const{this}. In \program{g++},
a pointer to a member function can be taken and casted to other types.
This implementation is not portable, and cannot even be guaranteed for
future versions of \program{g++}, which is why we decided to drop the
support for calling C++ member functions directly from XPCE.
If calling a member function cannot be avoided, use \cclass{PceCall()}
to call a wrapper C++ function that calls the specific member function.
The example \file{person.cxx} exploits this technique, which is
summarised in the example below. \cclass{PcePointer} is used to
pack the \const{this} pointer into an XPCE object of class
\class{c_pointer}. \cfunc{PceArg::pointer}{} is used to extract the
pointer value.
\begin{code}
class person
{
char *name;
public:
setname(char *n) { name = n; }
char *getname() { return name; }
void edit();
};
// The XPCE/C++ wrapper
PceStatus
setNamePerson(PceArg person, PceArg name)
{ (class person *)p = (class person *)person.pointer();
p->setname(name);
return SUCCEED;
}
// And the simple edit control
person::edit()
{ TextItem ti("name", name,
PceCall(setNamePerson, PcePointer(this), TheArg1));
ti.send("open");
}
\end{code}
\section{Defining an XPCE class in C++}
The previous sections illustrate how the XPCE library may be used from
a C++ application. Although C++ functionality can be made available to
users of other languages using \cclass{PceCall} and friends, this is often
not the desirable way (c.f.\ the clumsy way to define and call the
@getenv function on page~\pageref{getenv}).
A more natural way to make C++ functionality available to users of other
languages is by defining a XPCE class from C++. The definition of a
XPCE class consists of C++ functions implementing the XPCE methods, a
C++ function to build the XPCE class object and finally a call to XPCE
to let XPCE know the class can be built by calling this function.
\subsection{An XPCE-method function}
A C++ function that implements a method of an XPCE class returns a
\type{PceStatus} for a send-method and an \cclass{PceArg} for a
get-method. The first argument is an instance of the C++ class
\cclass{PceReceiver}, a subclass of \cclass{PceArg}. All remaining
arguments are instances of \cclass{PceArg}. \cclass{PceReceiver} defines
member-functions for fast access to instance-variables:
\begin{description}
\cfunction{PceArg}{PceReceiver::fetch}{PceVariable var}
Fetches the value of the indicated instance-variable. \arg{var} is
normally stored in a global variable which is initialised by
\cfunc{PceClass::defvar}{}. This function realises `object <-slot'.
\cfunction{PceStatus}{PceReceiver::store}{PceReceiver var, PceArg value}
Stores the value of an instance variable. If this function fails, it
indicates that \arg{value} could not be converted to the type of the
instance variable. This function realised `object ->slot'.
\cfunction{PceStatus}{PceReceiver::sendSuper}{PceArg ...}
Invokes a method using the definition of the super-class of the class on
which the currently invoked method is defined. See `object ->send_super'.
\cfunction{PceArg}{PceReceiver::getSuper}{PceArg ...}
As \cfunc{PceReceiver::sendSuper}{}, but for get-methods. See
`object <-get_super'.
\end{description}
The example below is a typical example, combining various of the
above features:
\begin{code}
PceStatus
initialiseApp(PceReceiver a, PceArg client)
{ a.sendSuper("initialise", "I am a toplevel window");
a.store(VarClient, client);
a.send("append", PceDialog());
return TRUE;
}
\end{code}
\subsection{Declaring the XPCE class}
The C++ class \cclass{PceClass} is a derivate of \cclass{PceArg} for defining
new XPCE classes. It defines the following member-functions:
\begin{description}
\cfunction{PceVariable*}{PceClass::defvar}{name, group, summary, type,
access, initial)}
All arguments are of the type \cclass{PceArg}. See XPCE manual on class
variable and `class ->instance_variable' for details.
\cfunction{PceStatus}{PceClass::defsendmethod}{name, group, summary,
function, type ...)}
All arguments are of the type \cclass{PceArg}. function is a pointer to a
function that returns a \type{PceStatus}, which first argument is a \cclass{PceReceiver} and which has the same number of \cclass{PceArg} arguments as
there are `types' provided (maximum 10).
