1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482
|
University of Amsterdam
Dept. of Social
Science Informatics
(SWI)
Roeterstraat 15, 1018
WB Amsterdam
The Netherlands
Tel. (+31) 20 5256121
SSWWII--PPrroolloogg 55..00
RReeffeerreennccee MMaannuuaall
_U_p_d_a_t_e_d _f_o_r _v_e_r_s_i_o_n _5_._0_._0_, _F_e_b_r_u_a_r_y _2_0_0_2
_J_a_n _W_i_e_l_e_m_a_k_e_r
jan@swi.psy.uva.nl http://www.swi.psy.uva.nl/projects/SWI-Prolog/
SWI-Prolog is a Prolog implementation based on a subset of
the WAM (Warren Abstract Machine). SWI-Prolog was developed
as an _o_p_e_n Prolog environment, providing a powerful and
bi-directional interface to C in an era this was unknown
to other Prolog implementations. This environment is
required to deal with XPCE, an object-oriented GUI system
developed at SWI. XPCE is used at SWI for the development of
knowledge-intensive graphical applications.
As SWI-Prolog became more popular, a large user-community
provided requirements that guided its development. Compat-
ibility, portability, scalability, stability and providing
a powerful development environment have been the most
important requirements. Edinburgh, Quintus, SICStus and
the ISO-standard guide the development of the SWI-Prolog
primitives.
This document gives an overview of the features, system limits
and built-in predicates.
Copyright Oc 1990--2002, University of Amsterdam
CChhaapptteerr 11.. IINNTTRROODDUUCCTTIIOONN
11..11 SSWWII--PPrroolloogg
SWI-Prolog has been designed and implemented to get a Prolog
implementation which can be used for experiments with logic programming
and the relation to other programming paradigms. The intention
was to build a Prolog environment which offers enough power and
flexibility to write substantial applications, but is straightforward
enough to be modified for experiments with debugging, optimisation or
the introduction of non-standard data types. Performance optimisation
is limited due to the main objectives: portability (SWI-Prolog is
entirely written in C and Prolog) and modifiability.
SWI-Prolog is based on a very restricted form of the WAM (Warren
Abstract Machine) described in [Bowen & Byrd, 1983] which defines only
7 instructions. Prolog can easily be compiled into this language
and the abstract machine code is easily decompiled back into Prolog.
As it is also possible to wire a standard 4-port debugger in the
WAM interpreter there is no need for a distinction between compiled
and interpreted code. Besides simplifying the design of the Prolog
system itself this approach has advantages for program development:
the compiler is simple and fast, the user does not have to decide
in advance whether debugging is required and the system only runs
slightly slower when in debug mode. The price we have to pay is
some performance degradation (taking out the debugger from the WAM
interpreter improves performance by about 20%) and somewhat additional
memory usage to help the decompiler and debugger.
SWI-Prolog extends the minimal set of instructions described in
[Bowen & Byrd, 1983] to improve performance. While extending this
set care has been taken to maintain the advantages of decompilation
and tracing of compiled code. The extensions include specialised
instructions for unification, predicate invocation, some frequently
used built-in predicates, arithmetic, and control (;/2, |/2), if-then
(->/2) and negation-by-failure (\+/1).
11..11..11 OOtthheerr bbooookkss aabboouutt PPrroolloogg
This manual does not describe the full syntax and semantics of Prolog,
nor how one should write a program in Prolog. These subjects have
been described extensively in the literature. See [Bratko, 1986],
[Sterling & Shapiro, 1986], and [Clocksin & Melish, 1987]. For
more advanced Prolog material see [OKeefe, 1990]. Syntax and
standard operator declarations confirm to the `Edinburgh standard'.
Most built in predicates are compatible with those described in
[Clocksin & Melish, 1987]. SWI-Prolog also offers a number of
primitive predicates compatible with Quintus Prolog [Qui, 1997] and
BIM_Prolog [BIM, 1989].
ISO compliant predicates are based on ``Prolog: The Standard'',
[Deransart _e_t _a_l_., 1996], validated using [??].
11..22 SSttaattuuss
This manual describes version 5.0 of SWI-Prolog. SWI-Prolog has been
used now for many years. The application range includes Prolog course
material, meta-interpreters, simulation of parallel Prolog, learning
systems, natural language processing and two large workbenches for
knowledge engineering. Although we experienced rather obvious and
critical bugs can remain unnoticed for a remarkable long period, we
assume the basic Prolog system is fairly stable. Bugs can be expected
in infrequently used built-in predicates.
Some bugs are known to the author. They are described as footnotes in
this manual.
11..33 CCoommpplliiaannccee ttoo tthhee IISSOO ssttaannddaarrdd
SWI-Prolog 3.3.0 implements all predicates described in ``Prolog: The
Standard'' [Deransart _e_t _a_l_., 1996].
Exceptions and warning are still weak. Some SWI-Prolog predicates
silently fail on conditions where the ISO specification requires an
exception (functor/3 for example). Many predicates print warnings
rather than raising an exception. All predicates where exceptions may
be caused due to a correct program operating in an imperfect world
(I/O, arithmetic, resource overflows) should behave according to the
ISO standard. In other words: SWI-Prolog should be able to execute
any program conforming to [Deransart _e_t _a_l_., 1996] that does not rely
on exceptions generated by errors in the program.
11..44 SShhoouulldd yyoouu bbee uussiinngg SSWWII--PPrroolloogg??
There are a number of reasons why you better choose a commercial Prolog
system, or another academic product:
o _S_W_I_-_P_r_o_l_o_g _i_s _n_o_t _s_u_p_p_o_r_t_e_d
Although I usually fix bugs shortly after a bug report arrives, I
cannot promise anything. Now that the sources are provided, you
can always dig into them yourself.
o _M_e_m_o_r_y _r_e_q_u_i_r_e_m_e_n_t_s _a_n_d _p_e_r_f_o_r_m_a_n_c_e _a_r_e _y_o_u_r _f_i_r_s_t _c_o_n_c_e_r_n_s
A number of commercial compilers are more keen on memory and
performance than SWI-Prolog. I do not wish to sacrifice some of
the nice features of the system, nor its portability to compete on
raw performance.
o _Y_o_u _n_e_e_d _f_e_a_t_u_r_e_s _n_o_t _o_f_f_e_r_e_d _b_y _S_W_I_-_P_r_o_l_o_g
In this case you may wish to give me suggestions for extensions.
If you have great plans, please contact me (you might have to
implement them yourself however).
On the other hand, SWI-Prolog offers some nice facilities:
o _N_i_c_e _e_n_v_i_r_o_n_m_e_n_t
This includes `Do What I Mean', automatic completion of atom names,
history mechanism and a tracer that operates on single key-strokes.
Interfaces to some standard editors are provided (and can be
extended), as well as a facility to maintain programs (see make/0).
o _V_e_r_y _f_a_s_t _c_o_m_p_i_l_e_r
Even very large applications can be loaded in seconds on most
machines. If this is not enough, there is a Quick Load Format that
is slightly more compact and loading is almost always I/O bound.
o _T_r_a_n_s_p_a_r_e_n_t _c_o_m_p_i_l_e_d _c_o_d_e
SWI-Prolog compiled code can be treated just as interpreted code:
you can list it, trace it, etc. This implies you do not have to
decide beforehand whether a module should be loaded for debugging
or not. Also, performance is much better than the performance of
most interpreters.
o _P_r_o_f_i_l_i_n_g
SWI-Prolog offers tools for performance analysis, which can be very
useful to optimise programs. Unless you are very familiar with
Prolog and Prolog performance considerations this might be more
helpful than a better compiler without these facilities.
o _F_l_e_x_i_b_i_l_i_t_y
SWI-Prolog can easily be integrated with C, supporting non-
determinism in Prolog calling C as well as C calling Prolog (see
section 6. It can also be _e_m_b_e_d_d_e_d embedded in external programs
(see section 6.7). System predicates can be redefined locally to
provide compatibility with other Prolog systems.
o _I_n_t_e_g_r_a_t_i_o_n _w_i_t_h _X_P_C_E
SWI-Prolog offers a tight integration to the Object Ori-
ented Package for User Interface Development, called XPCE
[Anjewierden & Wielemaker, 1989]. XPCE allows you to implement
graphical user interfaces that are source-code compatible over
Unix/X11 and Win32 (Windows 95 and NT).
11..55 TThhee XXPPCCEE GGUUII ssyysstteemm ffoorr PPrroolloogg
The XPCE GUI system for dynamically typed languages has been with
SWI-Prolog for a long time. It is developed by Anjo Anjewierden and
Jan Wielemaker from the department of SWI, University of Amsterdam.
It aims at a high-productive development environment for graphical
applications based on Prolog.
Object oriented technology has proven to be a suitable model for
implementing GUIs, which typically deal with things Prolog is not very
good at: event-driven control and global state. With XPCE, we
designed a system that has similar characteristics that make Prolog
such a powerful tool: dynamic typing, meta-programming and dynamic
modification of the running system.
XPCE is an object-system written in the C-language. It provides for
the implementation of methods in multiple languages. New XPCE classes
may be defined from Prolog using a simple, natural syntax. The body of
the method is executed by Prolog itself, providing a natural interface
between the two systems. Below is a very simple class definition.
:- pce_begin_class(prolog_lister, frame,
"List Prolog predicates").
initialise(Self) :->
"As the C++ constructor"::
send(Self, send_super, initialise, 'Prolog Lister'),
send(Self, append, new(D, dialog)),
send(D, append,
text_item(predicate, message(Self, list, @arg1))),
send(new(view), below, D).
list(Self, From:name) :->
"List predicates from specification"::
( catch(term_to_atom(Term, From), _, fail)
-> get(Self, member, view, V),
pce_open(V, write, Fd),
set_output(Fd),
listing(Term),
close(Fd)
; send(Self, report, error, 'Syntax error')
).
:- pce_end_class.
test :- send(new(prolog_lister), open).
Its 165 built-in classes deal with the meta-environment, data-
representation and---of course---graphics. The graphics classes
concentrate on direct-manipulation of diagrammatic representations.
AAvvaaiillaabbiilliittyy.. XPCE runs on most Unixtm platforms, Windows 95, 98 and
Windows NT. It has been connected to SWI-Prolog, SICStustm and Quintustm
Prolog as well as some Lisp dialects and C++. The Quintus version is
commercially distributed and supported as ProWindows-3tm.
IInnffoo.. further information is available from
http://www.swi.psy.uva.nl/projects/xpce/ or by E-mail to xpce-
request@swi.psy.uva.nl. There are demo versions for Windows 95, 98, NT
and i386/Linux available from the XPCE download page.
11..66 RReelleeaassee NNootteess
Collected release-notes. This section only contains some highlights.
Smaller changes to especially older releases have been removed. For a
complete log, see the file ChangeLog from the distribution.
11..66..11 VVeerrssiioonn 11..88 RReelleeaassee NNootteess
Version 1.8 offers a stack-shifter to provide dynamically expanding
stacks on machines that do not offer operating-system support for
implementing dynamic stacks.
11..66..22 VVeerrssiioonn 11..99 RReelleeaassee NNootteess
Version 1.9 offers better portability including an MS-Windows 3.1
version. Changes to the Prolog system include:
o _R_e_d_e_f_i_n_i_t_i_o_n _o_f _s_y_s_t_e_m _p_r_e_d_i_c_a_t_e_s
Redefinition of system predicates was allowed silently in older
versions. Version 1.9 only allows it if the new definition is
headed by a :- redefine_system_predicate/1 directive.
o _`_A_n_s_w_e_r_' _r_e_u_s_e
The toplevel maintains a table of bindings returned by toplevel
goals and allows for reuse of these bindings by prefixing the
variables with the $ sign. See section 2.8.
o _B_e_t_t_e_r _s_o_u_r_c_e _c_o_d_e _a_d_m_i_n_i_s_t_r_a_t_i_o_n
Allows for proper updating of multifile predicates and finding the
sources of individual clauses.
11..66..33 VVeerrssiioonn 22..00 RReelleeaassee NNootteess
New features offered:
o _3_2_-_b_i_t _V_i_r_t_u_a_l _M_a_c_h_i_n_e
Removes various limits and improves performance.
o _I_n_l_i_n_e _f_o_r_e_i_g_n _f_u_n_c_t_i_o_n_s
`Simple' foreign predicates no longer build a Prolog stack-frame,
but are directly called from the VM. Notably provides a speedup for
the test predicates such as var/1, etc.
o _V_a_r_i_o_u_s _c_o_m_p_a_t_i_b_i_l_i_t_y _i_m_p_r_o_v_e_m_e_n_t_s
o _S_t_r_e_a_m _b_a_s_e_d _I_/_O _l_i_b_r_a_r_y
All SWI-Prolog's I/O is now handled by the stream-package defined
in the foreign include file SWI-Stream.h. Physical I/O of Prolog
streams may be redefined through the foreign language interface,
facilitating much simpler integration in window environments.
11..66..44 VVeerrssiioonn 22..55 RReelleeaassee NNootteess
Version 2.5 is an intermediate release on the path from 2.1 to
3.0. All changes are to the foreign-language interface, both to
user- and system-predicates implemented in the C-language. The aim is
twofold. First of all to make garbage-collection and stack-expansion
(stack-shifts) possible while foreign code is active without the
C-programmer having to worry about locking and unlocking C-variables
pointing to Prolog terms. The new approach is closely compatible
to the Quintus and SICStus Prolog foreign interface using the +term
argument specification (see their respective manuals). This allows for
writing foreign interfaces that are easily portable over these three
Prolog platforms.
Apart from various bug fixes listed in the Changelog file, these are
the main changes since 2.1.0:
o _I_S_O _c_o_m_p_a_t_i_b_i_l_i_t_y
Many ISO compatibility features have been added: open/4,
arithmetic functions, syntax, etc.
o _W_i_n_3_2
Many fixes for the Win32 (NT, '95 and win32s) platforms. Notably
many problems related to pathnames and a problem in the garbage
collector.
o _P_e_r_f_o_r_m_a_n_c_e
Many changes to the clause indexing system: added hash-tables,
lazy computation of the index information, etc.
o _P_o_r_t_a_b_l_e _s_a_v_e_d_-_s_t_a_t_e_s
The predicate qsave_program/[1,2] allows for the creating of
machine independent saved-states that load very quickly.
11..66..55 VVeerrssiioonn 22..66 RReelleeaassee NNootteess
Version 2.6 provides a stable implementation of the features added in
the 2.5.x releases, but at the same time implements a number of new
features that may have impact on the system stability.
o _3_2_-_b_i_t _i_n_t_e_g_e_r _a_n_d _d_o_u_b_l_e _f_l_o_a_t _a_r_i_t_h_m_e_t_i_c
The biggest change is the support for full 32-bit signed integers
and raw machine-format double precision floats. The internal
data representation as well as the arithmetic instruction set and
interface to the arithmetic functions has been changed for this.
o _E_m_b_e_d_d_i_n_g _f_o_r _W_i_n_3_2 _a_p_p_l_i_c_a_t_i_o_n_s
The Win32 version has been reorganised. The Prolog kernel is now
implemented as Win32 DLL that may be embedded in C-applications.
Two front ends are provided, one for window-based operation and one
to run as a Win32 console application.
o _C_r_e_a_t_i_n_g _s_t_a_n_d_-_a_l_o_n_e _e_x_e_c_u_t_a_b_l_e_s
Version 2.6.0 can create stand-alone executables by attaching the
saved-state to the emulator. See qsave_program/2.
11..66..66 VVeerrssiioonn 22..77 RReelleeaassee NNootteess
Version 2.7 reorganises the entire data-representation of the Prolog
data itself. The aim is to remove most of the assumption on the
machine's memory layout to improve portability in general and enable
embedding on systems where the memory layout may depend on invocation
or on how the executable is linked. The latter is notably a problem on
the Win32 platforms. Porting to 64-bit architectures is feasible now.
Furthermore, 2.7 lifts the limits on arity of predicates and number of
variables in a clause considerably and allow for further expansion at
minimal cost.
11..66..77 VVeerrssiioonn 22..88 RReelleeaassee NNootteess
With version 2.8, we declare the data-representation changes of 2.7.x
stable. Version 2.8 exploits the changes of 2.7 to support 64-bit
processors like the DEC Alpha. As of version 2.8.5, the representation
of recorded terms has changed, and terms on the heap are now
represented in a compiled format. SWI-Prolog no longer limits the
use of malloc() or uses assumptions on the addresses returned by this
function.
11..66..88 VVeerrssiioonn 22..99 RReelleeaassee NNootteess
Version 2.9 is the next step towards version 3.0, improving ISO
compliance and introducing ISO compliant exception handling. New
are catch/3, throw/1, abolish/1, write_term/[2,3], write_canonical/[1,2]
and the C-functions PL_exception() and PL_throw(). The predicates
display/[1,2] and displayq/[1,2] have been moved to library(backcomp),
so old code referring to them will autoload them.
The interface to PL_open_query() has changed. The _d_e_b_u_g argument is
replaced by a bitwise or'ed _f_l_a_g_s argument. The values FALSE and
TRUE have their familiar meaning, making old code using these constants
compatible. Non-zero values other than TRUE (1) will be interpreted
different.
11..66..99 VVeerrssiioonn 33..00 RReelleeaassee NNootteess
Complete redesign of the saved-state mechanism, providing the
possibility of `program resources'. See resource/3, open_resource/3,
and qsave_program/[1,2].
11..66..1100 VVeerrssiioonn 33..11 RReelleeaassee NNootteess
Improvements on exception-handling. Allows relating software
interrupts (signals) to exceptions, handling signals in Prolog and C
(see on_signal/3 and PL_signal()). Prolog stack overflows now raise
the resource_error exception and thus can be handled in Prolog using
catch/3.
11..66..1111 VVeerrssiioonn 33..33 RReelleeaassee NNootteess
Version 3.3 is a major release, changing many things internally and
externally. The highlights are a complete redesign of the high-level
I/O system, which is now based on explicit streams rather then current
input/output. The old Edinburgh predicates (see/1, tell/1, etc.) are
now defined on top of this layer instead of the other way around. This
fixes various internal problems and removes Prolog limits on the number
of streams.
Much progress has been made to improve ISO compliance: handling
strings as lists of one-character atoms is now supported (next
to character codes as integers). Many more exceptions have
been added and printing of exceptions and messages is rationalised
using Quintus and SICStus Prolog compatible print_message/2,
message_hook/3 and print_message_lines/3. All predicates descriped in
[Deransart _e_t _a_l_., 1996] are now implemented.
As of version 3.3, SWI-Prolog adheres the ISO _l_o_g_i_c_a_l _u_p_d_a_t_e _v_i_e_w for
dynamic predicates. See section 4.13.1 for details.
SWI-Prolog 3.3 includes garbage collection on atoms, removing the
last serious memory leak especially in text-manipulation applications.
See section 6.6.2.1. In addition, both the user-level and foreign
interface supports atoms holding _0_-_b_y_t_e_s.
Finally, an alpha version of a multi-threaded SWI-Prolog for Linux is
added. This version is still much slower than the single-threaded
version due to frequent access to `thread-local-data' as well as some
too detailed mutex locks. The basic thread API is ready for serious
use and testing however. See section 4.39.
11..66..1111..11 IInnccoommppaattiibbllee cchhaannggeess
A number of incompatible changes result from this upgrade. They are
all easily fixed however.
o !/0_, call/1
The cut now behaves according to the ISO standard. This implies
it works in compound goals passed to call/1 and is local to the
_c_o_n_d_i_t_i_o_n part of if-then-else as well as the argument of \+/1.
o atom_chars/2
This predicate is now ISO compliant and thus generates a list
of one-character atoms. The behaviour of the old predicate is
available in the ---also ISO compliant--- atom_codes/2 predicate.
Safest repair is a replacement of all atom_chars into atom_codes.
If you do not want to change any souce-code, you might want to use
user:goal_expansion(atom_chars(A,B), atom_codes(A,B)).
o number_chars/2
Same applies for number_chars/2 and number_codes/2.
o feature/2_, set_feature/2
These are replaced by the ISO compliant current_prolog_flag/2
and set_prolog_flag/2. The library library(backcomp) provides
definitions for feature/2 and set_feature/2, so no source hhaass to be
updated.
o _A_c_c_e_s_s_i_n_g _c_o_m_m_a_n_d_-_l_i_n_e _a_r_g_u_m_e_n_t_s
This used to be provided by the undocumented '$argv'/1 and
Quintus compatible library unix/1. Now there is also documented
current_prolog_flag(_a_r_g_v_, _A_r_g_v).
o dup_stream/2
Has been deleted. New stream-aliases can deal with most of the
problems for which dup_stream/2 was designed and dup/2 from the
_c_l_i_b package can with most others.
o op/3
Operators are now llooccaall ttoo mmoodduulleess. This implies any modification
of the operator-table does not influence other modules. This is
consistent with the proposed ISO behaviour and a necessity to have
any usable handling of operators in a multi-threaded environment.
o _s_e_t___p_r_o_l_o_g___f_l_a_g_(_c_h_a_r_a_c_t_e_r___e_s_c_a_p_e_s_, _B_o_o_l_)
This prolog flag is now an interface to changing attributes on the
current source-module, effectively making this flag module-local as
well. This is required for consistent handling of sources written
with ISO (obligatory) character-escape sequences together with old
Edinburgh code.
o current_stream/3 _a_n_d _s_t_r_e_a_m___p_o_s_i_t_i_o_n
These predicates have been moved to library(quintus).
11..66..1122 VVeerrssiioonn 33..44 RReelleeaassee NNootteess
The 3.4 release is a consolidation release. It consolidates the
improvements and standard conformance of the 3.3 releases. This
version is closely compatible with the 3.3 version except for one
important change:
o _A_r_g_u_m_e_n_t _o_r_d_e_r _i_n select/3
The list-processing predicate select/3 somehow got into a very
early version of SWI-Prolog with the wrong argument order. This
has been fixed in 3.4.0. The correct order is select(?Elem, ?List,
?Rest).