\cfunction{PceStatus}{PceClass::defgetmethod}{name, group, summary,
rtype, function, type ...)}
Similar to \cfunc{PceClass::defsendmethod}{}. The argument \arg{rtype} is a
type defining the return-type. The return-type of the C++ function is
\cclass{PceArg}.
\end{description}
Class \cclass{PceClass} defines two constructors: with a single argument
it looks up an existing class object of the specified name. With 4
arguments it declares a C++ definition of a class. The arguments are:
name of the class, name of the super-class, summary description and
pointer to a function to build the class. This function returns
\cclass{PceArg} and takes an (virgin) \cclass{PceClass} as argument. See
the example below.
\subsection{Example: Binary Tree}
The example below exploits all the mechanisms described above to define
an XPCE class \class{b_node}: a node in a binary tree.
\begin{code}
#include <pce/Pce.h>
// References to XPCE instance variables of the class.
static PceVariable *bnode_left;
static PceVariable *bnode_right;
static PceVariable *bnode_key;
static PceVariable *bnode_value;
// Method to initialise the instance (like a C++ constructor)
static PceStatus
initialiseBNode(PceReceiver n, PceArg key, PceArg value)
{ n.store(bnode_key, key);
n.store(bnode_value, value);
return SUCCEED;
}
// Send method to insert a new key/value pair into the tree
PceStatus
insertBNode(PceReceiver n, PceArg key, PceArg value)
{ int c = strcmp(n.fetch(bnode_key), key);
if ( c == 0 ) /* replace value */
return n.store(bnode_value, value);
PceArg n2 = n.fetch(c > 0 ? bnode_right : bnode_left);
if ( n2 != TheNil )
return insertBNode(n2, key, value);
return n.store(c > 0 ? bnode_right : bnode_left,
PceObject("b_node", key, value));
}
// Method to find a node from a key.
PceArg
getNodeBNode(PceReceiver n, PceArg key)
{ int c = strcmp(n.fetch(bnode_key), key);
if ( c == 0 )
return n;
PceArg n2 = n.fetch(c > 0 ? bnode_right : bnode_left);
if ( n2 != TheNil )
return getNodeBNode(n2, key);
return FAIL;
}
// C++ function to build the XPCE class definition
PceStatus
makeClassBNode(PceClass cl)
{ bnode_left =
cl.defvar("left", "tree", "Node to my left",
"b_node*", "get", TheNil);
bnode_right =
cl.defvar("right", "tree", "Node to my right",
"b_node*", "get", TheNil);
bnode_key =
cl.defvar("key", "table", "Key-name of the node",
"name", "get", TheNil);
bnode_value =
cl.defvar("value", "table", "Value of the node",
"any", "get", TheNil);
cl.defsendmethod("initialise", "oms", "Create from key and value",
initialiseBNode, "key=name", "value=any");
cl.defsendmethod("insert", "edit", "Add entry to the table",
insertBNode, "key=name", "value=any");
cl.defgetmethod("node", "lookup", "Lookup node from key",
"b_node", getNodeBNode, "key=name");
return SUCCEED;
}
// let a C++ global constructor declare the class
PceClass ClassBNode("b_node", "object", "Node of a binary tree",
makeClassBNode);
\end{code}
\section{Lifetime of C++ objects and XPCE objects}
All C++ classes involved in defining the interface define a single
member: the \type{void *} `self'. They represent no more than a
\strong{reference} to the XPCE object. Creation of a C++ \cclass{PceArg}
instance does not automatically imply creation of an XPCE object and
deleting the \cclass{PceArg} object has no consequences for the XPCE
object.
Using constructors and destructors of PceArg objects can possibly
be used to help the incremental garbage collector of XPCE. This is
still subject of study.
\section{Linking C++ code to XPCE}
\subsection{Incremental linking to Prolog}
To link an piece of C-code to XPCE/Prolog, the XPCE/C++ is best compiled
into a \idx{shared object} (Unix) or a \idx{Dynamic Load Library} (Windows),
which can then be loaded into the running XPCE/Prolog system using
Prolog's primitives for loading such files. Normally, no function needs
to be called in the library.