As select/3 has no error conditions, runtime checking cannot
be done. To simplify debugging, the library module
library(checkselect) will print references to select/3 in your
source code and install a version of select that enters the
debugger if select is called and the second argument is not a list.
This library can be loaded explicitely or by calling
check_old_select/0.
11..66..1133 VVeerrssiioonn 44..00 RReelleeaassee NNootteess
As of version 4.0 the standard distribution of SWI-Prolog is bundled
with a number of its popular extension packages, among which the now
open source XPCE GUI toolkit (see section 1.5). No significant changes
have been made to the basic SWI-Prolog engine.
Some useful tricks in the integrated environment:
o _R_e_g_i_s_t_e_r _t_h_e _G_U_I _t_r_a_c_e_r
Using a call to guitracer/0, hooks are installed that replace the
normal command-line driven tracer with a graphical forntend.
o _R_e_g_i_s_t_e_r _P_c_e_E_m_a_c_s _f_o_r _e_d_i_t_i_n_g _f_i_l_e_s
From your initialisation file. you can load li-
brary(emacs/swi_prolog) that cause edit/1 to use the built-in
PceEmacs editor.
11..77 AAcckknnoowwlleeddggeemmeennttss
Some small parts of the Prolog code of SWI-Prolog are modified
versions of the corresponding Edinburgh C-Prolog code: grammar rule
compilation and writef/2. Also some of the C-code originates from
C-Prolog: finding the path of the currently running executable and the
code underlying absolute_file_name/2. Ideas on programming style and
techniques originate from C-Prolog and Richard O'Keefe's _t_h_i_e_f editor.
An important source of inspiration are the programming techniques
introduced by Anjo Anjewierden in PCE version 1 and 2.
I also would like to thank those who had the fade of using the early
versions of this system, suggested extensions or reported bugs. Among
them are Anjo Anjewierden, Huub Knops, Bob Wielinga, Wouter Jansweijer,
Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.
Martin Jansche (jansche@novell1.gs.uni-heidelberg.de) has been so kind
to reorganise the sources for version 2.1.3 of this manual.
Horst von Brand has been so kind to fix many typos in the 2.7.14
manual. Thanks!
CChhaapptteerr 22.. OOVVEERRVVIIEEWW
22..11 GGeettttiinngg ssttaarrtteedd qquuiicckkllyy
22..11..11 SSttaarrttiinngg SSWWII--PPrroolloogg
22..11..11..11 SSttaarrttiinngg SSWWII--PPrroolloogg oonn UUnniixx
By default, SWI-Prolog is installed as `pl', though some administrators
call it `swipl' or `swi-prolog'. The command-line arguments of
SWI-Prolog itself and its utility programs are documented using
standard Unix man pages. SWI-Prolog is normally operated as an
interactive application simply by starting the program:
machine% pl
Welcome to SWI-Prolog (Version 5.0.0)
Copyright (c) 1990-2002 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).
1 ?-
After starting Prolog, one normally loads a program into it using
consult/1, which---for historical reasons---may be abbreviated by
putting the name of the program file between square brackets. The
following goal loads the file likes.pl containing clauses for the
predicates likes/2:
?- [likes].
% likes compiled, 0.00 sec, 596 bytes.
Yes
?-
After this point, Unix and Windows users unite, so if you are using
Unix please continue at section 2.1.2.
22..11..11..22 SSttaarrttiinngg SSWWII--PPrroolloogg oonn WWiinnddoowwss
After SWI-Prolog has been installed on a Windows system, the following
important new things are available to the user:
o A folder (called _d_i_r_e_c_t_o_r_y in the remainder of this document)
called pl containing the executables, libraries, etc. of the
system. No files are installed outside this directory.
o A program plwin.exe, providing a window for interaction with
Prolog. The program plcon.exe is a version of SWI-Prolog that runs
in a DOS-box.
o The file-extension .pl is associated with the program plwin.exe.
Opening a .pl file will cause plwin.exe to start, change directory
to the directory in which the file-to-open resides and load this
file.
The normal way to start with the likes.pl file mentioned in
section 2.1.1.1 is by simply double-clicking this file in the Windows
explorer.
22..11..22 EExxeeccuuttiinngg aa qquueerryy
After loading a program, one can ask Prolog queries about the program.
The query below asks Prolog to prove whether `john' likes someone and
who is liked by `john'. The system responds with X = <_v_a_l_u_e> if it
can prove the goal for a certain _X. The user can type the semi-colon
(;) if (s)he wants another solution, or return if (s)he is satisfied,
after which Prolog will say YYeess. If Prolog answers NNoo, it indicates it
cannot find any more answers to the query. Finally, Prolog can answer
using an error message to indicate the query or program contains an
error.
?- likes(john, X).
X = mary
22..22 TThhee uusseerr''ss iinniittiiaalliissaattiioonn ffiillee
After the necessary system initialisation the system consults (see
consult/1) the user's startup file. The base-name of this file follows
conventions of the operating system. On MS-Windows, it is the file
pl.ini and on Unix systems .plrc. The file is searched using the
file_search_path/2 clauses for user_profile. The table below shows the
default value for this search-path.
_______________________________________________________________
|________________|UUnniixx__||WWiinnddoowwss________________________________________________________________________________||
|| llooccaall ||. |. |
| hhoommee ||~ |%HOME% or %HOMEDRIVE%\%HOMEPATH% |
|_global_|____|SWI-Home_directory_or_%WINDIR%_or_%SYSTEMROOT%_|_
After the first startup file is found it is loaded and Prolog stops
looking for further startup files. The name of the startup file can be
changed with the `-f file' option. If _F_i_l_e denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same
conventions as for the default startup file. Finally, if _f_i_l_e is none,
no file is loaded.
22..33 IInniittiiaalliissaattiioonn ffiilleess aanndd ggooaallss
Using commandline arguments (see section 2.4), SWI-Prolog can be
forced to load files and execute queries for initialisation purposes
or non-interactive operation. The most commonly used options are
-f file or -s file to make Prolog load a file, -g goal to define an
initialisation goal and -t goal to define the _t_o_p_l_e_v_e_l _g_o_a_l. The
following is a typical example for starting an application directly
from the commandline.
machine% pl -f load.pl -g go -t halt
It tells SWI-Prolog to load load.pl, start the application using the
_e_n_t_r_y_-_p_o_i_n_t go/0 and ---instead of entering the interactive toplevel---
exit after completing go/0. The -q may be used to supress all
informational messages.
In MS-Windows, the same can be achieved using a short-cut with
appropriately defined commandline arguments. A typically seen
alternative is to write a file run.pl with content as illustrated
below. Double-clicking run.pl will start the application.
:- [load]. % load program
:- go. % run it
:- halt. % and exit
Section 2.10.2.1 discusses further scripting options and chapter 7
discusses the generation of runtime executables. Runtime executables
are a mean to deliver executables that do not require the Prolog
system.
22..44 CCoommmmaanndd lliinnee ooppttiioonnss
The full set of command line options is given below:
--hheellpp
When given as the only option, it summarises the most important
options.
--vv
When given as the only option, it summarises the version and the
architecture identifier.
--aarrcchh
When given as the only option, it prints the architecture
identifier (see current_prolog_flag(arch, Arch)) and exits. See
also -dump-runtime-variables.
--dduummpp--rruunnttiimmee--vvaarriiaabblleess
When given as the only option, it prints a sequence of variable
settings that can be used in shell-scripts to deal with Prolog
parameters. This feature is also used by plld (see section 6.7).
Below is a typical example of using this feature.
eval `pl -dump-runtime-variables`
cc -I$PLBASE/include -L$PLBASE/runtime/$PLARCH ...
--qq
Set the prolog-flag verbose to silent, supressing informational and
banner messages.
--LL_s_i_z_e_[_k_m_]
Give local stack limit (2 Mbytes default). Note that there is no
space between the size option and its argument. By default, the
argument is interpreted in Kbytes. Postfixing the argument with
m causes the argument to be interpreted in Mbytes. The following
example specifies 32 Mbytes local stack.
% pl -L32m
A maximum is useful to stop buggy programs from claiming all memory
resources. -L0 sets the limit to the highest possible value. See
section 2.16.
--GG_s_i_z_e_[_k_m_]
Give global stack limit (4 Mbytes default). See -L for more
details.
--TT_s_i_z_e_[_k_m_]
Give trail stack limit (4 Mbytes default). This limit is
relatively high because trail-stack overflows are not often caused
by program bugs. See -L for more details.
--AA_s_i_z_e_[_k_m_]
Give argument stack limit (1 Mbytes default). The argument stack
limits the maximum nesting of terms that can be compiled and
executed. SWI-Prolog does `last-argument optimisation' to avoid
many deeply nested structure using this stack. Enlarging this
limit is only necessary in extreme cases. See -L for more details.
--cc _f_i_l_e _._._.
Compile files into an `intermediate code file'. See section 2.10.
--oo _o_u_t_p_u_t
Used in combination with -c or -b to determine output file for
compilation.
--OO
Optimised compilation. See current_prolog_flag/2.
--ss _f_i_l_e
Use _f_i_l_e as a script-file. The script file is loaded after the
initialisation file specified with the -f file option. Unlike
-f file, using
--ss _d
oes not stop Prolog from loaded the personal initialisation file.
--ff _f_i_l_e
Use _f_i_l_e as initialisation file instead of the default .plrc (Unix)
or pl.ini (Windows). `-f none' stops SWI-Prolog from searching for
a startup file. This option can be used as an alternative to
-s file that stops Prolog from loading the personal initialisation
file. See also section 2.2.
--FF _s_c_r_i_p_t
Selects a startup-script from the SWI-Prolog home directory. The
script-file is named <_s_c_r_i_p_t>.rc. The default _s_c_r_i_p_t name is
deduced from the executable, taking the leading alphanumerical
characters (letters, digits and underscore) from the program-name.
-F none stops looking for a script. Intended for simple management
of slightly different versions. One could for example write
a script iso.rc and then select ISO compatibility mode using
pl -F iso or make a link from iso-pl to pl.
--gg _g_o_a_l
_G_o_a_l is executed just before entering the top level. Default is a
predicate which prints the welcome message. The welcome message
can thus be suppressed by giving -g true. _g_o_a_l can be a complex
term. In this case quotes are normally needed to protect it from
being expanded by the Unix shell.
--tt _g_o_a_l
Use _g_o_a_l as interactive toplevel instead of the default goal
prolog/0. _g_o_a_l can be a complex term. If the toplevel goal
succeeds SWI-Prolog exits with status 0. If it fails the exit
status is 1. This flag also determines the goal started by
break/0 and abort/0. If you want to stop the user from entering
interactive mode start the application with `-g goal' and give
`halt' as toplevel.
--ttttyy
Unix only. Switches controlling the terminal for allowing
single-character commands to the tracer and get_single_char/1. By
default manipulating the terminal is enabled unless the system
detects it is not connected to a terminal or it is running as a
GNU-Emacs inferior process. This flag is sometimes required for
smooth interaction with other applications.
--xx _b_o_o_t_f_i_l_e
Boot from _b_o_o_t_f_i_l_e instead of the system's default boot file. A
bootfile is a file resulting from a Prolog compilation using the -b
or -c option or a program saved using qsave_program/[1,2].
--pp _a_l_i_a_s_=_p_a_t_h_1_[_:_p_a_t_h_2 _._._._]
Define a path alias for file_search_path. _a_l_i_a_s is the name of
the alias, _p_a_t_h_1 _._._. is a : separated list of values for the
alias. A value is either a term of the form alias(value) or
pathname. The computed aliases are added to file_search_path/2
using asserta/1, so they precede predefined values for the alias.
See file_search_path/2 for details on using this file-location
mechanism.
--
Stops scanning for more arguments, so you can pass arguments for
your application after this one. See current_prolog_flag/2 using
the flag argv for obtaining the commandline arguments.
The following options are for system maintenance. They are given for
reference only.
--bb _i_n_i_t_f_i_l_e _._._.-c _f_i_l_e _._._.
Boot compilation. _i_n_i_t_f_i_l_e _._._. are compiled by the C-written
bootstrap compiler, _f_i_l_e _._._. by the normal Prolog compiler.
System maintenance only.
--dd _l_e_v_e_l
Set debug level to _l_e_v_e_l. Only has effect if the system is
compiled with the -DO_DEBUG flag. System maintenance only.
22..55 GGNNUU EEmmaaccss IInntteerrffaaccee
The default Prolog mode for GNU-Emacs can be activated by adding the
following rules to your Emacs initialisation file:
(setq auto-mode-alist
(append
'(("\\.pl" . prolog-mode))
auto-mode-alist))
(setq prolog-program-name "pl")
(setq prolog-consult-string "[user].\n")
;If you want this. Indentation is either poor or I don't use
;it as intended.
;(setq prolog-indent-width 8)
Unfortunately the default Prolog mode of GNU-Emacs is not very good.
An alternative prolog.el file for GNU-Emacs 20 is available from
http://www.freesoft.cz/ pdm/software/emacs/prolog-mode/ and for GNU-
Emacs 19 from http://w1.858.telia.com/ u85810764/Prolog-mode/index.html
22..66 OOnnlliinnee HHeellpp
Online help provides a fast lookup and browsing facility to this
manual. The online manual can show predicate definitions as well as
entire sections of the manual.
The online help is displayed from the file library('MANUAL'). The file
library(helpidx) provides an index into this file. library('MANUAL')
is created from the LaTeX sources with a modified version of dvitty,
using overstrike for printing bold text and underlining for rendering
italic text. XPCE is shipped with library(swi_help), presenting
the information from the online help in a hypertext window. The
prolog-flag write_help_with_overstrike controls whether or not help/1
writes its output using overstrike to realise bold and underlined
output or not. If this prolog-flag is not set it is initialised by
the help library to true if the TERM variable equals xterm and false
otherwise. If this default does not satisfy you, add the following
line to your personal startup file (see section 2.2):
:- set_prolog_flag(write_help_with_overstrike, true).
hheellpp
Equivalent to help(help/1).
hheellpp((_+_W_h_a_t))
Show specified part of the manual. _W_h_a_t is one of:
<_N_a_m_e>/<_A_r_i_t_y> Give help on specified predicate
<_N_a_m_e> Give help on named predicate with any
arity or C interface function with that
name
<_S_e_c_t_i_o_n> Display specified section. Section
numbers are dash-separated numbers: 2-3
refers to section 2.3 of the manual.
Section numbers are obtained using
apropos/1.
Examples:
?- help(assert). Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual
?- help('PL_retry'). Give help on interface function
PL_retry()
See also apropos/1, and the SWI-Prolog home page at
http://www.swi.psy.uva.nl/projects/SWI-Prolog/, which provides a
FAQ, an HTML version of manual for online browsing and HTML and PDF
versions for downloading.
aapprrooppooss((_+_P_a_t_t_e_r_n))
Display all predicates, functions and sections that have _P_a_t_t_e_r_n in
their name or summary description. Lowercase letters in _P_a_t_t_e_r_n
also match a corresponding uppercase letter. Example:
?- apropos(file). Display predicates, functions and sec-
tions that have `file' (or `File', etc.)
in their summary description.
eexxppllaaiinn((_+_T_o_E_x_p_l_a_i_n))
Give an explanation on the given `object'. The argument may be any
Prolog data object. If the argument is an atom, a term of the form
_N_a_m_e_/_A_r_i_t_y or a term of the form _M_o_d_u_l_e_:_N_a_m_e_/_A_r_i_t_y, explain will
try to explain the predicate as well as possible references to it.
eexxppllaaiinn((_+_T_o_E_x_p_l_a_i_n_, _-_E_x_p_l_a_n_a_t_i_o_n))
Unify _E_x_p_l_a_n_a_t_i_o_n with an explanation for _T_o_E_x_p_l_a_i_n. Backtracking
yields further explanations.
22..77 QQuueerryy SSuubbssttiittuuttiioonnss
SWI-Prolog offers a query substitution mechanism similar to that of
Unix csh (csh(1)), called `history'. The availability of this feature
is controlled by set_prolog_flag/2, using the history prolog-flag. By
default, history is available if the prolog-flag readline is false.
To enable this feature, remembering the last 50 commands, put the
following into your startup file (see section 2.2:
:- set_prolog_flag(history, 50).
The history system allows the user to compose new queries from those
typed before and remembered by the system. It also allows to correct
queries and syntax errors. SWI-Prolog does not offer the Unix csh
capabilities to include arguments. This is omitted as it is unclear
how the first, second, etc. argument should be defined.
The available history commands are shown in table 2.1.
__________________________________________________________
| !!. |Repeat last query |
| !nr. |Repeat query numbered <_n_r> |
| !str. |Repeat last query starting with <_s_t_r> |
| !?str. |Repeat last query holding <_s_t_r> |
| ^old^new. |Substitute <_o_l_d> into <_n_e_w> in last query |
| !nr^old^new. |Substitute in query numbered <_n_r> |
| !str^old^new. |Substitute in query starting with <_s_t_r> |
| !?str^old^new. |Substitute in query holding <_s_t_r> |
| h. |Show history list |
|_!h.____________|Show_this_list__________________________ |
Table 2.1: History commands
22..77..11 LLiimmiittaattiioonnss ooff tthhee HHiissttoorryy SSyysstteemm
History expansion is executed after _r_a_w_-_r_e_a_d_i_n_g. This is the first
stage of read_term/2 and friends, reading the term into a string while
deleting comment and canonising blank. This makes it hard to use it
for correcting syntax errors. Command-line editing as provided using
the GNU-readline library is more suitable for this. History expansion
is first of all useful for executing or combining commands from long
ago.
22..88 RReeuussee ooff ttoopplleevveell bbiinnddiinnggss
Bindings resulting from the successful execution of a toplevel goal are
asserted in a database. These values may be reused in further toplevel
queries as $Var. Only the latest binding is available. Example:
1 ?- maplist(plus(1), "hello", X).
X = [105,102,109,109,112]
Yes
2 ?- format('~s~n', [$X]).
ifmmp
Yes
3 ?-
Figure 2.1: Reusing toplevel bindings
Note that variables may be set by executing =/2:
6 ?- X = statistics.
X = statistics
Yes
7 ?- $X.
28.00 seconds cpu time for 183,128 inferences
4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules
55,915 byte codes; 11,239 external references
Limit Allocated In use
Heap : 624,820 Bytes
Local stack : 2,048,000 8,192 404 Bytes
Global stack : 4,096,000 16,384 968 Bytes
Trail stack : 4,096,000 8,192 432 Bytes
Yes
8 ?-
22..99 OOvveerrvviieeww ooff tthhee DDeebbuuggggeerr
SWI-Prolog has a 6-port tracer, extending the standard 4-port tracer
[Clocksin & Melish, 1987] with two additional ports. The optional
_u_n_i_f_y port allows the user to inspect the result after unification of
the head. The _e_x_c_e_p_t_i_o_n port shows exceptions raised by throw/1 or one
of the built-in predicates. See section 4.9.
The standard ports are called call, exit, redo, fail and unify. The
tracer is started by the trace/0 command, when a spy point is reached
and the system is in debugging mode (see spy/1 and debug/0) or when an
exception is raised.
The interactive toplevel goal trace/0 means ``trace the next query''.
The tracer shows the port, displaying the port name, the current
depth of the recursion and the goal. The goal is printed using the
Prolog predicate write_term/2. The style is defined by the prolog-flag
debugger_print_options and can be modified using this flag or using the
w, p and d commands of the tracer.
1 ?- visible(+all), leash(-exit).
Yes
2 ?- trace, min([3, 2], X).
Call: ( 3) min([3, 2], G235) ? creep
Unify: ( 3) min([3, 2], G235)
Call: ( 4) min([2], G244) ? creep
Unify: ( 4) min([2], 2)
Exit: ( 4) min([2], 2)
Call: ( 4) min(3, 2, G235) ? creep
Unify: ( 4) min(3, 2, G235)
Call: ( 5) 3 < 2 ? creep
Fail: ( 5) 3 < 2 ? creep
Redo: ( 4) min(3, 2, G235) ? creep
Exit: ( 4) min(3, 2, 2)
Exit: ( 3) min([3, 2], 2)
Yes
[trace] 3 ?-
Figure 2.2: Example trace
On _l_e_a_s_h_e_d _p_o_r_t_s (set with the predicate leash/1, default are call,
exit, redo and fail) the user is prompted for an action. All actions
are single character commands which are executed wwiitthhoouutt waiting for a
return, unless the command line option -tty is active. Tracer options:
+ ((SSppyy))
Set a spy point (see spy/1) on the current predicate.
- ((NNoo ssppyy))
Remove the spy point (see nospy/1) from the current predicate.
/ ((FFiinndd))
Search for a port. After the `/', the user can enter a line to
specify the port to search for. This line consists of a set of
letters indicating the port type, followed by an optional term,
that should unify with the goal run by the port. If no term is
specified it is taken as a variable, searching for any port of the
specified type. If an atom is given, any goal whose functor has a
name equal to that atom matches. Examples:
/f Search for any fail port
/fe solve Search for a fail or exit port of
any goal with name solve
/c solve(a, _) Search for a call to solve/2 whose
first argument is a variable or the
atom a
/a member(_, _) Search for any port on member/2.
This is equivalent to setting a spy
point on member/2.
. ((RReeppeeaatt ffiinndd))
Repeat the last find command (see `/').
A ((AAlltteerrnnaattiivveess))
Show all goals that have alternatives.
C ((CCoonntteexxtt))
Toggle `Show Context'. If on the context module of the goal is
displayed between square brackets (see section 5). Default is off.
L ((LLiissttiinngg))
List the current predicate with listing/1.
a ((AAbboorrtt))
Abort Prolog execution (see abort/0).
b ((BBrreeaakk))
Enter a Prolog break environment (see break/0).
c ((CCrreeeepp))
Continue execution, stop at next port. (Also return, space).
d ((DDiissppllaayy))
Set the max_depth(_D_e_p_t_h) option of debugger_print_options, limiting
the depth to which terms are printed. See also the w and p
options.
e ((EExxiitt))
Terminate Prolog (see halt/0).
f ((FFaaiill))
Force failure of the current goal.
g ((GGooaallss))
Show the list of parent goals (the execution stack). Note that due
to tail recursion optimization a number of parent goals might not
exist any more.
h ((HHeellpp))
Show available options (also `?').
i ((IIggnnoorree))
Ignore the current goal, pretending it succeeded.
l ((LLeeaapp))
Continue execution, stop at next spy point.
n ((NNoo ddeebbuugg))
Continue execution in `no debug' mode.
p ((PPrriinntt))
Set the prolog-flag debugger_print_options to [quoted(true),
portray(true), max_depth(10)]. This is the default.
r ((RReettrryy))
Undo all actions (except for database and i/o actions) back to the
call port of the current goal and resume execution at the call
port.
s ((SSkkiipp))
Continue execution, stop at the next port of tthhiiss goal (thus
skipping all calls to children of this goal).
u ((UUpp))
Continue execution, stop at the next port of tthhee ppaarreenntt goal (thus
skipping this goal and all calls to children of this goal). This
option is useful to stop tracing a failure driven loop.
w ((WWrriittee))
Set the prolog-flag debugger_print_options to [quoted(true)],
bypassing portray/1, etc.
The ideal 4 port model as described in many Prolog books
[Clocksin & Melish, 1987] is not visible in many Prolog implementations
because code optimisation removes part of the choice- and exit-points.
Backtrack points are not shown if either the goal succeeded
deterministically or its alternatives were removed using the cut. When
running in debug mode (debug/0) choice points are only destroyed when
removed by the cut. In debug mode, tail recursion optimisation is
switched off.
Reference information to all predicates available for manipulating the
debugger is in section 4.42.
22..1100 CCoommppiillaattiioonn
22..1100..11 DDuurriinngg pprrooggrraamm ddeevveellooppmmeenntt
During program development, programs are normally loaded using
consult/1, or the list abbreviation. It is common practice to organise
a project as a collection of source-files and a _l_o_a_d_-_f_i_l_e, a Prolog
file containing only use_module/[1,2] or ensure_loaded/1 directives,
possibly with a definition of the _e_n_t_r_y_-_p_o_i_n_t of the program, the
predicate that is normally used to start the program. This file is
often called load.pl. If the entry-point is called _g_o, a typical
session starts as:
% pl
<banner>
1 ?- [load].
<compilation messages>
Yes
2 ?- go.
<program interaction>
When using Windows, the user may open load.pl from the Windows
explorer, which will cause plwin.exe to be started in the directory
holding load.pl. Prolog loads load.pl before entering the toplevel.
22..1100..22 FFoorr rruunnnniinngg tthhee rreessuulltt
There are various options if you want to make your program ready for
real usage. The best choice depends on whether the program is to be
used only on machines holding the SWI-Prolog development system, the
size of the program and the operating system (Unix vs. Windows).
22..1100..22..11 UUssiinngg PPrroollooggSSccrriipptt
New in version 4.0.5 is the possibility to use a Prolog source file
directly as a Unix script-file. the same mechanism is useful to
specify additional parameters for running a Prolog file on Windows.
If the first letter of a Prolog file is #, the first line is treated
as comment. To create a Prolog script, make the first line start like
this:
#!/path/to/pl <_o_p_t_i_o_n_s> -s
Prolog recognises this starting sequence and causes the interpreter to
receive the following argument-list:
/path/to/pl <_o_p_t_i_o_n_s> -s <_s_c_r_i_p_t> -- <_S_c_r_i_p_t_A_r_g_u_m_e_n_t_s>
Instead of -s, the user may use -f to stop Prolog from looking for a
personal initialisation file.
Here is a simple script doing expression evaluation:
#!/usr/bin/pl -q -t main -f
eval :-
current_prolog_flag(argv, Argv),
append(_, [--|Args], Argv),
concat_atom(Args, ' ', SingleArg),
term_to_atom(Term, SingleArg),
Val is Term,
format('~w~n', [Val]).
main :-
catch(eval, E, (print_message(error, E), fail)),
halt.
main :-
halt(1).
And here are two example runs:
% eval 1+2
3
% eval foo
ERROR: Arithmetic: `foo/0' is not a function
%
TThhee WWiinnddoowwss vveerrssiioonn supports the #! construct too, but here it
serves a rather different role. The Windows shell already allows
the user to start Prolog source-files directly through the Windows
file-type association. Windows however makes it rather complicated
to provide additional parameters, such as the required stack-size
for an individual Prolog file. The #! line provides for this,
providing a more flexible approach then changing the global defaults.
The following starts Prolog with unlimited stack-size on the given
source-file:
#!/usr/bin/pl -L0 -T0 -G0 -s
....
Note the use of /usr/bin/pl, which specifies the interpreter. This
argument is ignored in the Windows version, but required to ensure best
cross-platform compatibility.
22..1100..22..22 CCrreeaattiinngg aa sshheellll--ssccrriipptt
With the introduction of _P_r_o_l_o_g_S_c_r_i_p_t (see section 2.10.2.1), using
shell-scripts as explained in this section has become redundant for
most applications.
Especially on Unix systems and not-too-large applications, writing
a shell-script that simply loads your application and calls the
entry-point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.
#!/bin/sh
base=<absolute-path-to-source>
PL=pl
exec $PL -f none -g "load_files(['$base/load'],[silent(true)])" \
-t go -- $*
go :-
current_prolog_flag(argv, Arguments),
append(_SytemArgs, [--|Args], Arguments), !,
go(Args).
go(Args) :-
...
On Windows systems, similar behaviour can be achieved by creating a
shortcut to Prolog, passing the proper options or writing a .bat file.
22..1100..22..33 CCrreeaattiinngg aa ssaavveedd--ssttaattee
For larger programs, as well as for programs that are required to
run on systems that do not have the SWI-Prolog development system
installed, creating a saved state is the best solution. A saved state
is created using qsave_program/[1,2] or using the linker plld(1). A
saved state is a file containing machine-independent intermediate code
in a format dedicated for fast loading. Optionally, the emulator
may be integrated in the saved state, creating a single-file, but
machine-dependent, executable. This process is described in chapter 7.
22..1100..22..44 CCoommppiillaattiioonn uussiinngg tthhee --cc ccoommmmaannddlliinnee ooppttiioonn
This mechanism loads a series of Prolog source files and then creates a
saved-state as qsave_program/2 does. The command syntax is:
% pl [option ...] [-o output] -c file ...
The _o_p_t_i_o_n_s argument are options to qsave_program/2 written in the
format below. The option-names and their values are described with
qsave_program/2.
--_o_p_t_i_o_n_-_n_a_m_e=_o_p_t_i_o_n_-_v_a_l_u_e
For example, to create a stand-alone executable that starts by
executing main/0 and for which the source is loaded through load.pl,
use the command
% pl --goal=main --stand_alone=true -o myprog -c load.pl
This performs exactly the same as executing
% pl
<banner>
?- [load].
?- qsave_program(myprog,
[ goal(main),
stand_alone(true)
]).
?- halt.
22..1111 EEnnvviirroonnmmeenntt CCoonnttrrooll ((PPrroolloogg ffllaaggss))
The predicates current_prolog_flag/2 and set_prolog_flag/2 allow the
user to examine and modify the execution environment. It provides
access to whether optional features are available on this version,
operating system, foreign-code environment, command-line arguments,
version, as well as runtime flags to control the runtime behaviour
of certain predicates to achieve compatibility with other Prolog
environments.
ccuurrrreenntt__pprroolloogg__ffllaagg((_?_K_e_y_, _-_V_a_l_u_e))
The predicate current_prolog_flag/2 defines an interface to
installation features: options compiled in, version, home,
etc. With both arguments unbound, it will generate all defined
prolog-flags. With the `Key' instantiated it unify the value
of the prolog-flag. Features come in three types: boolean
prolog-flags, prolog-flags with an atom value and prolog-flags
with an integer value. A boolean prolog-flag is true iff the
prolog-flag is present aanndd the _V_a_l_u_e is the atom true. Currently
defined keys:
aarrcchh _(_a_t_o_m_)
Identifier for the hardware and operating system SWI-Prolog is
running on. Used to determine the startup file as well as to
select foreign files for the right architecture. See also
section 6.4.
vveerrssiioonn _(_i_n_t_e_g_e_r_)
The version identifier is an integer with value:
10000_*Major+ 100_*Minor+_P_a_t_c_h
Note that in releases up to 2.7.10 this prolog-flag yielded
an atom holding the three numbers separated by dots.
The current representation is much easier for implementing
version-conditional statements.
hhoommee _(_a_t_o_m_)
SWI-Prolog's notion of the home-directory. SWI-Prolog
uses it's home directory to find its startup file as
<_h_o_m_e>/startup/startup.<_a_r_c_h> and to find its library as
<_h_o_m_e>/library.
eexxeeccuuttaabbllee _(_a_t_o_m_)
Path-name of the running executable. Used by qsave_program/2
as default emulator.
aarrggvv _(_l_i_s_t_)
List is a list of atoms representing the command-line
arguments used to invoke SWI-Prolog. Please note that aallll
arguments are included in the list returned.
ppiippee _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, open(pipe(command), mode, Stream), etc. are sup-
ported. Can be changed to disable the use of pipes in
applications testing this feature. Not recommended.
ooppeenn__sshhaarreedd__oobbjjeecctt _(_b_o_o_l_)
If true, open_shared_object/2 and friends are implemented,
providing access to shared libraries (.so files) or dynamic
link libraries (.DLL files).
sshhaarreedd__oobbjjeecctt__eexxtteennssiioonn _(_a_t_o_m_)
Extension used by the operating system for shared objects.
.so for most Unix systems and .dll for Windows. Used for
locating files using the file_type executable. See also
absolute_file_name/3.
ddyynnaammiicc__ssttaacckkss _(_b_o_o_l_)
If true, the system uses some form of `sparse-memory manage-
ment' to realise the stacks. If false, malloc()/realloc() are
used for the stacks. In earlier days this had consequenses
for foreign code. As of version 2.5, this is no longer the
case.
Systems using `sparse-memory management' are a bit faster as
there is no stack-shifter, and checking the stack-boundary is
often realised by the hardware using a `guard-page'. Also,
memory is actually returned to the system after a garbage
collection or call to trim_stacks/0 (called by prolog/0 after
finishing a user-query).
cc__lliibbss _(_a_t_o_m_)
Libraries passed to the C-linker when SWI-Prolog was linked.
May be used to determine the libraries needed to create
statically linked extensions for SWI-Prolog. See section 6.7.
cc__cccc _(_a_t_o_m_)
Name of the C-compiler used to compile SWI-Prolog. Normally
either gcc or cc. See section 6.7.
cc__llddffllaaggss _(_a_t_o_m_)
Special linker flags passed to link SWI-Prolog. See
section 6.7.
rreeaaddlliinnee _(_b_o_o_l_)
If true, SWI-Prolog is linked with the readline library.
This is done by default if you have this library installed
on your system. It is also true for the Win32 plwin.exe
version of SWI-Prolog, which realises a subset of the readline
functionality.
ssaavveedd__pprrooggrraamm _(_b_o_o_l_)
If true, Prolog is started from a state saved with
qsave_program/[1,2].
rruunnttiimmee _(_b_o_o_l_)
If true, SWI-Prolog is compiled with -DO_RUNTIME, disabling
various useful development features (currently the tracer and
profiler).
mmaaxx__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Maximum integer value. Most arithmetic operations will
automatically convert to floats if integer values above this
are returned.
mmiinn__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Minimum integer value.
mmaaxx__ttaaggggeedd__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Maximum integer value represented as a `tagged' value. Tagged
integers require 4-bytes storage and are used for indexing.
Larger integers are represented as `indirect data' and require
16-bytes on the stacks (though a copy requires only 4
additional bytes).
mmiinn__ttaaggggeedd__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Start of the tagged-integer value range.
ffllooaatt__ffoorrmmaatt _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
C printf() format specification used by write/1 and friends to
determine how floating point numbers are printed. The default
is %g. The specified value is passed to printf() without
further checking. For example, if you want more digits
printed, %.12g will print all floats using 12 digits instead
of the default 6. See also format/[1,2], write/1, print/1 and
portray/1.
ttoopplleevveell__pprriinntt__ooppttiioonnss _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
This argument is given as option-list to write_term/2
for printing results of queries. Default is
[quoted(true), portray(true), max_depth(10)].
ddeebbuuggggeerr__pprriinntt__ooppttiioonnss _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
This argument is given as option-list to write_term/2 for
printing goals by the debugger. Modified by the `w',
`p' and `<_N> d' commands of the debugger. Default is
[quoted(true), portray(true), max_depth(10)].
ddeebbuuggggeerr__sshhooww__ccoonntteexxtt _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, show the context module while printing a stack-frame
in the tracer. Normally controlled using the `C' option of
the tracer.
ccoommppiilleedd__aatt _(_a_t_o_m_)
Describes when the system has been compiled. Only available
if the C-compiler used to compile SWI-Prolog provides the
__DATE__and __TIME__macros.
cchhaarraacctteerr__eessccaappeess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), read/1 interprets \ escape sequences in
quoted atoms and strings. May be changed. This flag is local
to the module in which it is changed.
ddoouubbllee__qquuootteess _(_c_o_d_e_s_,_c_h_a_r_s_,_a_t_o_m_,_s_t_r_i_n_g_, _c_h_a_n_g_e_a_b_l_e_)
This flag determines how double-quotes strings are read by
Prolog and is ---like character_escapes--- maintained for each
module. If codes (default), a list of character-codes is
returned, if chars a list of one-character atoms, if atom
double quotes are the same as single-quotes and finally,
string reads the text into a Prolog string (see section 4.23).
See also atom_chars/2 and atom_codes/2.
aallllooww__vvaarriiaabbllee__nnaammee__aass__ffuunnccttoorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default is false), Functor(arg) is read as if it
was written 'Functor'(arg). Some applications use the Prolog
read/1 predicate for reading an application defined script
language. In these cases, it is often difficult to explain
to non-Prolog users of the application that constants and
functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by
calling read_term/2 using the option variable_names and binding
the variables to their name. Using this feature, F(x) can be
turned into valid syntax for such script languages. Suggested
by Robert van Engelen. SWI-Prolog specific.
hhiissttoorryy _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
If _i_n_t_e_g_e_r >0, support Unix csh(1) like history as described
in section 2.7. Otherwise, only support reusing commands
through the commandline editor. The default is to set this
prolog-flag to 0 if a commandline editor is provided (see
prolog-flag readline) and 15 otherwise.
ggcc _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), the garbage collector is active. If false,
neither garbage-collection, nor stack-shifts will take place,
even not on explicit request. May be changed.
aaggcc__mmaarrggiinn _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
If this amount of atoms has been created since the last
atom-garbage collection, perform atom garbage collection at
the first opportunity. Initial value is 10,000. May
be changed. A value of 0 (zero) disables atom garbage
collection. See also PL_register_atom().
iissoo _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Include some weird ISO compatibility that is incompatible to
normal SWI-Prolog behaviour. Currently it has the following
effect:
o is/2 and evaluation under flag/3 do not automatically
convert floats to integers if the float represents an
integer.
o The //2 (float division) _a_l_w_a_y_s return a float, even if
applied to integers that can be divided.
o In the standard order of terms (see section 4.6.1), all
floats are before all integers.
o atom_length/2 yields an instantiation error if the first
argument is a number.
o clause/[2,3] raises a permission error when accessing
static predicates.
o abolish/[1,2] raises a permission error when accessing
static predicates.
ooppttiimmiissee _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, compile in optimised mode. The initial value is true
if Prolog was started with the -O commandline option.
Currently optimise compilation implies compilation of
arithmetic, and deletion of redundant true/0 that may result
from expand_goal/2.
Later versions might imply various other optimisations such as
integrating small predicates into their callers, eliminating
constant expressions and other predictable constructs. Source
code optimisation is never applied to predicates that are
declared dynamic (see dynamic/1).
cchhaarr__ccoonnvveerrssiioonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines whether character-conversion takes place while
reading terms. See also char_conversion/2.
aauuttoollooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default) autoloading of library functions is enabled.
See section 2.13.
vveerrbboossee__aauuttoollooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true the normal consult message will be printed if a
library is autoloaded. By default this message is suppressed.
Intended to be used for debugging purposes.
vveerrbboossee__ffiillee__sseeaarrcchh _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), print messages indicating the
progress of absolute_file_name/[2,3] in locating files.
Intended for debugging complicated file-search paths. See
also file_search_path/2.
ttrraaccee__ggcc _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (false is the default), garbage collections and
stack-shifts will be reported on the terminal. May be
changed.
mmaaxx__aarriittyy _(_u_n_b_o_u_n_d_e_d_)
ISO prolog-flag describing there is no maximum arity to
compound terms.
iinntteeggeerr__rroouunnddiinngg__ffuunnccttiioonn _(_d_o_w_n_,_t_o_w_a_r_d___z_e_r_o_)
ISO prolog-flag describing rounding by // and rem arithmetic
functions. Value depends on the C-compiler used.
bboouunnddeedd _(_t_r_u_e_)
ISO prolog-flag describing integer representation is bound by
min_integer and min_integer.
ttttyy__ccoonnttrrooll _(_b_o_o_l_)
Determines whether the terminal is switched to raw mode for
get_single_char/1, which also reads the user-actions for the
trace. May be set. See also the +/-tty command-line option.
uunnkknnoowwnn _(_f_a_i_l_,_w_a_r_n_i_n_g_,_e_r_r_o_r_, _c_h_a_n_g_e_a_b_l_e_)
Determines the behaviour if an undefined procedure is
encountered. If fail, the predicates fails silently. If
warn, a warning is printed, and execution continues as if
the predicate was not defined and if error (default), an
existence_error exception is raised. This flag is local to
each module.
ddeebbuugg _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Switch debugging mode on/off. If debug mode is activated
the system traps encountered spy-points (see spy/1) and
trace-points (see trace/1). In addition, tail-recursion
optimisation is disabled and the system is more conservative
in destroying choice-points to simplify debugging.
Disabling these optimisations can cause the system to run out
of memory on programs that behave correctly if debug mode is
off.
ttaaiill__rreeccuurrssiioonn__ooppttiimmiissaattiioonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines whether or not tail-recursion optimisation is
enabled. Normally the value of this flag is equal to
the debug flag. As programs may run out of stack
if tail-recursion optimisation is omitted, it is sometimes
necessary to enable it during debugging.
aabboorrtt__wwiitthh__eexxcceeppttiioonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines how abort/0 is realised. See the description of
abort/0 for details.
ddeebbuugg__oonn__eerrrroorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, start the tracer after an error is detected.
Otherwise just continue execution. The goal that raised the
error will normally fail. See also fileerrors/2 and the
prolog-flag report_error. May be changed. Default is true,
except for the runtime version.
rreeppoorrtt__eerrrroorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, print error messages, otherwise suppress them. May
be changed. See also the debug_on_error prolog-flag. Default
is true, except for the runtime version.
vveerrbboossee _(_A_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This flags is used by print_message/2. If its value is silent,
messages of type informational and banner are supressed. The
-q switches the value from the initial normal to silent.
ffiillee__nnaammee__vvaarriiaabblleess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), expand $varname and ~ in
arguments of builtin-predicates that accept a file name
(open/3, exists_file/1, access_file/2, etc.). The predicate
expand_file_name/2 should be used to expand environment
variables and wildcard patterns. This prolog-flag is intended
for backward compatibility with older versions of SWI-Prolog.
uunniixx _(_b_o_o_l_)
If true, the operating system is some version of Unix.
Defined if the C-compiler used to compile this version of
SWI-Prolog either defines __unix__ or unix.
wwiinnddoowwss _(_b_o_o_l_)
If true, the operating system is an implementation of
Microsoft Windows (3.1, 95, NT, etc.).
hhwwnndd _(_i_n_t_e_g_e_r_)
In plwin.exe, this refers to the MS-Windows window-handle of the
console window.
sseett__pprroolloogg__ffllaagg((_+_K_e_y_, _+_V_a_l_u_e))
Define a new prolog-flag or change its value. _K_e_y is an atom. If
the flag is a system-defined flag that is not marked _c_h_a_n_g_e_a_b_l_e
above, an attempt to modify the flag yields a permission_error.
If the provided _V_a_l_u_e does not match the type of the flag, a
type_error is raised.
In addition to ISO, SWI-Prolog allows for user-defined prolog
flags. The type of the flag is determined from the initial value
and cannot be changed afterwards.
22..1122 AAnn oovveerrvviieeww ooff hhooookk pprreeddiiccaatteess
SWI-Prolog provides a large number of hooks, mainly to control handling
messages, debugging, startup, shut-down, macro-expansion, etc. Below
is a summary of all defined hooks with an indication of their
portability.
o portray/1
Hook into write_term/3 to alter the way terms are printed (ISO).
o message_hook/3
Hook into print_message/2 to alter the way system messages are
printed (Quintus/SICStus).
o library_directory/1
Hook into absolute_file_name/3 to define new library directories.
(most Prolog system).
o file_search_path/2
Hook into absolute_file_name/3 to define new search-paths
(Quintus/SICStus).
o term_expansion/2
Hook into load_files/1 to modify read terms before they are
compiled (macro-processing) (most Prolog system).
o goal_expansion/2
Same as term_expansion/2 for individual goals (SICStus).
o prolog_edit:locate/3
Hook into edit/1 to locate objects (SWI).
o prolog_edit:edit_source/1
Hook into edit/1 to call some internal editor (SWI).
o prolog_edit:edit_command/2
Hook into edit/1 to define the external editor to use (SWI).
o prolog_list_goal/1
Hook into the tracer to list the code associated to a particular
goal (SWI).
o prolog_trace_interception/4
Hook into the tracer to handle trace-events (SWI).
o prolog:debug_control_hook/1
Hook in spy/1, nospy/1, nospyall/0 and debugging/0 to extend these
control-predicates to higher-level libraries.
o prolog:help_hook/1
Hook in help/0, help/1 and apropos/1 to extend the help-system.
o resource/3
Defines a new resource (not really a hook, but similar) (SWI).
o exception/3
Old attempt to a generic hook mechanism. Handles undefined
predicates (SWI).