The required system features are supported in Unix systems using the
\idx{ELF} binary format (\idx{Solaris 2.x}, \idx{Irix 5.x}, \idx{Linux})
and Win32 (Windows 95/NT). Except for platform specific problems, the
following sequence should suffice for creating a compliant \fileext{so}
file from an XPCE C++ class using \program{g++}.
\begin{code}
% g++ -c -fpic -I$PCEHOME/include myfile.C
% g++ -o myfile.so -shared myfile.o
\end{code}
On Windows systems, the C++ files must be compiled and linked with
the import library \file{xpce.lib} to a \fileext{DLL} file. The
Windows binary is compiled with \program{MSVC 4.2}.
On modern operating systems, C++ global constructors will automatically
be executed when the shared object is loaded into the running
application.
The XPCE/Prolog library \pllib{pce_loadcxx} defines the predicate
pce_load_cxx/1 to load a shared object or DLL file:
\begin{description}
\predicate{pce_load_cxx}{1}{+FileSpec}
Load the shared object holding an XPCE class. This predicate is
provided for both SWI-Prolog and Quintus Prolog. XPCE/C++ code
can also be part of normally Prolog foreign files and be loaded
using the Prolog native foreign file loading predicates.
The following is a typical example of the header of a Prolog file
using a C++ defined XPCE class.
\begin{code}
:- module(mymodule, []).
:- use_module(library(pce)).
:- require([ pce_load_cxx/1
]).
:- initialization
pce_load_cxx(foreign(mycxxcode)).
...
\end{code}
\end{description}
\subsection{C++ stand-alone applications}
Programs can be linked to a C++/XPCE stand-alone application by linking
the \fileext{o} files to the \clib{XPCEmain} and \clib{XPCE} libraries.
The \clib{XPCEmain} library contains a stub \cfunc{main}{} function that
initialises XPCE, and calls \cfunc{pceInitialiseApplication}{int argc,
char *argv[]}, passing the main arguments \arg{argc} and \arg{argv}.
Finally it enters a loop waiting for user-events and dispatching them.
This loop terminates if there are no more toplevel \class{frame} objects
on the current display. The application can be terminated explicitly by
invoking `@pce ->die', or calling \cfunc{exit}{}. Below is the (Unix)
sourcecode of \file{main.cxx}, the only member of \clib{XPCEmain}. This
file is available as \file{<pcehome>/src/itf/pcemain.cxx}
\begin{code}
#include <pce/Pce.h>
#include <pce/Chain.h>
static PceArg PcNframes("frames");
static PceArg PcNkind("kind");
static PceArg PcNtoplevel("toplevel");
extern "C" {
int pceInitialise(int handles, char *home, int argc, char **argv);
int pceDispatch(int fd, int timeout);
void Cprintf(const char *fmt, ...);
}
int
main(int argc, char* argv[])
{ int frames = TRUE;
if ( !pceInitialise(0, (char *)0, argc, argv) )
{ Cprintf("Sorry, failed to initialise XPCE\n");
exit(1);
}
if ( !pceInitApplication(argc, argv) )
{ Cprintf("Failed to run pceInitApplication()\n");
exit(1);
}
while(frames)
{ PceCell cell;
pceDispatch(0, 1000);
for(frames = FALSE, cell = AsChain(TheDisplay.get(PcNframes)).head();
cell;
++cell)
{ if ( cell.value().get(PcNkind) == PcNtoplevel )
{ frames = TRUE;
break;
}
}
}
exit(0);
}
\end{code}
An XPCE/C++ stand-alone executable needs to be able to find the XPCE
home directory for the system-required bitmaps, the resources and the
PostScript header file. The path to the home directory is provided
as second argument to \cfunc{pceInitialise}{}, or read from the
environment variable \env{PCEHOME}.
\subsubsection{Stand-alone applications in Win32}
The above also works on Windows platforms. \file{main.cxx} contains a
definition for \cfunc{WinMain}{} that parses the commandline arguments
and calls \cfunc{main}{} as described above. If the stand-alone Windows
applications wants to write or read to/from standard I/O, the system
will automatically allocate a console using Windows
\cfunc{AllocConsole}{} API.