22..1133 AAuuttoommaattiicc llooaaddiinngg ooff lliibbrraarriieess
If ---at runtime--- an undefined predicate is trapped the system will
first try to import the predicate from the module's default module. If
this fails the _a_u_t_o _l_o_a_d_e_r is activated. On first activation an index
to all library files in all library directories is loaded in core (see
library_directory/1). If the undefined predicate can be located in the
one of the libraries that library file is automatically loaded and the
call to the (previously undefined) predicate is resumed. By default
this mechanism loads the file silently. The current_prolog_flag/2
verbose_autoload is provided to get verbose loading. The prolog-flag
autoload can be used to enable/disable the entire auto load system.
The auto-loader only works if the unknown flag (see unknown/2) is set
to trace (default). A more appropriate interaction with this flag
should be considered.
Autoloading only handles (library) source files that use the module
mechanism described in chapter 5. The files are loaded with
use_module/2 and only the trapped undefined predicate will be imported
to the module where the undefined predicate was called. Each library
directory must hold a file INDEX.pl that contains an index to all
library files in the directory. This file consists of lines of the
following format:
index(Name, Arity, Module, File).
The predicate make/0 updates the autoload index. It searches for
all library directories (see library_directory/1 and file_search_path/2)
holding the file MKINDEX.pl or INDEX.pl. If the current user can write
or create the file INDEX.pl and it does not exist or is older than
the directory or one of its files, the index for this directory is
updated. If the file MKINDEX.pl exists updating is achieved by loading
this file, normally containing a directive calling make_library_index/2.
Otherwise make_library_index/1is called, creating an index for all *.pl
files containing a module.
Below is an example creating a completely indexed library directory.
% mkdir ~/lib/prolog
% cd !$
% pl -g true -t 'make_library_index(.)'
If there are more than one library files containing the desired
predicate the following search schema is followed:
1. If there is a library file that defines the module in which the
undefined predicate is trapped, this file is used.
2. Otherwise library files are considered in the order they appear
in the library_directory/1 predicate and within the directory
alphabetically.
mmaakkee__lliibbrraarryy__iinnddeexx((_+_D_i_r_e_c_t_o_r_y))
Create an index for this directory. The index is written to the
file 'INDEX.pl' in the specified directory. Fails with a warning
if the directory does not exist or is write protected.
mmaakkee__lliibbrraarryy__iinnddeexx((_+_D_i_r_e_c_t_o_r_y_, _+_L_i_s_t_O_f_P_a_t_t_e_r_n_s))
Normally used in MKINDEX.pl, this predicate creates INDEX.pl for
_D_i_r_e_c_t_o_r_y, indexing all files that match one of the file-patterns
in _L_i_s_t_O_f_P_a_t_t_e_r_n_s.
Sometimes library packages consist of one public load file and a
number of files used by this load-file, exporting predicates that
should not be used directly by the end-user. Such a library can be
placed in a sub-directory of the library and the files containing
public functionality can be added to the index of the library.
As an example we give the XPCE library's MKINDEX.pl, including
the public functionality of trace/browse.pl to the autoloadable
predicates for the XPCE package.
:- make_library_index('.',
[ '*.pl',
'trace/browse.pl'
]).
22..1144 GGaarrbbaaggee CCoolllleeccttiioonn
SWI-Prolog provides garbage-collection, last-call optimization and atom
garbage collection. These features are controlled using prolog flags
(see current_prolog_flag/2).
22..1155 SSyynnttaaxx NNootteess
SWI-Prolog uses standard `Edinburgh' syntax. A description of this
syntax can be found in the Prolog books referenced in the introduction.
Below are some non-standard or non-common constructs that are accepted
by SWI-Prolog:
o 0'<_c_h_a_r>
This construct is not accepted by all Prolog systems that claim to
have Edinburgh compatible syntax. It describes the ASCII value of
<_c_h_a_r>. To test whether C is a lower case character one can use
between(0'a, 0'z, C).
o /* .../* ...*/ ...*/
The /* ...*/ comment statement can be nested. This is useful
if some code with /* ...*/ comment statements in it should be
commented out.
22..1155..11 IISSOO SSyynnttaaxx SSuuppppoorrtt
SWI-Prolog offers ISO compatible extensions to the Edinburgh syntax.
22..1155..11..11 CChhaarraacctteerr EEssccaappee SSyynnttaaxx
Within quoted atoms (using single quotes: '<_a_t_o_m>'special characters
are represented using escape-sequences. An escape sequence is lead
in by the backslash (\) character. The list of escape sequences
is compatible with the ISO standard, but contains one extension and
the interpretation of numerically specified characters is slightly more
flexible to improve compatibility.
\a
Alert character. Normally the ASCII character 7 (beep).
\b
Backspace character.
\c
No output. All input characters up to but not including the
first non-layout character are skipped. This allows for the
specification of pretty-looking long lines. For compatibility with
Quintus Prolog. Not supported by ISO. Example:
format('This is a long line that would look better if it was \c
split across multiple physical lines in the input')
\<RETURN>
No output. Skips input till the next non-layout character or to
the end of the next line. Same intention as \c but ISO compatible.
\f
Form-feed character.
\n
Next-line character.
\r
Carriage-return only (i.e. go back to the start of the line).
\t
Horizontal tab-character.
\v
Vertical tab-character (ASCII 11).
\x23
Hexadecimal specification of a character. 23 is just an example.
The `x' may be followed by a maximum of 2 hexadecimal digits.
The closing \ is optional. The code \xa\3 emits the character
10 (hexadecimal `a') followed by `3'. The code \x201 emits 32
(hexadecimal `20') followed by `1'. According to ISO, the closing
\ is obligatory and the number of digits is unlimited. The
SWI-Prolog definition allows for ISO compatible specification, but
is compatible with other implementations.
\40
Octal character specification. The rules and remarks for
hexadecimal specifications apply to octal specifications too, but
the maximum allowed number of octal digits is 3.
\<_c_h_a_r_a_c_t_e_r>
Any character immediately preceded by a \ and not covered by the
above escape sequences is copied verbatim. Thus, '\\' is an atom
consisting of a single \ and '\'' and '''' both describe the atom
with a single '.
Character escaping is only available if the
current_prolog_flag(character_escapes, true) is active (default). See
current_prolog_flag/2. Character escapes conflict with writef/2 in two
ways: \40 is interpreted as decimal 40 by writef/2, but character
escapes handling by read has already interpreted as 32 (40 octal).
Also, \l is translated to a single `l'. It is advised to use the more
widely supported format/[2,3] predicate instead. If you insist upon
using writef/2, either switch character_escapes to false, or use double
\\, as in writef('\\l').
22..1155..11..22 SSyynnttaaxx ffoorr nnoonn--ddeecciimmaall nnuummbbeerrss
SWI-Prolog implements both Edinburgh and ISO representations for
non-decimal numbers. According to Edinburgh syntax, such numbers are
written as <_r_a_d_i_x>'<_n_u_m_b_e_r>, where <_r_a_d_i_x> is a number between 2 and 36.
ISO defines binary, octal and hexadecimal numbers using 0[bxo]<_n_u_m_b_e_r>.
For example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers
are always unsigned.
22..1166 SSyysstteemm lliimmiittss
22..1166..11 LLiimmiittss oonn mmeemmoorryy aarreeaass
SWI-Prolog has a number of memory areas which are only enlarged to a
certain limit. The default sizes for these areas should suffice for
most applications, but big applications may require larger ones. They
are modified by command line options. The table below shows these
areas. The first column gives the option name to modify the size of
the area. The option character is immediately followed by a number and
optionally by a k or m. With k or no unit indicator, the value is
interpreted in Kbytes (1024 bytes), with m, the value is interpreted in
Mbytes (10241* 024 bytes).
The local-, global- and trail-stack are limited to 128 Mbytes on 32
bit processors, or more generally to 2 to the power bits-per-long - 5
bytes.
The PrologScript facility described in section 2.10.2.1 provides a
mechanism for specifying options with the load-file. On Windows the
default stack-sizes are controlled using the Windows registry on the
key HKEY_CURRENT_USER\Software\SWI\Prolog using the names localSize,
globalSize and trailSize. The value is a DWORD expressing the default
stack size in Kbytes. A GUI for modifying these values is provided
using the XPCE package. To use this, start the XPCE manual tools using
manpce/0, after which you find _P_r_e_f_e_r_e_n_c_e_s in the _F_i_l_e menu.
___________________________________________________________
|_Option_|Default_|Area_name______|Description____________|_||-L||2Mllooccaa||llTssttaacckkhe|l||||ocal|stack is used
| | to store the execu- | | ||
| | tion environments of | | ||
| | procedure invocations. | | ||
| | The space for an en- | | ||
| | vironment is reclaimed | | ||
| | when it fails, exits | | ||
| | without leaving choice | | ||
| | points, the alterna- | | ||
| | tives are cut of with | | ||
| | | | ||
| | the !/0 predicate or | | ||
| | no choice points have | | ||
| | been created since the | | ||
| | invocation and the last | | ||
| | subclause is started | | ||
| | (tail recursion optimi- | | ||
|| || | ||sation). || | ||
| -G | 4M |gglloobbaall ssttaacckk ||Theusglobaled stacktois store| terms
| | | ||created during Prolog's |
| | | ||execution. Terms on |
| | | || |
| | | ||this stack will be re- |
| | | ||claimed by backtracking |
| | | ||to a point before the |
| | | ||term was created or |
| | | ||by garbage collection |
| | | ||(provided the term is |
|| || || ||no||longer referenced). ||
| -T | 4M |ttrraaiill ssttaacckk ||Theusetraild stackto isstore| as-
| | | ||signments during execu- |
| | | || |
| | | ||tion. Entries on this |
| | | ||stack remain alive un- |
| | | ||til backtracking before |
| | | ||the point of creation |
| | | ||or the garbage collec- |
| | | ||tor determines they are |
|| || || ||nor||needed any longer. ||
| -A | 1M |aarrgguummeenntt ssttaacckk ||Theusargumentestackd isto| store one
| | | ||of the intermediate |
| | | ||code interpreter's reg- |
| | | ||isters. The amount |
| | | ||of space needed on this |
| | | ||stack is determined en- |
| | | || |
| | | ||tirely by the depth in |
| | | ||which terms are nested |
| | | ||in the clauses that |
| | | ||constitute the program. |
| | | ||Overflow is most likely |
| | | ||when using long strings |
|________|_______|_______________||in_a_clause.____________|_
Table 2.2: Memory areas
22..1166..11..11 TThhee hheeaapp
With the heap, we refer to the memory area used by malloc() and
friends. SWI-Prolog uses the area to store atoms, functors, predicates
and their clauses, records and other dynamic data. As of SWI-Prolog
2.8.5, no limits are imposed on the addresses returned by malloc() and
friends.
On some machines, the runtime stacks described above are allocated
using `sparse allocation'. Virtual space up to the limit is claimed
at startup and committed and released while the area grows and shrinks.
On Win32 platform this is realised using VirtualAlloc() and friends.
On Unix systems this is realised using mmap().
22..1166..22 OOtthheerr LLiimmiittss
CCllaauusseess The only limit on clauses is their arity (the number of
arguments to the head), which is limited to 1024. Raising this
limit is easy and relatively cheap, removing it is harder.
AAttoommss aanndd SSttrriinnggss SWI-Prolog has no limits on the sizes of atoms
and strings. read/1 and its derivatives however normally limit
the number of newlines in an atom or string to 5 to improve
error detection and recovery. This can be switched off with
style_check/1.
The number of atoms is limited to 16777216 (16M) on 32-bit
machines. On 64-bit machines this is virtually unlimited. See
also section 6.6.2.1.
AAddddrreessss ssppaaccee SWI-Prolog data is packed in a 32-bit word, which
contains both type and value information. The size of the various
memory areas is limited to 128 Mb for each of the areas, except for
the program heap, which is not limited.
IInntteeggeerrss Integers are 32-bit (64 on 64-bit machines) to the user, but
integers up to the value of the max_tagged_integer prolog-flag are
represented more efficiently.
FFllooaattss Floating point numbers are represented as C-native double
precision floats, 64 bit IEEE on most machines.
22..1166..33 RReesseerrvveedd NNaammeess
The boot compiler (see -b option) does not support the module system.
As large parts of the system are written in Prolog itself we need some
way to avoid name clashes with the user's predicates, database keys,
etc. Like Edinburgh C-Prolog [Pereira, 1986] all predicates, database
keys, etc. that should be hidden from the user start with a dollar ($)
sign (see style_check/1).
CChhaapptteerr 33.. IINNIITTIIAALLIISSIINNGG AANNDD MMAANNAAGGIINNGG AA PPRROOLLOOGG PPRROOJJEECCTT
Prolog text-books give you an overview of the Prolog language. The
manual tells you what predicates are provided in the system and what
they do. This chapter wants to explain how to run a project. There is
no ultimate `right' way to do this. Over the years we developed some
practice in this area and SWI-Prolog's commands are there to support
this practice. This chapter describes the conventions and supporting
commands.
The first two sections (section 3.1 and section 3.2 only require plain
Prolog. The remainder discusses the use of the built-in graphical
tools that require the XPCE graphical library installed on your system.
33..11 TThhee pprroojjeecctt ssoouurrccee--ffiilleess
Organisation of source-files depends largely on the size of your
project. If you are doing exercises for a Prolog course you'll
normally use one file for each exercise. If you have a small project
you'll work work with one directory holding a couple of files and some
files to link it all together. Even bigger projects will be organised
in sub-projects each using their own directory.
33..11..11 FFiillee NNaammeess aanndd LLooccaattiioonnss
33..11..11..11 FFiillee NNaammee EExxtteennssiioonnss
The first consideration is what extension to use for the source-files.
Tradition calls for .pl, but conflicts with Perl force the use of
another extension on systems where extensions have global meaning, such
as MS-Windows. On such systems .pro is the common alternative.
All versions of SWI-Prolog load files with the extension .pl as well as
with the registered alternative extension without explicitly specifying
the extension. For portability reasons we propose the following
convention:
IIff tthheerree iiss nnoo ccoonnfflliicctt because you do not use a conflicting
application or the system does not force a unique relation between
extension and application, use .pl.
WWiitthh aa ccoonnfflliicctt choose .pro and use this extension for the files you
want to load through your file-manager. Use .pl for all other
files for maximal portability.
33..11..11..22 PPrroojjeecctt DDiirreeccttoorriieess
Large projects are generally composed of sub-projects, each using their
own directory or directory-structure. If nobody else will ever touch
your files and you use only one computer there is little to worry
about, but this is rarely the case with a large project.
To improve portability, SWI-Prolog uses the POSIX notation for
filenames, which uses the forward slash (/) to separate directories.
Just before hitting the file-system it uses prolog_to_os_filename/2 to
convert the filename to the conventions used by the hosting operating
system. It is _s_t_r_o_n_g_l_y advised to write paths using the /, especially
on systems using the \ for this purpose (MS-Windows). Using \ violates
the portability rules and requires you to _d_o_u_b_l_e the \ due to the
Prolog quoted-atom escape rules.
Portable code should use prolog_to_os_filename/2to convert computed
paths into system-paths when constructing commands for shell/1 and
friends.
33..11..11..33 SSuubb--pprroojjeeccttss uussiinngg sseeaarrcchh--ppaatthhss
Thanks to Quintus, Prolog adapted an extensible mechanism for searching
files using file_search_path/2. This mechanism allows for comfortable
and readable specifications.
Suppose you have extensive library packages on graph-algorithms,
set-operations and ui-primitives. These sub-projects are likely
candidates for re-use in future projects. A good choice is to create a
directory with sub-directories for each of these sub-projects.
Next, there are three options. One is to add the sub-projects to
the directory-hierarchy of the current project. Another is to use
a completely dislocated directory and finally the sub-project can be
added to the SWI-Prolog hierarchy. Using local installation, a typical
file_search_path/2is:
:- prolog_load_context(directory, Dir),
asserta(user:file_search_path(myapp, Dir)).
user:file_search_path(graph, myapp(graph)).
user:file_search_path(ui, myapp(ui)).
For using sub-projects in the SWI-Prolog hierarchy one should use
the path-alias swi as basis. For a system-wide installation use an
absolute-path.
Extensive sub-projects with a small well-defined API should define
a load-file using use_module/1 calls to import the various
library-components and export the API.
33..11..22 PPrroojjeecctt SSppeecciiaall FFiilleess
There are a number of tasks you typically carry out on your project,
such as loading it, creating a saved-state, debugging it, etc. Good
practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give
it a file-extension that makes starting easy (see section 3.1.1.1).
The task _l_o_a_d is generally central to these tasks. Here is a tentative
list.
o load.pl
Use this file to set up the environment (prolog flags and file
search paths) and load the sources. Quite commonly this file also
provides convenient predicates to parse command-line options and
start the application.
o run.pl
Use this file to start the application. Normally it loads load.pl
in silent-mode, and calls one of the starting predicates from
load.pl.
o save.pl
Use this file to create a saved-state of the application by loading
load.pl and call qsave_program/2to generate a saved-state with the
proper options.
o debug.pl
Loads the program for debugging. In addition to loading load.pl
this file defines rules for portray/1 to modify printing rules for
complex terms and customisation rules for the debugger and editing
environment. It may start some of these tools.
33..22 UUssiinngg mmoodduulleess
Modules have been debated fiercely in the Prolog world. Despite all
counter-arguments we feel they are extremely useful because
o _T_h_e_y _h_i_d_e _l_o_c_a_l _p_r_e_d_i_c_a_t_e_s
This is the reason they have been invented in the first place.
Hiding provides two features. They allow for short predicate
names without worrying about conflicts. Given the flat name-space
introduced by modules, they still require meaningful module names
as well as meaningful names for exported predicates.
o _T_h_e_y _d_o_c_u_m_e_n_t _t_h_e _i_n_t_e_r_f_a_c_e
Possibly more important then avoiding name-conflicts is their role
in documenting which part of the file is for public usage and
which is private. When editing a module you may assume you can
reorganise anything but the name and semantics of the exported
predicates without worrying.
o _T_h_e_y _h_e_l_p _t_h_e _e_d_i_t_o_r
The PceEmacs built-in editor does on-the-fly cross-referencing of
the current module, colouring predicates based on their origin and
usage. Using modules, the editor can quickly find out what is
provided by the imported modules by reading just the first term.
This allows it to indicate real-time which predicates are not used
or not defined.
Using modules is generally easy. Only if you write meta-predicates
(predicates reasoning about other predicates) that are exported from a
module good understanding of resolution of terms to predicates inside a
module is required. Here is a typical example from library(readutil).
:- module(read_util,
[ read_line_to_codes/2, % +Fd, -Codes
read_line_to_codes/3, % +Fd, -Codes, ?Tail
read_stream_to_codes/2, % +Fd, -Codes
read_stream_to_codes/3, % +Fd, -Codes, ?Tail
read_file_to_codes/3, % +File, -Codes, +Options
read_file_to_terms/3 % +File, -Terms, +Options
]).
33..33 TThhee tteesstt--eeddiitt--rreellooaadd ccyyccllee
SWI-Prolog does not enforce the use of a particular editor for writing
down Prolog source code. Editors are complicated programs that must
be mastered in detail for real productive programming and if you
are familiar with a specific editor you should not be forced to
change. You may specify your favourite editor using the environment
variable EDITOR or by defining rules for prolog_edit:edit_source/1 (see
section 4.4).
The use of a built-in editor however has advantages. The XPCE _e_d_i_t_o_r
object around which the built-in PceEmacs is built can be opened as
a Prolog stream allowing analysis of your source by the real Prolog
system.
33..33..11 LLooccaattiinngg tthhiinnggss ttoo eeddiitt
The central predicate for editing something is edit/1, an extensible
front-end that searches for objects (files, predicates, modules as well
as XPCE classes and methods) in the Prolog database. If multiple
matches are found it provides a choice. Together with the built-in
completion on atoms bound to the TAB key this provides a quick way to
edit objects:
?- edit(country).
Please select item to edit:
1 chat:country/10 '/staff/jan/lib/prolog/chat/countr.pl':16
2 chat:country/1 '/staff/jan/lib/prolog/chat/world0.pl':72
Your choice?
33..33..22 EEddiittiinngg aanndd iinnccrreemmeennttaall ccoommppiillaattiioonn
One of the nice features of Prolog is that the code can be modified
while the program is running. Using pure Prolog you can trace a
program, find it is misbehaving, enter a _b_r_e_a_k _e_n_v_i_r_o_n_m_e_n_t, modify
the source code, reload it and finally do _r_e_t_r_y on the misbehaving
predicate and try again. This sequence is not uncommon for
long-running programs. For faster programs one normally aborts after
understanding the misbehaviour, edit the source, reload it and try
again.
One of the nice features of SWI-Prolog is the availability of make/0, a
simple predicate that checks all loaded source files to see which ones
you have modified. It then reloads these files, considering the module
from which the file was loaded originally. This greatly simplifies the
trace-edit-verify development cycle. After the tracer reveals there is
something wrong with prove/3, you do:
?- edit(prove).
Now edit the source, possibly switching to other files and making
multiple changes. After finishing invoke make/0, either through the
editor UI (Compile/Make (Control-C Control-M)) or on the toplevel and
watch the files being reloaded.
?- make.
% show compiled into photo_gallery 0.03 sec, 3,360 bytes
33..44 UUssiinngg tthhee PPcceeEEmmaaccss bbuuiilltt--iinn eeddiittoorr
33..44..11 AAccttiivvaattiinngg PPcceeEEmmaaccss
Initially edit/1 uses the editor specified in the EDITOR environment
variable. There are two ways to force it to use the built-in editor.
One is by loading library(emacs/swi_prolog), a source-file from the
PceEmacs library that installs hooks which
o Cause edit/1 to use the built-in PceEmacs
o Intercept error and warning messages while loading sources,
providing these messages in a window from which the related source
can be found by double-clicking the message.
33..44..22 BBlluuffffiinngg tthhrroouugghh PPcceeEEmmaaccss
PceEmacs closely mimics Richard Stallman's GNU-Emacs commands, adding
features from modern window-based editors to make it more acceptable
for beginners.
At the basis, PceEmacs maps keyboard sequences to methods defined on
the extended _e_d_i_t_o_r object. Some frequently used commands are, with
their key-binding, presented in the menu-bar above each editor window.
A complete overview of the bindings for the current _m_o_d_e is provided
through Help/Show key bindings (Control-h Control-b).
33..44..22..11 EEddiitt mmooddeess
Modes are the heart of (Pce)Emacs. Modes define dedicated editing
support for a particular kind of (source-)text. For our purpose we
want _P_r_o_l_o_g _m_o_d_e. Their are various ways to make PceEmacs use Prolog
mode for a file.
o _U_s_i_n_g _t_h_e _p_r_o_p_e_r _e_x_t_e_n_s_i_o_n
If the file ends in .pl or the selected alternative (e.g. .pro)
extension, Prolog mode is selected.
o _U_s_i_n_g #!/path/to/pl
If the file is a _P_r_o_l_o_g _S_c_r_i_p_t file, starting with the line
#!/path/to/pl options -s, Prolog mode is selected regardless of the
extension
o _U_s_i_n_g -*- Prolog -*-
If the above sequence appears in the first line of the file (inside
a Prolog comment) Prolog mode is sequence
o _E_x_p_l_i_c_i_t _s_e_l_e_c_t_i_o_n
Finally, using File/Mode/Prolog (y)ou can switch to Prolog mode
explicitly.
33..44..22..22 FFrreeqquueennttllyy uusseedd eeddiittoorr ccoommmmaannddss
Below we list a few important commands and how to activate them.
o _C_u_t_/_C_o_p_y_/_P_a_s_t_e
These commands follow Unix/X11 traditions. You're best suited
with a three-button mouse. After selecting using the left-mouse
(double-click uses word-mode and triple line-mode), the selected
text is _a_u_t_o_m_a_t_i_c_a_l_l_y copied to the clipboard (X11 primary
selection on Unix). _C_u_t is achieved using the DEL key or by
typing something else at the location. _P_a_s_t_e is achieved using
the middle-mouse (or wheel) button. If you don't have a middle
mouse-button, pressing the left- and right-button at the same time
is interpreted as a middle-button click. If nothing helps there is
the Edit/Paste menu-entry. Text is pasted at the caret-location.
o _U_n_d_o
Undo is bound to the GNU-Emacs Control-_ as well as the MS-Windows
Control-Z sequence.
o _A_b_o_r_t
Multi-key sequences can be aborted at any stage using Control-G.
o _F_i_n_d
Find (Search) is started using Control-S (forward) or Control-R
(backward). PceEmacs implements _i_n_c_r_e_m_e_n_t_a_l _s_e_a_r_c_h. This
is difficult to use for novices, but very powerful once you
get the clue. After one of the above start-keys the system
indicates search mode in the status line. As you are typing the
search-string, the system searches for it, extending the search
with every character you type. It illustrates the current match
using a green background.
If the target cannot be found, PceEmacs warns you and no longer
extends the search-string. During search some characters have
special meaning. Typing anything but these characters commits the
search, re-starting normal edit mode. Special commands are:
Control-S
Search for next forwards.
Control-R
Search for next backwards.
Control-W
Extend search to next word-boundary.
Control-G
Cancel search, go back to where it started.
ESC
Commit search, leaving caret at found location.
Backspace
Remove a character from the search string.
o _D_y_n_a_m_i_c _A_b_b_r_e_v_i_a_t_i_o_n
Also called _d_a_b_b_r_e_v is an important feature of Emacs clones to
support programming. After typing the first few letters of an
identifier you may hit Alt-/, causing PceEmacs to search backwards
for identifiers that start the same and using it to complete the
text you typed. A second Alt-/ searches further backwards. If
there are no hits before the caret it starts searching forwards.
With some practice, this system allows for very fast entering code
with nice and readable identifiers (or other difficult long words).
o _O_p_e_n _(_a _f_i_l_e_)
Is called File/Find file (Control-x Control-f). By default the
file is loaded into the current window. If you want to keep this
window, Hit Alt-s or click the little icon at the bottom-left to
make the window _s_t_i_c_k_y.
o _S_p_l_i_t _v_i_e_w
Sometimes you want to look at two places of the same file. To do
this, use Control-x 2 to create a new window pointing to the same
file. Do not worry, you can edit as well as move around in both.
Control-x 1 kills all other windows running on the same file.
These were the most commonly used commands. In section section 3.4.3
we discuss specific support for dealing with Prolog source code.
33..44..33 PPrroolloogg MMooddee
In the previous section (section 3.4.2) we explained the basics of
PceEmacs. Here we continue with Prolog specific functionality.
Possibly the most interesting is _S_y_n_t_a_x _h_i_g_h_l_i_g_h_t_i_n_g. Unlike most
editors where this is based on simple patterns, PceEmacs syntax
highlighting is achieved by Prolog itself actually reading and
interpreting the source as you type it. There are three moments at
which PceEmacs checks (part of) the syntax.
o _A_f_t_e_r _t_y_p_i_n_g _a .
After typing a . that is not preceeded by a _s_y_m_b_o_l character the
system assumes you completed a clause, tries to find the start of
this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given
below. Colouring is done using information from the last full
check on this file. If it fails, the syntax error is displayed in
the status line and the clause is not coloured.
o _A_f_t_e_r _t_h_e _c_o_m_m_a_n_d Control-c Control-s
Acronym for CCcheck SSyntax it performs the same checks as above for
the clause surrounding the caret. On a syntax error however, the
caret is moved to the expected location of the error.
o _A_f_t_e_r _p_a_u_s_i_n_g _f_o_r _t_w_o _s_e_c_o_n_d_s
After a short pause (2 seconds), PceEmacs opens the edit-buffer
and reads it as a whole, creating an index of defined, called,
dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid
syntax.
o _A_f_t_e_r _t_y_p_i_n_g Control-l Control-l
The Control-l commands re-centers the window (scrolls the window to
make the caret the center of the window). Hitting this command
twice starts the same process as above.
TThhee ccoolloouurr sscchheemmaa
itself is defined in library(emacs/prolog_colour). The colouring can
be extended and modified using multifile predicates. Please check this
source-file for details. In general, underlined objects have a popup
(right-mouse button) associated for common commands such as viewing the
documentation or source. BBoolldd text is used to indicate the definition
of objects (typically predicates when using plain Prolog). Other
colours follow intuitive conventions. See table 3.4.3.
_____________________________________________________
|______________________Clauses_______________________|
| Blue bold |Head of an exported predicate |
| Red bold |Head of a predicate that is not called |
|_Black_Bold_|Head_of_remaining_predicates___________|
|______________Calls_in_the_clause-body______________|
| Blue |Call to built-in or imported predicate |
| Red |Call to not-defined predicate |
|_Purple_____|Call_to_dynamic_predicate______________|
|___________________Other_entities___________________|
| Dark green |Comment |
| Dark blue |Quoted atom or string |
|_Brown______|Variable_______________________________|
Table 3.1: Colour conventions
LLaayyoouutt ssuuppppoorrtt Layout is not `just nice', it is _e_s_s_e_n_t_i_a_l for writing
readable code. There is much debate on the proper layout of Prolog.
PceEmacs, being a rather small project supports only one particular
style for layout. Below are examples of typical constructs.
head(arg1, arg2).
head(arg1, arg2) :- !.
head(Arg1, arg2) :- !,
call1(Arg1).
head(Arg1, arg2) :-
( if(Arg1)
-> then
; else
).
head(Arg1) :-
( a
; b
).
head :-
a(many,
long,
arguments(with,
many,
more),
and([ a,
long,
list,
with,
a,
| tail
])).
PceEmacs uses the same conventions as GNU-Emacs. The TAB key indents
the current line according to the syntax rules. Alt-q indents all
lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument-lists broken
across multiple lines as illustrated above.
33..44..33..11 FFiinnddiinngg yyoouurr wwaayy aarroouunndd
The command Alt-. extracts name and arity from the caret location and
jumps (after conformation or edit) to the definition of the predicate.
It does so based on the source-location database of loaded predicates
also used by edit/1. This makes locating predicates reliable if all
sources are loaded and up-to-date (see make/0).
In addition, references to files in use_module/[1,2], consult/1, etc.
are red if the file cannot be found and underlined blue if the file can
be loaded. A popup allows for opening the referenced file.
33..55 TThhee GGrraapphhiiccaall DDeebbuuggggeerr
SWI-Prolog offers two debuggers. One is the traditional text-console
based 4-port Prolog tracer and the other is a window-based source-level
debugger. The window-based debugger requires XPCE installed. It
operates based on the prolog_trace_interception/4 hook and other
low-level functionality described in chapter 9.
Window-based tracing provides much better overview due to the eminent
relation to your source-code, a clear list of named variables and their
bindings as well as a graphical overview of the call and choice-point
stack. There are some drawbacks though. Using a textual trace on the
console one can scroll back and examine the past, while the graphical
debugger just presents a (much better) overview of the current state.
33..55..11 IInnvvookkiinngg tthhee wwiinnddooww--bbaasseedd ddeebbuuggggeerr
Whether the text-based or window-based debugger is used is controlled
using the predicates guitracer/0 and noguitracer/0. Entering debug
mode is controlled using the normal predicates for this: trace/0
and spy/1. In addition, PceEmacs prolog mode provides the command
Prolog/Break at (Control-c b) to insert a break-point at a specific
location in the source-code.
gguuiittrraacceerr
This predicate installs the above-mentioned hooks that redirect
tracing to the window-based environment. No window appears.
The debugger window appears as actual tracing is started through
trace/0, by hitting a spy-point defined by spy/1 or a break-point
defined using PceEmacs command Prolog/Break at (Control-c b).
nnoogguuiittrraacceerr
Disable the hooks installed by guitracer/0, reverting to normal
text-console based tracing.
33..66 TThhee PPrroolloogg NNaavviiggaattoorr
Another tool is the _P_r_o_l_o_g _N_a_v_i_g_a_t_o_r. This tool can be started
from PceEmacs using the command Browse/Prolog navigator, from the GUI
debugger or using the predicate prolog_navigator/1.
pprroolloogg__nnaavviiggaattoorr((_+_D_i_r_O_r_L_o_c_a_t_i_o_n))
Ensure the navigator exists and the indicated location is shown.
_D_i_r_O_r_L_o_c_a_t_i_o_n is either the name of a directory or _F_i_l_e:_L_i_n_e to
open and select the given location.
33..77 SSuummmmaarryy ooff tthhee iiDDEE
The SWI-Prolog development environment consists of a number of
interrelated but not (yet) integrated tools. Here is a list of the
most important features and tips.
o _A_t_o_m _c_o_m_p_l_e_t_i_o_n
The console completes a partial atom on the TAB key and shows
alternatives on the command Alt-?.
o _U_s_e edit/1 _t_o _f_i_n_d_i_n_g _l_o_c_a_t_i_o_n_s
The command edit/1 takes the name of a file, module, predicate or
other entity registered through extensions and starts the users
preferred editor at the right location.
o _S_e_l_e_c_t _e_d_i_t_o_r
External editors are selected using the EDITOR environment
variable or by defining the hook prolog_edit:edit_source/1. The
library(emacs/swi_prolog) library may be loaded from the personal
initialisation-file to pre-select the usage of the built-in editor.
o _U_p_d_a_t_e _P_r_o_l_o_g _a_f_t_e_r _e_d_i_t_i_n_g
Using make/0, all files you have edited are re-loaded.
o _P_c_e_E_m_a_c_s
Offers syntax-highlighting and checking based on real-time parsing
of the editor's buffer, layout-support and navigation support.
o _U_s_i_n_g _t_h_e _g_r_a_p_h_i_c_a_l _d_e_b_u_g_g_e_r
The predicates guitracer/0 and noguitracer/0 switch between
traditional text-based and window-based debugging. The tracer is
activated using the trace/0, spy/1 or menu-items from PceEmacs or
the PrologNavigator.
o _T_h_e _P_r_o_l_o_g _N_a_v_i_g_a_t_o_r
Shows the file-structure and structure inside the file. It allows
for loading files, editing, setting spy-points, etc.
CChhaapptteerr 44.. BBUUIILLTT--IINN PPRREEDDIICCAATTEESS
44..11 NNoottaattiioonn ooff PPrreeddiiccaattee DDeessccrriippttiioonnss
We have tried to keep the predicate descriptions clear and concise.
First the predicate name is printed in bold face, followed by the
arguments in italics. Arguments are preceded by a `+', `-' or `?'
sign. `+' indicates the argument is input to the predicate, `-'
denotes output and `?' denotes `either input or output'. Constructs
like `op/3' refer to the predicate `op' with arity `3'.
44..22 CChhaarraacctteerr rreepprreesseennttaattiioonn
In traditional (Edinburgh-) Prolog, characters are represented using
_c_h_a_r_a_c_t_e_r_-_c_o_d_e_s. Character codes are integer indices into a specific
character set. Traditionally the character set was 7-bits US-ASCII.
8-bit character sets have been allowed for a long time, providing
support for national character sets, of which iso-latin-1 (ISO 8859-1)
is applicable to many western languages. Text-files are supposed to
represent a sequence of character-codes.
ISO Prolog introduces three types, two of which are used for characters
and one for accessing binary streams (see open/4). These types are:
o _c_o_d_e
A _c_h_a_r_a_c_t_e_r_-_c_o_d_e is an integer representing a single character.
As files may use multi-byte encoding for supporting different
character sets (utf-8 encoding for example), reading a code from a
text-file is in general not the same as reading a byte.
o _c_h_a_r
Alternatively, characters may be represented as _o_n_e_-_c_h_a_r_a_c_t_e_r_-
_a_t_o_m_s. This is a very natural representation, hiding encoding
problems from the programmer as well as providing much easier
debugging.
o _b_y_t_e
Bytes are used for accessing binary-streams.
The current version of SWI-Prolog does not provide support for
multi-byte character encoding. This implies for example that it is not
capable of breaking a multi-byte encoded atom into characters. For
SWI-Prolog, bytes and codes are the same and one-character-atoms are
simple atoms containing one byte.
To ease the pain of these multiple representations, SWI-Prolog's
built-in predicates dealing with character-data work as flexible as
possible: they accept data in any of these formats as long as the
interpretation is unambiguous. In addition, for output arguments
that are instantiated, the character is extracted before unification.
This implies that the following two calls are identical, both testing
whether the next input characters is an a.
peek_code(Stream, a).
peek_code(Stream, 97).
These multiple-representations are handled by a large number of
built-in predicates, all of which are ISO-compatible. For
converting betweem code and character there is char_code/2. For
breaking atoms and numbers into characters are are atom_chars/2,
atom_codes/2, number_codes/2 and number_chars/2. For character I/O
on streams there is get_char/[1,2], get_code/[1,2], get_byte/[1,2],
peek_char/[1,2], peek_code/[1,2], peek_byte/[1,2], put_code/[1,2],
put_char/[1,2] and put_byte/[1,2]. The prolog-flag double_quotes
(see current_prolog_flag/2) controls how text between double-quotes is
interpreted.
44..33 LLooaaddiinngg PPrroolloogg ssoouurrccee ffiilleess
This section deals with loading Prolog source-files. A Prolog source
file is a text-file (often referred to as _A_S_C_I_I_-_f_i_l_e) containing a
Prolog program or part thereof. Prolog source files come in three
flavours:
AA ttrraaddiittiioonnaall Prolog source file contains a Prolog clauses and
directives, but no _m_o_d_u_l_e_-_d_e_c_l_a_r_a_t_i_o_n. They are normally loaded
using consult/1 or ensure_loaded/1.
AA mmoodduullee Prolog source file starts with a module declaration. The
subsequent Prolog code is loaded into the specified module and only
the _p_u_b_l_i_c predicates are made available to the context loading the
module. Module files are normally loaded using use_module/[1,2].
See chapter 5 for details.
AAnn iinncclluuddee Prolog source file is loaded using the include/1 directive
and normally contains only directives.
Prolog source-files are located using absolute_file_name/3 with the
following options:
locate_prolog_file(Spec, Path) :-
absolute_file_name(Spec,
[ file_type(prolog),
access(read)
],
Path).
The file_type(_p_r_o_l_o_g) option is used to determine the extension of the
file using prolog_file_type/2. The default extension is .pl. _S_p_e_c
allows for the _p_a_t_h_-_a_l_i_a_s construct defined by absolute_file_name/3.
The most commonly used path-alias is library(_L_i_b_r_a_r_y_F_i_l_e). The
example below loads the library file oset.pl (containing predicates for
manipulating ordered sets).
:- use_module(library(oset)).
SWI-Prolog recognises grammar rules (DCG) as defined in
[Clocksin & Melish, 1987]. The user may define additional com-
pilation of the source file by defining the dynamic predicate
term_expansion/2. Transformations by this predicate overrule the
systems grammar rule transformations. It is not allowed to use
assert/1, retract/1 or any other database predicate in term_expansion/2
other than for local computational purposes.
Directives may be placed anywhere in a source file, invoking any
predicate. They are executed when encountered. If the directive
fails, a warning is printed. Directives are specified by :-/1 or ?-/1.
There is no difference between the two.
SWI-Prolog does not have a separate reconsult/1 predicate.
Reconsulting is implied automatically by the fact that a file is
consulted which is already loaded.
llooaadd__ffiilleess((_+_F_i_l_e_s_, _+_O_p_t_i_o_n_s))
The predicate load_files/2 is the parent of all the other loading
predicates. It currently supports a subset of the options of
Quintus load_files/2. _F_i_l_e_s is either specifies a single, or a
list of source-files. The specification for a source-file is
handled absolute_file_name/2. See this predicate for the supported
expansions. _O_p_t_i_o_n_s is a list of options using the format
_O_p_t_i_o_n_N_a_m_e(_O_p_t_i_o_n_V_a_l_u_e)
The following options are currently supported:
iiff((_C_o_n_d_i_t_i_o_n))
Load the file only if the specified condition is satisfied.
The value true loads the file unconditionally, changed loads
the file if it was not loaded before, or has been modified
since it was loaded the last time, not_loaded loads the file if
it was not loaded before.
mmuusstt__bbee__mmoodduullee((_B_o_o_l))
If true, raise an error if the file is not a module file.
Used by use_module/[1,2].
iimmppoorrttss((_L_i_s_t_O_r_A_l_l))
If all and the file is a module file, import all public
predicates. Otherwise import only the named predicates. Each
predicate is refered to as <_n_a_m_e>/<_a_r_i_t_y>. This option has no
effect if the file is not a module file.
ssiilleenntt((_B_o_o_l))
If true, load the file without printing a message. The
specified value is the default for all files loaded as a
result of loading the specified files.
aauuttoollooaadd((_B_o_o_l))
If true (default false), indicate this load is a _d_e_m_a_n_d
load. This implies that, depending on the setting of the
prolog-flag verbose_autoload the load-action is printed at
level informational or silent. See also print_message/2 and
current_prolog_flag/2.
ccoonnssuulltt((_+_F_i_l_e))
Read _F_i_l_e as a Prolog source file. _F_i_l_e may be a list of files,
in which case all members are consulted in turn. _F_i_l_e may start
with the csh(1) special sequences ~, <_u_s_e_r>and $<_v_a_r>. _F_i_l_e may
also be library(Name), in which case the libraries are searched for
a file with the specified name. See also library_directory/1 and
file_search_path/2. consult/1 may be abbreviated by just typing a
number of file names in a list. Examples:
?- consult(load). % consult load or load.pl
?- [library(quintus)]. % load Quintus compatibility library
Equivalent to load_files(Files, []).
eennssuurree__llooaaddeedd((_+_F_i_l_e))
If the file is not already loaded, this is equivalent to consult/1.
Otherwise, if the file defines a module, import all public
predicates. Finally, if the file is already loaded, is not a
module file and the context module is not the global user module,
ensure_loaded/1 will call consult/1.
With the semantics, we hope to get as closely possible to the clear
semantics without the presence of a module system. Applications
using modules should consider using use_module/[1,2].
Equivalent to load_files(Files, [if(changed)]).
iinncclluuddee((_+_F_i_l_e))
Pretend the terms in _F_i_l_e are in the source-file in which
:- include(File) appears. The include construct is only honnoured
if it appears as a directive in a source-file. Normally _F_i_l_e
contains a sequence of directives.
rreeqquuiirree((_+_L_i_s_t_O_f_N_a_m_e_A_n_d_A_r_i_t_y))
Declare that this file/module requires the specified predicates
to be defined ``with their commonly accepted definition''. This
predicate originates from the Prolog portability layer for XPCE. It
is intended to provide a portable mechanism for specifying that
this module requires the specified predicates.
The implementation normally first verifies whether the predicate is
already defined. If not, it will search the libraries and load the
required library.