\section{Goodies}
This section defines some member functions and types for speeding
up some operations and/or providing shorthands.
\subsection{Arithmetic on class PceArg}
Class \cclass{PceArg} defines integer arithmetic by overloading the
operators +, -, *, /, ++, --, +=, -=, *= and /=. These functions yield
an error if one of the operands cannot be translated into an integer.
The following example defines an XPCE callable function that draws an
array of boxes.
\begin{code}
#include <pce/Pce.h>
#include <pce/Box.h>
#include <pce/Point.h>
#include <pce/Picture.h>
PceStatus
drawBoxes(PceArg dev, PceArg x, PceArg y, PceArg w, PceArg h, PceArg n)
{ while(n-- > 0)
{ dev.send("display", PceBox(w, h), PcePoint(x, y));
x += w;
}
return SUCCEED;
}
PceStatus
pceInitApplication(int argc, char *argv[])
{ PcePicture p;
drawBoxes(p, 10, 10, 20, 50, 20);
p.send("open");
return SUCCEED;
}
\end{code}
\subsection{Enumerating cells of a PCE chain}
The following functions allow for enumerating the elements of a list
similiar to `chain ->for_all' and friends.
\begin{description}
\cfunction{PceCell}{PceChain::head}{}
Returns a reference to the first cell of the chain. The C++ class
\cclass{PceCell} is \strong{no} derivate of \cclass{PceArg}.
\cfunction{PceArg}{PceCell::value}{}
Returns the value of the cell.
\cfunction{PceArg}{PceCell::operator ++}{}
Prefix \verb$++$. Modifies the \cclass{PceCell} object to point to
the next cell in the XPCE chain.
\cfunction{PceArg}{PceCell::operator ++}{int}
Postfix \verb$++$. Modifies the \cclass{PceCell} object to point
to the next cell in the XPCE chain, returns a new \cclass{PceCell}
object pointing to the old cell. Use \exam{++cell} if you can.
\end{description}
The following example lists the (sub-) directories and files in the
argument directories. It uses the XPCE `chain->for_all' for the
directories, and C++ Cell methods for the files.
\begin{code}
#include <stdlib.h>
#include <pce/Pce.h>
#include <pce/Chain.h>
#include <pce/Directory.h>
#include <pce/Message.h>
#include <iostream.h>
PceStatus
pceInitApplication(int argc, char *argv[])
{ int i;
for(i=1; i < argc; i++)
{ PceDirectory d(argv[i]);
PceChain dirs = AsChain(d.get("directories"));
cout << "sub directories of " << argv[i] << endl;
dirs.send("for_all", PceMessage(ThePce, "write_ln", TheArg1));
PceChain files = AsChain(d.get("files"));
cout << "files in " << argv[i] << endl;
PceCell cell;
for( cell = files.head(); cell; )
cout << (char *)(++cell).value() << endl;
}
ThePce.send("die");
}
\end{code}
While \cclass{PceCell} references contain valid references to cells
of XPCE chains, the contents of the chain may \strong{not} be manipulated.
\subsection{Debugging (pretty print)}
\index{pretty printing}
\begin{description}
\cfunction{char *}{PceArg::pp}{}
The member function \cfunc{PceArg::pp}{} returns a description of the
argument in the same style as the the XPCE debugger. The storage is
provided by a ring of 16 buffers. This implies that upto 16 arguments
may use \cfunc{pp}{} without overwriting each others output. If
information has to be kept it must be copied.
\end{description}
\section{Status}
The status of the XPCE/C++ interface should be regarded alpha. The
basic concept will probably not change, neither will the mechanisms
for creating objects, sending messages, etc. Various things are
not yet provided for:
\begin{itemize}
\tick{Incremental garbage collector interface}
This can probably be integrated into the constructors and destructors
of the various C++ classes. As omitting this just leaves garbage around
for a little too long there is no reason to hurry.
\tick{More `goodies'}
It may prove useful to define more `goodies', both to provide shorthands
for commonly used operations and to provide low-level fast access to
the XPCE virtual machinery.
\end{itemize}
|