SWI-Prolog, having autoloading, does nnoott load the library. Instead
it creates a procedure header for the predicate if it does not
exist. This will flag the predicate as `undefined'. See also
check/0 and autoload/0.
mmaakkee
Consult all source files that have been changed since they were
consulted. It checks _a_l_l loaded source files: files loaded into
a compiled state using pl -c ... and files loaded using consult
or one of its derivatives. The predicate make/0 is called after
edit/1, automatically reloading all modified files. It the user
uses an external editor (in a separate window), make/0 is normally
used to update the program after editing.
lliibbrraarryy__ddiirreeccttoorryy((_?_A_t_o_m))
Dynamic predicate used to specify library directories. Default
./lib, ~/lib/prolog and the system's library (in this order) are
defined. The user may add library directories using assert/1,
asserta/1 or remove system defaults using retract/1.
ffiillee__sseeaarrcchh__ppaatthh((_+_A_l_i_a_s_, _?_P_a_t_h))
Dynamic predicate used to specify `path-aliases'. This feature is
best described using an example. Given the definition
file_search_path(demo, '/usr/lib/prolog/demo').
the file specification demo(myfile) will be expanded to /usr/lib/
prolog/demo/myfile. The second argument of file_search_path/2 may
be another alias.
Below is the initial definition of the file search path. This
path implies swi(<_P_a_t_h>) refers to a file in the SWI-Prolog
home directory. The alias foreign(<_P_a_t_h>) is intended for
storing shared libraries (.so or .DLL files). See also
load_foreign_library/[1,2].
user:file_search_path(library, X) :-
library_directory(X).
user:file_search_path(swi, Home) :-
current_prolog_flag(home, Home).
user:file_search_path(foreign, swi(ArchLib)) :-
current_prolog_flag(arch, Arch),
atom_concat('lib/', Arch, ArchLib).
user:file_search_path(foreign, swi(lib)).
The file_search_path/2expansion is used by all loading predicates
as well as by absolute_file_name/[2,3].
The prolog-flag verbose_file_search can be set to true to help
debugging Prolog's search for files.
eexxppaanndd__ffiillee__sseeaarrcchh__ppaatthh((_+_S_p_e_c_, _-_P_a_t_h))
Unifies _P_a_t_h with all possible expansions of the file name
specification _S_p_e_c. See also absolute_file_name/3.
pprroolloogg__ffiillee__ttyyppee((_?_E_x_t_e_n_s_i_o_n_, _?_T_y_p_e))
This dynamic multifile predicate defined in module user determines
the extensions considered by file_search_path/2. _E_x_t_e_n_s_i_o_n is the
filename extension without the leading dot, _T_y_p_e denotes the type
as used by the file_type(_T_y_p_e) option of file_search_path/2. Here
is the initial definition of prolog_file_type/2:
user:prolog_file_type(pl, prolog).
user:prolog_file_type(Ext, prolog) :-
current_prolog_flag(associate, Ext),
Ext \== pl.
user:prolog_file_type(qlf, qlf).
user:prolog_file_type(Ext, executable) :-
current_prolog_flag(shared_object_extension, Ext).
Users may wish to change the extension used for Prolog source
files to avoid conflicts (for example with perl) as well as to
be compatible with some specific implementation. The preferred
alternative extension is .pro.
ssoouurrccee__ffiillee((_?_F_i_l_e))
Succeeds if _F_i_l_e is a loaded Prolog source file. _F_i_l_e is the
absolute and canonical path to the source-file.
ssoouurrccee__ffiillee((_?_P_r_e_d_, _?_F_i_l_e))
Is true if the predicate specified by _P_r_e_d was loaded
from file _F_i_l_e, where _F_i_l_e is an absolute path name (see
absolute_file_name/2). Can be used with any instantiation pattern,
but the database only maintains the source file for each predicate.
See also clause_property/2.
pprroolloogg__llooaadd__ccoonntteexxtt((_?_K_e_y_, _?_V_a_l_u_e))
Determine loading context. The following keys are defined:
________________________________________________________________
|__KKeeyy______________________||DDeessccrriippttiioonn________________________________________________________________________||
|| module |Module into which file is loaded |
| file |File loaded |
| stream |Stream identifier (see current_input/1) |
| directory |Directory in which _F_i_l_e lives. |
| term_position |Position of last term read. Term of the form|
|_______________|'$stream_position'(0,<_L_i_n_e>,0,0,0)_____________|
Quintus compatibility predicate. See also source_location/2.
ssoouurrccee__llooccaattiioonn((_-_F_i_l_e_, _-_L_i_n_e))
If the last term has been read from a physical file (i.e., not from
the file user or a string), unify _F_i_l_e with an absolute path to the
file and _L_i_n_e with the line-number in the file. New code should
use prolog_load_context/2.
tteerrmm__eexxppaannssiioonn((_+_T_e_r_m_1_, _-_T_e_r_m_2))
Dynamic predicate, normally not defined. When defined by the user
all terms read during consulting that are given to this predicate.
If the predicate succeeds Prolog will assert _T_e_r_m_2 in the database
rather then the read term (_T_e_r_m_1). _T_e_r_m_2 may be a term of a the
form `?- _G_o_a_l' or `:- _G_o_a_l'. _G_o_a_l is then treated as a directive.
If _T_e_r_m_2 is a list all terms of the list are stored in the database
or called (for directives). If _T_e_r_m_2 is of the form below, the
system will assert _C_l_a_u_s_e and record the indicated source-location
with it.
'$source_location'(<_F_i_l_e>, <_L_i_n_e>):<_C_l_a_u_s_e>
When compiling a module (see chapter 5 and the directive module/2),
expand_term/2 will first try term_expansion/2 in the module being
compiled to allow for term-expansion rules that are local to
a module. If there is no local definition, or the local
definition fails to translate the term, expand_term/2 will try
term_expansion/2 in module user. For compatibility with SICStus
and Quintus Prolog, this feature should not be used. See also
expand_term/2, goal_expansion/2 and expand_goal/2.
eexxppaanndd__tteerrmm((_+_T_e_r_m_1_, _-_T_e_r_m_2))
This predicate is normally called by the compiler to perform
preprocessing. First it calls term_expansion/2. If this predicate
fails it performs a grammar-rule translation. If this fails it
returns the first argument.
ggooaall__eexxppaannssiioonn((_+_G_o_a_l_1_, _-_G_o_a_l_2))
Like term_expansion/2, goal_expansion/2 provides for macro-
expansion of Prolog source-code. Between expand_term/2 and the
actual compilation, the body of clauses analysed and the goals are
handed to expand_goal/2, which uses the goal_expansion/2 hook to do
user-defined expansion.
The predicate goal_expansion/2 is first called in the module that
is being compiled, and then on the user module.
Only goals apearing in the body of clauses when reading a
source-file are expanded using mechanism, and only if they appear
literally in the clause, or as an argument to the meta-predicates
not/1, call/1 or forall/2. A real predicate definition is required
to deal with dynamically constructed calls.
eexxppaanndd__ggooaall((_+_G_o_a_l_1_, _-_G_o_a_l_2))
This predicate is normally called by the compiler to perform
preprocessing. First it calls goal_expansion/2. If this fails it
returns the first argument.
aatt__iinniittiiaalliizzaattiioonn((_+_G_o_a_l))
Register _G_o_a_l to be run when the system initialises.
Initialisation takes place after reloading a .qlf (formerly .wic)
file as well as after reloading a saved-state. The hooks are run
in the order they were registered. A warning message is issued if
_G_o_a_l fails, but execution continues. See also at_halt/1
aatt__hhaalltt((_+_G_o_a_l))
Register _G_o_a_l to be run when the system halts. The hooks are run
in the order they were registered. Success or failure executing a
hook is ignored. These hooks may not call halt/[0,1].
iinniittiiaalliizzaattiioonn((_+_G_o_a_l))
Call _G_o_a_l and register it using at_initialization/1. Directives
that do other things than creating clauses, records, flags or
setting predicate attributes should normally be written using this
tag to ensure the initialisation is executed when a saved system
starts. See also qsave_program/[1,2].
ccoommppiilliinngg
Succeeds if the system is compiling source files with the -c option
into an intermediate code file. Can be used to perform code
optimisations in expand_term/2 under this condition.
pprreepprroocceessssoorr((_-_O_l_d_, _+_N_e_w))
Read the input file via a Unix process that acts as preprocessor.
A preprocessor is specified as an atom. The first occurrence of
the string `%f' is replaced by the name of the file to be loaded.
The resulting atom is called as a Unix command and the standard
output of this command is loaded. To use the Unix C preprocessor
one should define:
?- preprocessor(Old, '/lib/cpp -C -P %f'), consult(...).
Old = none
44..33..11 QQuuiicckk llooaadd ffiilleess
SWI-Prolog supports compilation of individual or multiple Prolog source
files into `Quick Load Files'. A `Quick Load Files' (.qlf file) stores
the contents of the file in a precompiled format.
These files load considerably faster than source files and are normally
more compact. They are machine independent and may thus be loaded
on any implementation of SWI-Prolog. Note however that clauses are
stored as virtual machine instructions. Changes to the compiler will
generally make old compiled files unusable.
Quick Load Files are created using qcompile/1. They are loaded using
consult/1 or one of the other file-loading predicates described in
section 4.3. If consult is given the explicit .pl file, it will load
the Prolog source. When given the .qlf file, it will load the file.
When no extension is specified, it will load the .qlf file when present
and the .pl file otherwise.
qqccoommppiillee((_+_F_i_l_e))
Takes a single file specification like consult/1 (i.e., accepts
constructs like library(LibFile) and creates a Quick Load File from
_F_i_l_e. The file-extension of this file is .qlf. The base name of
the Quick Load File is the same as the input file.
If the file contains `:- consult(+File)' or `:- [+File]'
statements, the referred files are compiled into the same .qlf
file. Other directives will be stored in the .qlf file and
executed in the same fashion as when loading the .pl file.
For term_expansion/2, the same rules as described in section 2.10
apply.
Source references (source_file/2) in the Quick Load File refer to
the Prolog source file from which the compiled code originates.
44..44 LLiissttiinngg aanndd EEddiittoorr IInntteerrffaaccee
SWI-Prolog offers an extensible interface which allows the user to
edit objects of the program: predicates, modules, files, etc. The
editor interface is implemented by edit/1 and consists of three parts:
_l_o_c_a_t_i_n_g, _s_e_l_e_c_t_i_n_g and _s_t_a_r_t_i_n_g _t_h_e _e_d_i_t_o_r.
Any of these parts may be extended or redefined by adding clauses to
various multi-file (see multifile/1) predicates defined in the module
prolog_edit.
The built-in edit specifications for edit/1 (see prolog_edit:locate/3)
are described below.
___________________________________________________________________
|__________________________________________FFuullllyy__ssppeecciiffiieedd__oobbjjeeccttss____________________________________________||
|| <_M_o_d_u_l_e>:<_N_a_m_e>/<_A_r_i_t_y>R|efers a predicate |
| module(<_M_o_d_u_l_e>) |Refers to a module |
| file(<_P_a_t_h>) |Refers to a file |
|_source_file(<_P_a_t_h>)___R|efers_to_a_loaded_source-file___________|_
|__________________________________________AAmmbbiigguuoouuss__ssppeecciiffiiccaattiioonnss__________________________________________||
|| <_N_a_m_e>/<_A_r_i_t_y> R|efers this predicate in any module |
| <_N_a_m_e> |Refers to (1) named predicate in any|
| |module with any arity, (2) a (source)|
|_______________________|file_or_(3)_a_module.____________________|_
eeddiitt((_+_S_p_e_c_i_f_i_c_a_t_i_o_n))
First exploits prolog_edit:locate/3to translate _S_p_e_c_i_f_i_c_a_t_i_o_n into
a list of _L_o_c_a_t_i_o_n_s. If there is more than one `hit', the
user is allows to select from the found locations. Finally,
prolog_edit:edit_source/1 is used to invoke the user's preferred
editor.
pprroolloogg__eeddiitt::llooccaattee((_+_S_p_e_c_, _-_F_u_l_l_S_p_e_c_, _-_L_o_c_a_t_i_o_n))
Where _S_p_e_c is the specification provided through edit/1. This
multifile predicate is used to enumerate locations at with an
object satisfying the given _S_p_e_c can be found. _F_u_l_l_S_p_e_c is unified
with the complete specification for the object. This distinction
is used to allow for ambiguous specifications. For example, if
_S_p_e_c is an atom, which appears as the base-name of a loaded
file and as the name of a predicate, _F_u_l_l_S_p_e_c will be bound to
file(_P_a_t_h) or _N_a_m_e/_A_r_i_t_y.
_L_o_c_a_t_i_o_n is a list of attributes of the location. Normally, this
list will contain the term file(_F_i_l_e) and ---if available--- the
term line(_L_i_n_e).
pprroolloogg__eeddiitt::llooccaattee((_+_S_p_e_c_, _-_L_o_c_a_t_i_o_n))
Same as prolog_edit:locate/3, but only deals with fully-sepecified
objects.
pprroolloogg__eeddiitt::eeddiitt__ssoouurrccee((_+_L_o_c_a_t_i_o_n))
Start editor on _L_o_c_a_t_i_o_n. See prolog_edit:locate/3for the format
of a location term. This multi-file predicate is normally not
defined. If it succeeds, edit/1 assumes the editor is started.
If it fails, edit/1 will invoke an external editor. The editor
to be invoked is determined from the evironment variable EDITOR,
which may be set from the operating system or from the Prolog
initialisation file using setenv/2. If no editor is defined, vi is
the default in Unix systems, and notepad on Windows.
The predicate prolog_edit:edit_command/2 defines how the editor
will be invoked.
pprroolloogg__eeddiitt::eeddiitt__ccoommmmaanndd((_+_E_d_i_t_o_r_, _-_C_o_m_m_a_n_d))
Determines how _E_d_i_t_o_r is to be invoked using shell/1. _E_d_i_t_o_r is
the determined editor (see edit_source/1), without the full path
specification, and without possible (exe) extension. _C_o_m_m_a_n_d is
an atom describing the command. The pattern %f is replaced by
the full file-name of the location, and %d by the line number.
If the editor can deal with starting at a specified line, two
clauses should be provided, one holding only the %f pattern, and
one holding both patterns.
The default contains definitions for vi, emacs, emacsclient, vim
and notepad (latter without line-number version).
Please contribute your specifications to jan@swi.psy.uva.nl.
pprroolloogg__eeddiitt::llooaadd
Normally not-defined multifile predicate. This predicate may
be defined to provide loading hooks for user-extensions to the
edit module. For example, XPCE provides the code below to load
library(swi_edit), containing definitions to locate classes and
methods as well as to bind this package to the PceEmacs built-in
editor.
:- multifile prolog_edit:load/0.
prolog_edit:load :-
ensure_loaded(library(swi_edit)).
lliissttiinngg((_+_P_r_e_d))
List specified predicates (when an atom is given all predicates
with this name will be listed). The listing is produced on the
basis of the internal representation, thus losing user's layout and
variable name information. See also portray_clause/1.
lliissttiinngg
List all predicates of the database using listing/1.
ppoorrttrraayy__ccllaauussee((_+_C_l_a_u_s_e))
Pretty print a clause. A clause should be specified as a term
`<_H_e_a_d> :- <_B_o_d_y>'. Facts are represented as `<_H_e_a_d> :- true'.
44..55 VVeerriiffyy TTyyppee ooff aa TTeerrmm
vvaarr((_+_T_e_r_m))
Succeeds if _T_e_r_m currently is a free variable.
nnoonnvvaarr((_+_T_e_r_m))
Succeeds if _T_e_r_m currently is not a free variable.
iinntteeggeerr((_+_T_e_r_m))
Succeeds if _T_e_r_m is bound to an integer.
ffllooaatt((_+_T_e_r_m))
Succeeds if _T_e_r_m is bound to a floating point number.
nnuummbbeerr((_+_T_e_r_m))
Succeeds if _T_e_r_m is bound to an integer or a floating point number.
aattoomm((_+_T_e_r_m))
Succeeds if _T_e_r_m is bound to an atom.
ssttrriinngg((_+_T_e_r_m))
Succeeds if _T_e_r_m is bound to a string.
aattoommiicc((_+_T_e_r_m))
Succeeds if _T_e_r_m is bound to an atom, string, integer or floating
point number.
ccoommppoouunndd((_+_T_e_r_m))
Succeeds if _T_e_r_m is bound to a compound term. See also functor/3
and =../2.
ccaallllaabbllee((_+_T_e_r_m))
Succeeds if _T_e_r_m is bound to an atom or a compound term, so it can
be handed without type-error to call/1, functor/3 and =../2.
ggrroouunndd((_+_T_e_r_m))
Succeeds if _T_e_r_m holds no free variables.
44..66 CCoommppaarriissoonn aanndd UUnniiffiiccaattiioonn oorr TTeerrmmss
44..66..11 SSttaannddaarrdd OOrrddeerr ooff TTeerrmmss
Comparison and unification of arbitrary terms. Terms are ordered in
the so called ``standard order''. This order is defined as follows:
1. _V_a_r_i_a_b_l_e_s <_A_t_o_m_s <_S_t_r_i_n_g_s <_N_u_m_b_e_r_s <_T_e_r_m_s
2. _O_l_d _V_a_r_i_a_b_l_e <_N_e_w _V_a_r_i_a_b_l_e
3. _A_t_o_m_s are compared alphabetically.
4. _S_t_r_i_n_g_s are compared alphabetically.
5. _N_u_m_b_e_r_s are compared by value. Integers and floats are treated
identically.
6. _C_o_m_p_o_u_n_d terms are first checked on their arity, then on their
functor-name (alphabetically) and finally recursively on their
arguments, leftmost argument first.
If the prolog_flag (see current_prolog_flag/2) iso is defined, all
floating point numbers precede all integers.
_+_T_e_r_m_1 == _+_T_e_r_m_2
Succeeds if _T_e_r_m_1 is equivalent to _T_e_r_m_2. A variable is only
identical to a sharing variable.
_+_T_e_r_m_1 \== _+_T_e_r_m_2
Equivalent to \+Term1 == Term2.
_+_T_e_r_m_1 = _+_T_e_r_m_2
Unify _T_e_r_m_1 with _T_e_r_m_2. Succeeds if the unification succeeds.
uunniiffyy__wwiitthh__ooccccuurrss__cchheecckk((_+_T_e_r_m_1_, _+_T_e_r_m_2))
As =/2, but using _s_o_u_n_d_-_u_n_i_f_i_c_a_t_i_o_n. That is, a variable only
unifies to a term if this term does not contain the variable
itself. To illustrate this, consider the two goals below:
1 ?- A = f(A).
A = f(f(f(f(f(f(f(f(f(f(...))))))))))
2 ?- unify_with_occurs_check(A, f(A)).
No
I.e. the first creates a _c_y_c_l_i_c_-_t_e_r_m, which is printed as
an infinitely nested f/1 term (see the max_depth option of
write_term/2). The second executes logically sound unification and
thus fails.
_+_T_e_r_m_1 \= _+_T_e_r_m_2
Equivalent to \+Term1 = Term2.
_+_T_e_r_m_1 =@= _+_T_e_r_m_2
Succeeds if _T_e_r_m_1 is `structurally equal' to _T_e_r_m_2. Structural
equivalence is weaker than equivalence (==/2), but stronger than
unification (=/2). Two terms are structurally equal if their tree
representation is identical and they have the same `pattern' of
variables. Examples:
a =@= A false
A =@= B true
x(A,A) =@= x(B,C) false
x(A,A) =@= x(B,B) true
x(A,B) =@= x(C,D) true
_+_T_e_r_m_1 \=@= _+_T_e_r_m_2
Equivalent to `\+Term1 =@= Term2'.
_+_T_e_r_m_1 @< _+_T_e_r_m_2
Succeeds if _T_e_r_m_1 is before _T_e_r_m_2 in the standard order of terms.
_+_T_e_r_m_1 @=< _+_T_e_r_m_2
Succeeds if both terms are equal (==/2) or _T_e_r_m_1 is before _T_e_r_m_2 in
the standard order of terms.
_+_T_e_r_m_1 @> _+_T_e_r_m_2
Succeeds if _T_e_r_m_1 is after _T_e_r_m_2 in the standard order of terms.
_+_T_e_r_m_1 @>= _+_T_e_r_m_2
Succeeds if both terms are equal (==/2) or _T_e_r_m_1 is after _T_e_r_m_2 in
the standard order of terms.
ccoommppaarree((_?_O_r_d_e_r_, _+_T_e_r_m_1_, _+_T_e_r_m_2))
Determine or test the _O_r_d_e_r between two terms in the standard order
of terms. _O_r_d_e_r is one of <, > or =, with the obvious meaning.
44..77 CCoonnttrrooll PPrreeddiiccaatteess
The predicates of this section implement control structures. Normally
these constructs are translated into virtual machine instructions by
the compiler. It is still necessary to implement these constructs as
true predicates to support meta-calls, as demonstrated in the example
below. The predicate finds all currently defined atoms of 1 character
long. Note that the cut has no effect when called via one of these
predicates (see !/0).
one_character_atoms(As) :-
findall(A, (current_atom(A), atom_length(A, 1)), As).
ffaaiill
Always fail. The predicate fail/0 is translated into a single
virtual machine instruction.
ttrruuee
Always succeed. The predicate true/0 is translated into a single
virtual machine instruction.
rreeppeeaatt
Always succeed, provide an infinite number of choice points.
!
Cut. Discard choice points of parent frame and frames created
after the parent frame. As of SWI-Prolog 3.3, the semantics of the
cut are compliant with the ISO standard. This implies that the cut
is transparent to ;/2, ->/2 and *->/2. Cuts appearing in the
_c_o_n_d_i_t_i_o_n part of ->/2 and *->/2 as well as in \+/1 are local to
the condition.
t1 :- (a, !, fail ; b). % cuts a/0 and t1/0
t2 :- (a -> b, ! ; c). % cuts b/0 and t2/0
t3 :- call((a, !, fail ; b)). % cuts a/0
t4 :- \+(a, !, fail ; b). % cuts a/0
_+_G_o_a_l_1 , _+_G_o_a_l_2
Conjunction. Succeeds if both `Goal1' and `Goal2' can be proved.
It is defined as (this definition does not lead to a loop as the
second comma is handled by the compiler):
Goal1, Goal2 :- Goal1, Goal2.
_+_G_o_a_l_1 ; _+_G_o_a_l_2
The `or' predicate is defined as:
Goal1 ; _Goal2 :- Goal1.
_Goal1 ; Goal2 :- Goal2.
_+_G_o_a_l_1 | _+_G_o_a_l_2
Equivalent to ;/2. Retained for compatibility only. New code
should use ;/2.
_+_C_o_n_d_i_t_i_o_n -> _+_A_c_t_i_o_n
If-then and If-Then-Else. The ->/2 construct commits to the
choices made at its left-hand side, destroying choice-points
created inside the clause (by ;/2), or by goals called by this
clause. Unlike !/0, the choicepoint of the predicate as a whole
(due to multiple clauses) is nnoott destroyed. The combination ;/2
and ->/2 is defines as:
If -> Then; _Else :- If, !, Then.
If -> _Then; Else :- !, Else.
If -> Then :- If, !, Then.
Note that the operator precedence relation between ; and
-> ensure If -> Then ; Else is actually a term of the form
;(->(If, Then), Else). The first two clauses belong to the
definition of ;/2), while only the last defines ->/2 .
_+_C_o_n_d_i_t_i_o_n *-> _+_A_c_t_i_o_n _; _+_E_l_s_e
This construct implements the so-called `soft-cut'. The control
is defined as follows: If _C_o_n_d_i_t_i_o_n succeeds at least once, the
semantics is the same as (_C_o_n_d_i_t_i_o_n, _A_c_t_i_o_n). If _C_o_n_d_i_t_i_o_n does
not succeed, the semantics is that of (_C_o_n_d_i_t_i_o_n, _E_l_s_e). In other
words, If _C_o_n_d_i_t_i_o_n succeeds at least once, simply behave as the
conjunction of _C_o_n_d_i_t_i_o_n and _A_c_t_i_o_n, otherwise execute _E_l_s_e.
\+ _+_G_o_a_l
Succeeds if `Goal' cannot be proven (mnemonic: + refers to
_p_r_o_v_a_b_l_e and the backslash (\) is normally used to indicate
negation).
44..88 MMeettaa--CCaallll PPrreeddiiccaatteess
Meta call predicates are used to call terms constructed at run time.
The basic meta-call mechanism offered by SWI-Prolog is to use variables
as a subclause (which should of course be bound to a valid goal at
runtime). A meta-call is slower than a normal call as it involves
actually searching the database at runtime for the predicate, while for
normal calls this search is done at compile time.
ccaallll((_+_G_o_a_l))
Invoke _G_o_a_l as a goal. Note that clauses may have variables as
subclauses, which is identical to call/1, except when the argument
is bound to the cut. See !/0.
ccaallll((_+_G_o_a_l_, _+_E_x_t_r_a_A_r_g_1_, _._._.))
Append _E_x_t_r_a_A_r_g_1_, _E_x_t_r_a_A_r_g_2_, _._._. to the argument list of _G_o_a_l
and call the result. For example, call(plus(1), 2, X) will call
plus/3, binding _X to 3.
The call/[2..] construct is handled by the compiler, which implies
that redefinition as a predicate has no effect. The predicates
call/[2-6] are defined as true predicates, so they can be handled
by interpreted code.
aappppllyy((_+_T_e_r_m_, _+_L_i_s_t))
Append the members of _L_i_s_t to the arguments of _T_e_r_m and call the
resulting term. For example: apply(plus(1), [2, X]) will call
plus(1, 2, X). apply/2 is incorporated in the virtual machine of
SWI-Prolog. This implies that the overhead can be compared to the
overhead of call/1. New code should use call/[2..] if the length
of _L_i_s_t is fixed, which is more widely supported and faster because
there is no need to build and examine the argument list.
nnoott((_+_G_o_a_l))
Succeeds when _G_o_a_l cannot be proven. Retained for compatibility
only. New code should use \+/1.
oonnccee((_+_G_o_a_l))
Defined as:
once(Goal) :-
Goal, !.
once/1 can in many cases be replaced with ->/2. The only
difference is how the cut behaves (see !/0). The following two
clauses are identical:
1) a :- once((b, c)), d.
2) a :- b, c -> d.
iiggnnoorree((_+_G_o_a_l))
Calls _G_o_a_l as once/1, but succeeds, regardless of whether _G_o_a_l
succeeded or not. Defined as:
ignore(Goal) :-
Goal, !.
ignore(_).
ccaallll__wwiitthh__ddeepptthh__lliimmiitt((_+_G_o_a_l_, _+_L_i_m_i_t_, _-_R_e_s_u_l_t))
If _G_o_a_l can be proven without recursion deeper than _L_i_m_i_t levels,
call_with_depth_limit/3 succeeds, binding _R_e_s_u_l_t to the deepest
recursion level used during the proof. Otherwise, _R_e_s_u_l_t is
unified with depth_limit_exceeded if the limit was exceeded during
the proof, or the entire predicate fails if _G_o_a_l fails without
exceeding _L_i_m_i_t.
The depth-limit is guarded by the internal machinery. This may
differ from the depth computed based on a theoretical model. For
example, true/0 is translated into an inlined virtual machine
instruction. Also, repeat/0 is not implemented as below, but as a
non-deterministic foreign predicate.
repeat.
repeat :-
repeat.
As a result, call_with_depth_limit/3 may still loop inifitly on
programs that should theoretically finish in finite time. This
problem can be cured by using Prolog equivalents to such built-in
predicates.
This predicate may be used for theorem-provers to realise
techniques like _i_t_e_r_r_a_t_i_v_e _d_e_e_p_e_n_i_n_g. It was implemented after
discussion with Steve Moyle smoyle@ermine.ox.ac.uk.
ccaallll__cclleeaannuupp((_:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_C_l_e_a_n_u_p))
Calls _G_o_a_l. If _G_o_a_l is completely finished, either by
deterministic success, failure, its choicepoint being cut or
raising an exception and _C_a_t_c_h_e_r unifies to the termination code
(see below), _C_l_e_a_n_u_p is called. Success or failure of _C_l_e_a_n_u_p
is ignored and possibly choicepoints it created are destroyed (as
once/1). If cleanup throws an exception this is executed as
normal.
_C_a_t_c_h_e_r is unified with a term describing how the call has
finished. If this unification fails, _C_l_e_a_n_u_p is _n_o_t called.
eexxiitt
_G_o_a_l succeeded without leaving any choicepoints.
ffaaiill
_G_o_a_l failed.
!
_G_o_a_l succeeded with choicepoints and these are now discarded
by the execution of a cut (or orther pruning of the search
tree such as if-then-else).
eexxcceeppttiioonn((_E_x_c_e_p_t_i_o_n))
_G_o_a_l raised the given _E_x_c_e_p_t_i_o_n.
Typical use of this predicate is cleanup of permanent data storage
required to execute _G_o_a_l, close file-descriptors, etc. The example
below provides a non-deterministic search for a term in a file,
closing the stream as needed.
term_in_file(Term, File) :-
open(File, read, In),
call_cleanup(term_in_stream(Term, In), _, close(In)).
term_in_stream(Term, In) :-
repeat,
read(In, T),
( T == end_of_file
-> !, fail
; T = Term
).
Note that this predicate is impossible to implement in Prolog
other then reading all terms into a list, close the file and call
member/2 because without call_cleanup/3 there is no way to gain
control if the choicepoint left by repeat is killed by a cut.
This predicate is a SWI-Prolog extension. See also call_cleanup/2
for compatibility to other Prolog implementations.
ccaallll__cclleeaannuupp((_:_G_o_a_l_, _:_C_l_e_a_n_u_p))
This predicate is equivalent to call_cleanup(_G_o_a_l_, ___, _C_l_e_a_n_u_p),
calling _C_l_e_a_n_u_p regardless of the reason for termination
and without providing information. This predicate provides
compatibility to a number of other Prolog implementations.
44..99 IISSOO ccoommpplliiaanntt EExxcceeppttiioonn hhaannddlliinngg
SWI-Prolog defines the predicates catch/3 and throw/1 for ISO compliant
raising and catching of exceptions. In the current implementation
(4.0.6), most of the built-in predicates generate exceptions, but some
obscure predicates merely print a message, start the debugger and fail,
which was the normal behaviour before the introduction of exceptions.
ccaattcchh((_:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_R_e_c_o_v_e_r))
Behaves as call/1 if no exception is raised when executing _G_o_a_l.
If a exception is raised using throw/1 while _G_o_a_l executes, and
the _G_o_a_l is the innermost goal for which _C_a_t_c_h_e_r unifies with the
argument of throw/1, all choicepoints generated by _G_o_a_l are cut,
the system backtracks to the start of catch/3 while preserving the
thrown exception term and _R_e_c_o_v_e_r is called as in call/1.
The overhead of calling a goal through catch/3 is very comparable
to call/1. Recovery from an exception is much slower, especially
if the exception-term is large due to the copying thereof.
tthhrrooww((_+_E_x_c_e_p_t_i_o_n))
Raise an exception. The system looks for the innermost catch/3
ancestor for which _E_x_c_e_p_t_i_o_n unifies with the _C_a_t_c_h_e_r argument of
the catch/3 call. See catch/3 for details.
ISO demands throw/1 to make a copy of _E_x_c_e_p_t_i_o_n, walk up the stack
to a catch/3 call, backtrack and try to unify the copy of _E_x_c_e_p_t_i_o_n
with _C_a_t_c_h_e_r. SWI-Prolog delays making a copy of _E_x_c_e_p_t_i_o_n and
backtracking until it actually found a matching catch/3 goal. The
advantage is that we can start the debugger at the first possible
location while preserving the entire exception context if there is
no matching catch/3 goal. This aproach can lead to different
behaviour if _G_o_a_l and _C_a_t_c_h_e_r of catch/3 call share variables. We
assume this to be highly unlikely and could not think of a scenario
where this is useful.
If an exception is raised in a callback from C (see chapter 6) and
not caught in the same call-back, PL_next_solution()fails and the
exception context can be retrieved using PL_exception().
44..99..11 DDeebbuuggggiinngg aanndd eexxcceeppttiioonnss
Before the introduction of exceptions in SWI-Prolog a runtime error
was handled by printing an error message, after which the predicate
failed. If the prolog_flag (see current_prolog_flag/2) debug_on_error
was in effect (default), the tracer was switched on. The combination
of the error message and trace information is generally sufficient to
locate the error.
With exception handling, things are different. A programmer may wish
to trap an exception using catch/3 to avoid it reaching the user. If
the exception is not handled by user-code, the interactive toplevel
will trap it to prevent termination.
If we do not take special precautions, the context information
associated with an unexpected exception (i.e, a programming error) is
lost. Therefore, if an exception is raised, which is not caught using
catch/3 and the toplevel is running, the error will be printed, and the
system will enter trace mode.
If the system is in an non-interactive callback from foreign code and
there is no catch/3 active in the current context, it cannot determine
whether or not the exception will be caught by the external routine
calling Prolog. It will then base its behaviour on the prolog_flag
debug_on_error:
o _c_u_r_r_e_n_t___p_r_o_l_o_g___f_l_a_g_(_d_e_b_u_g___o_n___e_r_r_o_r_, _f_a_l_s_e_)
The exception does not trap the debugger and is returned to the
foreign routine calling Prolog, where it can be accessed using
PL_exception(). This is the default.
o _c_u_r_r_e_n_t___p_r_o_l_o_g___f_l_a_g_(_d_e_b_u_g___o_n___e_r_r_o_r_, _t_r_u_e_)
If the exception is not caught by Prolog in the current context, it
will trap the tracer to help analysing the context of the error.
While looking for the context in which an exception takes place, it is
advised to switch on debug mode using the predicate debug/0.
44..99..22 TThhee eexxcceeppttiioonn tteerrmm
Builtin predicates generates exceptions using a term error(_F_o_r_m_a_l_,
_C_o_n_t_e_x_t). The first argument is the `formal' description of the
error, specifying the class and generic defined context information.
When applicable, the ISO error-term definition is used. The second
part describes some additional context to help the programmer while
debugging. In its most generic form this is a term of the form
context(_N_a_m_e_/_A_r_i_t_y_, _M_e_s_s_a_g_e), where _N_a_m_e/_A_r_i_t_y describes the built-in
predicate that raised the error, and _M_e_s_s_a_g_e provides an additional
description of the error. Any part of this structure may be a variable
if no information was present.
44..99..33 PPrriinnttiinngg mmeessssaaggeess
The predicate print_message/2 may be used to print a message term in a
human readable format. The other predicates from this section allow
the user to refine and extend the message system. The most common
usage of print_message/2 is to print error messages from exceptions.
The code below prints errors encountered during the execution of _G_o_a_l,
without further propagating the exception and without starting the
debugger.
...,
catch(Goal, E,
( print_message(error, E),
fail
)),
...
Another common use is to defined message_hook/3 for printing messages
that are normally _s_i_l_e_n_t, suppressing messages, redirecting messages or
make something happen in addition to printing the message.
pprriinntt__mmeessssaaggee((_+_K_i_n_d_, _+_T_e_r_m))
The predicate print_message/2 is used to print messages, notably
from exceptions in a human-readable format. _K_i_n_d is one of
informational, banner, warning, error, help or silent. A
human-readable message is printed to the stream user_error.
If the prolog flag (see current_prolog_flag/2) verbose is silent,
messages with _K_i_n_d informational, or banner are treated as silent.
See -q.
This predicate first translates the _T_e_r_m into a list of `message
lines' (see print_message_lines/3for details). Next it will call
the hook message_hook/3to allow the user intercepting the message.
If message_hook/3 fails it will print the message unless _K_i_n_d is
silent.
The print_message/2 predicate and its rules are in the file
<_p_l_h_o_m_e>/boot/messages.pl, which may be inspected for more
information on the error messages and related error terms.
See also message_to_string/2.
pprriinntt__mmeessssaaggee__lliinneess((_+_S_t_r_e_a_m_, _+_P_r_e_f_i_x_, _+_L_i_n_e_s))
Print a message (see print_message/2) that has been translated to a
list of message elements. The elements of this list are:
<_F_o_r_m_a_t>--<_A_r_g_s>
Where _F_o_r_m_a_t is an atom and _A_r_g_s is a list of format argument.
Handed to format/3.
flush
If this appears as the last element, _S_t_r_e_a_m is flushed (see
flush_output/1) and no final newline is generated.
at_same_line
If this appears as first element, no prefix is printed for
the first line and the line-position is not forced to 0 (see
format/1, ~N).
<_F_o_r_m_a_t>
Handed to format/3 as format(Stream, Format, []).
nnll
A new line is started and if the message is not complete the
_P_r_e_f_i_x is printed too.
See also print_message/2 and message_hook/3.
mmeessssaaggee__hhooookk((_+_T_e_r_m_, _+_K_i_n_d_, _+_L_i_n_e_s))
Hook predicate that may be define in the module user to intercept
messages from print_message/2. _T_e_r_m and _K_i_n_d are the same as
passed to print_message/2. _L_i_n_e_s is a list of format statements as
described with print_message_lines/3. See also message_to_string/2.
This predicate should be defined dynamic and multifile to allow
other modules defining clauses for it too.
mmeessssaaggee__ttoo__ssttrriinngg((_+_T_e_r_m_, _-_S_t_r_i_n_g))
Translates a message-term into a string object (see section 4.23.
Primarily intended to write messages to Windows in XPCE (see
section 1.5) or other GUI environments.
44..1100 HHaannddlliinngg ssiiggnnaallss
As of version 3.1.0, SWI-Prolog is capable to handle software
interrupts (signals) in Prolog as well as in foreign (C) code (see
section 6.6.12).
Signals are used to handle internal errors (execution of a non-existing
CPU intruction, arithmetic domain errors, illegal memory access,
resource overflow, etc.), as well as for dealing asynchronous
inter-process communication.
Signals are defined by the Posix standard and part of all Unix
machines. The MS-Windows Win32 provides a subset of the signal
handling routines, lacking the vital funtionality to raise a signal
in another thread for achieving asynchronous inter-process (or
inter-thread) communication (Unix kill() function).
oonn__ssiiggnnaall((_+_S_i_g_n_a_l_, _-_O_l_d_, _:_N_e_w))
Determines the reaction on _S_i_g_n_a_l. _O_l_d is unified with the old
behaviour, while the behaviour is switched to _N_e_w. As with similar
environment-control predicates, the current value is retrieved
using on_signal(Signal, Current, Current).
The action description is an atom denoting the name of the
predicate that will be called if _S_i_g_n_a_l arrives. on_signal/3
is a meta predicate, which implies that <_M_o_d_u_l_e>:<_N_a_m_e> refers the
<_N_a_m_e>/1 in the module <_M_o_d_u_l_e>.
Two predicate-names have special meaning. throw implies Prolog
will map the signal onto a Prolog exception as described in
section 4.9. default resets the handler to the settings active
before SWI-Prolog manipulated the handler.
Signals bound to a foreign function through PL_signal() are
reported using the term $foreign_function(_A_d_d_r_e_s_s).
After receiving a signal mapped to throw, the exception raised has
the structure
error(signal(<_S_i_g_N_a_m_e>, <_S_i_g_N_u_m>), <_C_o_n_t_e_x_t>)
One possible usage of this is, for example, to limit the time spent
on proving a goal. This requires a little C-code for setting the
alarm timer (see chapter 6):
#include <SWI-Prolog.h>
#include <unistd.h>
foreign_t
pl_alarm(term_t time)
{ double t;
if ( PL_get_float(time, &t) )
{ alarm((long)(t+0.5));
PL_succeed;
}
PL_fail;
}
install_t
install()
{ PL_register_foreign("alarm", 1, pl_alarm, 0);
}
Next, we can define the following Prolog code:
:- load_foreign_library(alarm).
:- on_signal(alrm, throw).
:- module_transparent
call_with_time_limit/2.
call_with_time_limit(Goal, MaxTime) :-
alarm(MaxTime),
catch(Goal, error(signal(alrm, _), _), fail), !,
alarm(0).
call_with_time_limit(_, _) :-
alarm(0),
fail.
The signal names are defined by the C-Posix standards as symbols
of the form SIG_<_S_I_G_N_A_M_E>. The Prolog name for a signal is the
lowercase version of <_S_I_G_N_A_M_E>. The predicate current_signal/3 may
be used to map between names and signals.
Initially, some signals are mapped to throw, while all other
signals are default. The following signals throw an exception:
ill, fpe, segv, pipe, alrm, bus, xcpu, xfsz and vtalrm.
ccuurrrreenntt__ssiiggnnaall((_?_N_a_m_e_, _?_I_d_, _?_H_a_n_d_l_e_r))
Enumerate the currently defined signal handling. _N_a_m_e is the
signal name, _I_d is the numerical identifier and _H_a_n_d_l_e_r is the
currently defined handler (see on_signal/3).
44..1100..11 NNootteess oonn ssiiggnnaall hhaannddlliinngg
Before deciding to deal with signals in your application, please
consider the following:
o _P_o_r_t_i_b_i_l_i_t_y
On MS-Windows, the signal interface is severely limited. Different
Unix brands support different sets of signals, and the relation
between signal name and number may vary.
o _S_a_f_e_t_y
Signal handling is not completely safe in the current
implementation, especially if throw is used in combination with
external foreign code. The system will use the C longjmp()
construct to direct control to the innermost PL_next_solution(),
thus forcing an external procedure to be abandoned at an arbitrary
moment. Most likely not all SWI-Prologs own foreign code is (yet)
safe too.
o _G_a_r_b_a_g_e _C_o_l_l_e_c_t_i_o_n
The garbage collector will block all signals that are handled
by Prolog. While handling a signal, the garbage-collector is
disabled.
o _T_i_m_e _o_f _d_e_l_i_v_e_r_y
Normally delivery is immediate (or as defined by the operating
system used). Signals are blocked when the garbage collector is
active, and internally delayed if they occur within in a `critical
section'. The critical sections are generally very short.
44..1111 TThhee ``bblloocckk'' ccoonnttrrooll--ssttrruuccttuurree
The block/3 predicate and friends have been introduced before ISO
compatible catch/3 exception handling for compatibility with some
Prolog implementation. The only feature not covered by catch/3 and
throw/1 is the posibility to execute global cuts. New code should use
catch/3 and throw/1 to deal with exceptions.
bblloocckk((_+_L_a_b_e_l_, _+_G_o_a_l_, _-_E_x_i_t_V_a_l_u_e))
Execute _G_o_a_l in a _b_l_o_c_k. _L_a_b_e_l is the name of the block. _L_a_b_e_l
is normally an atom, but the system imposes no type constraints
and may even be a variable. _E_x_i_t_V_a_l_u_e is normally unified to the
second argument of an exit/2 call invoked by _G_o_a_l.
eexxiitt((_+_L_a_b_e_l_, _+_V_a_l_u_e))
Calling exit/2 makes the innermost _b_l_o_c_k which _L_a_b_e_l unifies exit.
The block's _E_x_i_t_V_a_l_u_e is unified with _V_a_l_u_e. If this unification
fails the block fails.
ffaaiill((_+_L_a_b_e_l))
Calling fail/1 makes the innermost _b_l_o_c_k which _L_a_b_e_l unifies fail
immediately. Implemented as
fail(Label) :- !(Label), fail.
!((_+_L_a_b_e_l))
Cut all choice-points created since the entry of the innermost
_b_l_o_c_k which _L_a_b_e_l unifies.
44..1122 DDCCGG GGrraammmmaarr rruulleess
Grammar rules form a comfortable interface to _d_i_f_f_e_r_e_n_c_e_-_l_i_s_t_s. They
are designed both to support writing parsers that build a parse-tree
from a list as for generating a flat list from a term. Unfortunately,
Definite Clause Grammar (DCG) handling is not part of the Prolog
standard. Most Prolog engines implement DCG, but the details differ
slightly.
Grammar rules look like ordinary clauses using -->/2 for separating
the head and body rather then :-/2. Expanding grammar rules is done
by expand_term/2, which adds two additional argument to each term for
representing the difference list. We will illustrate the behaviour by
defining a rule-set for parsing an integer.
integer(I) -->
digit(D0),
digits(D),
{ number_chars(I, [D0|D])
}.
digits([D|T]) -->
digit(D), !,
digits(T).
digits([]) -->
[].
digit(D) -->
[D],
{ code_type(D, digit)
}.
The body of a grammar rule can contain three types of terms. A
compound term interpreted as a reference to a grammar-rule. Code
between {...} is interpreted as a reference to ordinary Prolog code
and finally, a list is interpreted as a sequence of literals. The
Prolog control-constructs (\+/1, ->/2, ;//2, ,/2 and !/0) can be used
in grammar rules.
Grammar rule-sets are called using the builtin predicates phrase/2 and
phrase/3:
pphhrraassee((_+_R_u_l_e_S_e_t_, _+_I_n_p_u_t_L_i_s_t))
Equivalent to phrase(RuleSet, InputList, []).
pphhrraassee((_+_R_u_l_e_S_e_t_, _+_I_n_p_u_t_L_i_s_t_, _-_R_e_s_t))
Activate the rule-set with given name. `InputList' is the list of
tokens to parse, `Rest' is unified with the remaining tokens if the
sentence is parsed correctly. The example below calls the rule-set
`integer' defined above.
?- phrase(integer(X), "42 times", Rest).
X = 42
Rest = [32, 116, 105, 109, 101, 115]
44..1133 DDaattaabbaassee
SWI-Prolog offers three different database mechanisms. The first one
is the common assert/retract mechanism for manipulating the clause
database. As facts and clauses asserted using assert/1 or one of
its derivatives become part of the program these predicates compile
the term given to them. retract/1 and retractall/1 have to unify a
term and therefore have to decompile the program. For these reasons
the assert/retract mechanism is expensive. On the other hand, once
compiled, queries to the database are faster than querying the recorded
database discussed below. See also dynamic/1.
The second way of storing arbitrary terms in the database is using the
``recorded database''. In this database terms are associated with a
_k_e_y. A key can be an atom, integer or term. In the last case only the
functor and arity determine the key. Each key has a chain of terms
associated with it. New terms can be added either at the head or at
the tail of this chain. This mechanism is considerably faster than
the assert/retract mechanism as terms are not compiled, but just copied
into the heap.
The third mechanism is a special purpose one. It associates an integer
or atom with a key, which is an atom, integer or term. Each key can
only have one atom or integer associated with it. It is faster than
the mechanisms described above, but can only be used to store simple
status information like counters, etc.
aabboolliisshh((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r))
Removes all clauses of a predicate with functor _F_u_n_c_t_o_r and arity
_A_r_i_t_y from the database. All predicate attributes (dynamic,
multifile, index, etc.) are reset to their defaults. Abolishing
an imported predicate only removes the import link; the predicate
will keep its old definition in its definition module.
According to the ISO standard, abolish/1 can only be applied to
dynamic procedures. This is odd, as for dealing with dynamic
procedures there is already retract/1 and retractall/1. The
abolish/1 predicate has been introduced in DEC-10 Prolog precisely
for dealing with static procedures. In SWI-Prolog, abolish/1 works
on static procedures, unless the prolog flag iso is set to true.
It is advised to use retractall/1 for erasing all clauses of a
dynamic predicate.
aabboolliisshh((_+_N_a_m_e_, _+_A_r_i_t_y))
Same as abolish(Name/Arity). The predicate abolish/2 conforms to
the Edinburgh standard, while abolish/1 is ISO compliant.
rreeddeeffiinnee__ssyysstteemm__pprreeddiiccaattee((_+_H_e_a_d))
This directive may be used both in module user and in normal
modules to redefine any system predicate. If the system definition
is redefined in module user, the new definition is the default
definition for all sub-modules. Otherwise the redefinition is
local to the module. The system definition remains in the module
system.
Redefining system predicate facilitates the definition of
compatibility packages. Use in other context is discouraged.
rreettrraacctt((_+_T_e_r_m))
When _T_e_r_m is an atom or a term it is unified with the first
unifying fact or clause in the database. The fact or clause is
removed from the database.
rreettrraaccttaallll((_+_H_e_a_d))
All facts or clauses in the database for which the _h_e_a_d unifies
with _H_e_a_d are removed.
aasssseerrtt((_+_T_e_r_m))
Assert a fact or clause in the database. _T_e_r_m is asserted as the
last fact or clause of the corresponding predicate.
aasssseerrttaa((_+_T_e_r_m))
Equivalent to assert/1, but _T_e_r_m is asserted as first clause or
fact of the predicate.
aasssseerrttzz((_+_T_e_r_m))
Equivalent to assert/1.
aasssseerrtt((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to assert/1, but _R_e_f_e_r_e_n_c_e is unified with a unique
reference to the asserted clause. This key can later be used with
clause/3 or erase/1.
aasssseerrttaa((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to assert/2, but _T_e_r_m is asserted as first clause or
fact of the predicate.
aasssseerrttzz((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to assert/2.
rreeccoorrddaa((_+_K_e_y_, _+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Assert _T_e_r_m in the recorded database under key _K_e_y. _K_e_y is
an integer, atom or term. _R_e_f_e_r_e_n_c_e is unified with a unique
reference to the record (see erase/1).
rreeccoorrddaa((_+_K_e_y_, _+_T_e_r_m))
Equivalent to recorda(Key, Value, _).
rreeccoorrddzz((_+_K_e_y_, _+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to recorda/3, but puts the _T_e_r_m at the tail of the terms
recorded under _K_e_y.
rreeccoorrddzz((_+_K_e_y_, _+_T_e_r_m))
Equivalent to recordz(Key, Value, _).
rreeccoorrddeedd((_+_K_e_y_, _-_V_a_l_u_e_, _-_R_e_f_e_r_e_n_c_e))
Unify _V_a_l_u_e with the first term recorded under _K_e_y which does
unify. _R_e_f_e_r_e_n_c_e is unified with the memory location of the
record.
rreeccoorrddeedd((_+_K_e_y_, _-_V_a_l_u_e))
Equivalent to recorded(Key, Value, _).
eerraassee((_+_R_e_f_e_r_e_n_c_e))
Erase a record or clause from the database. _R_e_f_e_r_e_n_c_e is an
integer returned by recorda/3 or recorded/3, clause/3, assert/2,
asserta/2 or assertz/2. Other integers might conflict with the
internal consistency of the system. Erase can only be called once
on a record or clause. A second call also might conflict with the
internal consistency of the system.
ffllaagg((_+_K_e_y_, _-_O_l_d_, _+_N_e_w))
_K_e_y is an atom, integer or term. Unify _O_l_d with the old value
associated with _K_e_y. If the key is used for the first time _O_l_d is
unified with the integer 0. Then store the value of _N_e_w, which
should be an integer, float, atom or arithmetic expression, under
_K_e_y. flag/3 is a very fast mechanism for storing simple facts in
the database. Example:
:- module_transparent succeeds_n_times/2.
succeeds_n_times(Goal, Times) :-
( flag(succeeds_n_times, Old, 0),
Goal,
flag(succeeds_n_times, N, N+1),
fail
; flag(succeeds_n_times, Times, Old)
).
44..1133..11 UUppddaattee vviieeww
Traditionally, Prolog systems used the _i_m_m_e_d_i_a_t_e _u_p_d_a_t_e _v_i_e_w: new
clauses became visible to predicates backtracking over dynamic
predicates immediately and retracted clauses became invisible
immediately.
Starting with SWI-Prolog 3.3.0 we adhere the _l_o_g_i_c_a_l _u_p_d_a_t_e _v_i_e_w,
where backtrackable predicates that enter the definition of a predicate
will not see any changes (either caused by assert/1 or retract/1) to
the predicate. This view is the ISO standard, the most commonly
used and the most `safe'. Logical updates are realised by keeping
reference-counts on predicates and _g_e_n_e_r_a_t_i_o_n information on clauses.
Each change to the database causes an increment of the generation of
the database. Each goal is tagged with the generation in which it was
started. Each clause is flagged with the generation it was created as
well as the generation it was erased. Only clauses with `created'
...`erased' interval that encloses the generation of the current goal
are considered visible.
44..1133..22 IInnddeexxiinngg ddaattaabbaasseess
By default, SWI-Prolog, as most other implementations, indexes
predicates on their first argument. SWI-Prolog allows indexing on
other and multiple arguments using the declaration index/1.
For advanced database indexing, it defines hash_term/2:
hhaasshh__tteerrmm((_+_T_e_r_m_, _-_H_a_s_h_K_e_y))
If _T_e_r_m is a ground term (see ground/1), _H_a_s_h_K_e_y is unified with a
positive integer value that may be used as a hash-key to the value.
If _T_e_r_m is not ground, the predicate succeeds immediately, leaving
_H_a_s_h_K_e_y an unbound variable.
This predicate may be used to build hash-tables as well as to
exploit argument-indexing to find complex terms more quickly.
The hash-key does not rely on temporary information like addresses
of atoms and may be assumed constant over different invocations of
SWI-Prolog.
44..1144 DDeeccllaarriinngg pprreeddiiccaatteess pprrooppeerrttiieess
This section describes directives which manipulate attributes of
predicate definitions. The functors dynamic/1, multifile/1 and
discontiguous/1 are operators of priority 1150 (see op/3), which
implies the list of predicates they involve can just be a comma
separated list:
:- dynamic
foo/0,
baz/2.
On SWI-Prolog all these directives are just predicates. This implies
they can also be called by a program. Do not rely on this feature if
you want to maintain portability to other Prolog implementations.
ddyynnaammiicc _+_F_u_n_c_t_o_r_/_+_A_r_i_t_y_, _._._.
Informs the interpreter that the definition of the predicate(s)
may change during execution (using assert/1 and/or retract/1).
Currently dynamic/1 only stops the interpreter from complaining
about undefined predicates (see unknown/2). Future releases
might prohibit assert/1 and retract/1 for not-dynamic declared
procedures.
mmuullttiiffiillee _+_F_u_n_c_t_o_r_/_+_A_r_i_t_y_, _._._.
Informs the system that the specified predicate(s) may be defined
over more than one file. This stops consult/1 from redefining a
predicate when a new definition is found.
ddiissccoonnttiigguuoouuss _+_F_u_n_c_t_o_r_/_+_A_r_i_t_y_, _._._.
Informs the system that the clauses of the specified predicate(s)
might not be together in the source file. See also style_check/1.
iinnddeexx((_+_H_e_a_d))
Index the clauses of the predicate with the same name and arity
as _H_e_a_d on the specified arguments. _H_e_a_d is a term of which
all arguments are either `1' (denoting `index this argument')
or `0' (denoting `do not index this argument'). Indexing has
no implications for the semantics of a predicate, only on its
performance. If indexing is enabled on a predicate a special
purpose algorithm is used to select candidate clauses based on
the actual arguments of the goal. This algorithm checks whether
indexed arguments might unify in the clause head. Only atoms,
integers and compound terms are considered. Compound terms are
indexed on the combination of their name and arity. Indexing is
very useful for predicates with many clauses representing facts.
Due to the representation technique used at most 4 arguments can be
indexed. All indexed arguments should be in the first 32 arguments
of the predicate. If more than 4 arguments are specified for
indexing only the first 4 will be accepted. Arguments above 32 are
ignored for indexing.
By default all predicates with <_a_r_i_t_y> 1 are indexed on their
first argument. It is possible to redefine indexing on predicates
that already have clauses attached to them. This will initiate a
scan through the predicates clause list to update the index summary
information stored with each clause.
If---for example---one wants to represents sub-types using a fact
list `sub_type(Sub, Super)' that should be used both to determine
sub- and super types one should declare sub_type/2 as follows:
:- index(sub_type(1, 1)).
sub_type(horse, animal).
...
...
44..1155 EExxaammiinniinngg tthhee pprrooggrraamm
ccuurrrreenntt__aattoomm((_-_A_t_o_m))
Successively unifies _A_t_o_m with all atoms known to the system. Note
that current_atom/1 always succeeds if _A_t_o_m is instantiated to an
atom.
ccuurrrreenntt__ffuunnccttoorr((_?_N_a_m_e_, _?_A_r_i_t_y))
Successively unifies _N_a_m_e with the name and _A_r_i_t_y with the arity of
functors known to the system.
ccuurrrreenntt__ffllaagg((_-_F_l_a_g_K_e_y))
Successively unifies _F_l_a_g_K_e_y with all keys used for flags (see
flag/3).
ccuurrrreenntt__kkeeyy((_-_K_e_y))
Successively unifies _K_e_y with all keys used for records (see
recorda/3, etc.).
ccuurrrreenntt__pprreeddiiccaattee((_?_N_a_m_e_, _?_H_e_a_d))
Successively unifies _N_a_m_e with the name of predicates currently
defined and _H_e_a_d with the most general term built from _N_a_m_e and the
arity of the predicate. This predicate succeeds for all predicates
defined in the specified module, imported to it, or in one of the
modules from which the predicate will be imported if it is called.
ccuurrrreenntt__pprreeddiiccaattee((_:_N_a_m_e_/_A_r_i_t_y))
ISO compliant implementation of current_predicate/2. Un-
like current_predicate/2, the current implementation of
current_predicate/1 does not consider predicates that can be
autoloaded `current'.
pprreeddiiccaattee__pprrooppeerrttyy((_?_H_e_a_d_, _?_P_r_o_p_e_r_t_y))
Succeeds if _H_e_a_d refers to a predicate that has property _P_r_o_p_e_r_t_y.
Can be used to test whether a predicate has a certain property,
obtain all properties known for _H_e_a_d, find all predicates having
_p_r_o_p_e_r_t_y or even obtaining all information available about the
current program. _P_r_o_p_e_r_t_y is one of:
iinntteerrpprreetteedd
Is true if the predicate is defined in Prolog. We return true
on this because, although the code is actually compiled, it is
completely transparent, just like interpreted code.
bbuuiilltt__iinn
Is true if the predicate is locked as a built-in predicate.
This implies it cannot be redefined in its definition module
and it can normally not be seen in the tracer.
ffoorreeiiggnn
Is true if the predicate is defined in the C language.
ddyynnaammiicc
Is true if the predicate is declared dynamic using the
dynamic/1 declaration.
mmuullttiiffiillee
Is true if the predicate is declared multifile using the
multifile/1 declaration.
uunnddeeffiinneedd
Is true if a procedure definition block for the predicate
exists, but there are no clauses in it and it is not declared
dynamic. This is true if the predicate occurs in the body
of a loaded predicate, an attempt to call it has been made
via one of the meta-call predicates or the predicate had a
definition in the past. See the library package _c_h_e_c_k for
example usage.
ttrraannssppaarreenntt
Is true if the predicate is declared transparent using the
module_transparent/1 declaration.
eexxppoorrtteedd
Is true if the predicate is in the public list of the context
module.
iimmppoorrtteedd__ffrroomm((_M_o_d_u_l_e))
Is true if the predicate is imported into the context module
from module _M_o_d_u_l_e.
iinnddeexxeedd((_H_e_a_d))
Predicate is indexed (see index/1) according to _H_e_a_d. _H_e_a_d is
a term whose name and arity are identical to the predicate.
The arguments are unified with `1' for indexed arguments, `0'
otherwise.
ffiillee((_F_i_l_e_N_a_m_e))
Unify _F_i_l_e_N_a_m_e with the name of the source file in which the
predicate is defined. See also source_file/2.
lliinnee__ccoouunntt((_L_i_n_e_N_u_m_b_e_r))
Unify _L_i_n_e_N_u_m_b_e_r with the line number of the first clause of
the predicate. Fails if the predicate is not associated with
a file. See also source_file/2.
nnuummbbeerr__ooff__ccllaauusseess((_C_l_a_u_s_e_C_o_u_n_t))
Unify _C_l_a_u_s_e_C_o_u_n_t to the number of clauses associated with the
predicate. Fails for foreign predicates.
ddwwiimm__pprreeddiiccaattee((_+_T_e_r_m_, _-_D_w_i_m))
`Do What I Mean' (`dwim') support predicate. _T_e_r_m is a term, which
name and arity are used as a predicate specification. _D_w_i_m is
instantiated with the most general term built from _N_a_m_e and the
arity of a defined predicate that matches the predicate specified
by _T_e_r_m in the `Do What I Mean' sense. See dwim_match/2 for
`Do What I Mean' string matching. Internal system predicates are
not generated, unless style_check(+dollar)is active. Backtracking
provides all alternative matches.
ccllaauussee((_?_H_e_a_d_, _?_B_o_d_y))
Succeeds when _H_e_a_d can be unified with a clause head and _B_o_d_y
with the corresponding clause body. Gives alternative clauses
on backtracking. For facts _B_o_d_y is unified with the atom
_t_r_u_e. Normally clause/2 is used to find clause definitions for a
predicate, but it can also be used to find clause heads for some
body template.
ccllaauussee((_?_H_e_a_d_, _?_B_o_d_y_, _?_R_e_f_e_r_e_n_c_e))
Equivalent to clause/2, but unifies _R_e_f_e_r_e_n_c_e with a unique
reference to the clause (see also assert/2, erase/1). If _R_e_f_e_r_e_n_c_e
is instantiated to a reference the clause's head and body will be
unified with _H_e_a_d and _B_o_d_y.
nntthh__ccllaauussee((_?_P_r_e_d_, _?_I_n_d_e_x_, _?_R_e_f_e_r_e_n_c_e))
Provides access to the clauses of a predicate using their index
number. Counting starts at 1. If _R_e_f_e_r_e_n_c_e is specified it
unifies _P_r_e_d with the most general term with the same name/arity
as the predicate and _I_n_d_e_x with the index-number of the clause.
Otherwise the name and arity of _P_r_e_d are used to determine the
predicate. If _I_n_d_e_x is provided _R_e_f_e_r_e_n_c_e will be unified with
the clause reference. If _I_n_d_e_x is unbound, backtracking will
yield both the indices and the references of all clauses of the
predicate. The following example finds the 2nd clause of member/2:
?- nth_clause(member(_,_), 2, Ref), clause(Head, Body, Ref).
Ref = 160088
Head = system : member(G575, [G578|G579])
Body = member(G575, G579)
ccllaauussee__pprrooppeerrttyy((_+_C_l_a_u_s_e_R_e_f_, _-_P_r_o_p_e_r_t_y))
Queries properties of a clause. _C_l_a_u_s_e_R_e_f is a reference
to a clause as produced by clause/3, nth_clause/3 or
prolog_frame_attribute/3. _P_r_o_p_e_r_t_y is one of the following:
ffiillee((_F_i_l_e_N_a_m_e))
Unify _F_i_l_e_N_a_m_e with the name of the source file in which the
clause is defined. Fails if the clause is not associated to a
file.
lliinnee__ccoouunntt((_L_i_n_e_N_u_m_b_e_r))
Unify _L_i_n_e_N_u_m_b_e_r with the line number of the clause. Fails if
the clause is not associated to a file.
ffaacctt
True if the clause has no body.
eerraasseedd
True if the clause has been erased, but not yet reclaimed
because it is referenced.
44..1166 IInnppuutt aanndd oouuttppuutt
SWI-Prolog provides two different packages for input and output. One
confirms to the Edinburgh standard. This package has a notion
of `current-input' and `current-output'. The reading and writing
predicates implicitly refer to these streams. In the second package,
streams are opened explicitly and the resulting handle is used as an
argument to the reading and writing predicate to specify the source or
destination. Both packages are fully integrated; the user may switch
freely between them.
44..1166..11 IInnppuutt aanndd oouuttppuutt uussiinngg iimmpplliicciitt ssoouurrccee aanndd ddeessttiinnaattiioonn
The package for implicit input and output destination is upwards
compatible to DEC-10 and C-Prolog. The reading and writing predicates
refer to resp. the current input- and output stream. Initially these
streams are connected to the terminal. The current output stream is
changed using tell/1 or append/1. The current input stream is changed
using see/1. The streams current value can be obtained using telling/1
for output- and seeing/1 for input streams. The table below shows the
valid stream specifications. The reserved names user_input, user_output
and user_error are for neat integration with the explicit streams.
___________________________________________________
| user |This reserved name refers to the|
| |terminal |
| user_input I|nput from the terminal |
| user_output O|utput to the terminal |
| user_error U|nix error stream (output only) |
| <_A_t_o_m> N|ame of a Unix file |
|_pipe(<_A_t_o_m>)N|ame_of_a_Unix_command_____________|_
Source and destination are either a file, one of the reserved words
above, or a term `pipe(_C_o_m_m_a_n_d)'. In the predicate descriptions below
we will call the source/destination argument `_S_r_c_D_e_s_t'. Below are some
examples of source/destination specifications.
?- see(data). % Start reading from file `data'.
?- tell(user_error). % Start writing on the error stream.
?- tell(pipe(lpr)). % Start writing to the printer.
Another example of using the pipe/1 construct is shown below. Note
that the pipe/1 construct is not part of Prolog's standard I/O
repertoire.
getwd(Wd) :-
seeing(Old), see(pipe(pwd)),
collect_wd(String),
seen, see(Old),
atom_codes(Wd, String).
collect_wd([C|R]) :-
get0(C), C \== -1, !,
collect_wd(R).
collect_wd([]).
sseeee((_+_S_r_c_D_e_s_t))
Make _S_r_c_D_e_s_t the current input stream. If _S_r_c_D_e_s_t was already
opened for reading with see/1 and has not been closed since,
reading will be resumed. Otherwise _S_r_c_D_e_s_t will be opened and the
file pointer is positioned at the start of the file.
tteellll((_+_S_r_c_D_e_s_t))
Make _S_r_c_D_e_s_t the current output stream. If _S_r_c_D_e_s_t was already
opened for writing with tell/1 or append/1 and has not been closed
since, writing will be resumed. Otherwise the file is created
or---when existing---truncated. See also append/1.
aappppeenndd((_+_F_i_l_e))
Similar to tell/1, but positions the file pointer at the end of
_F_i_l_e rather than truncating an existing file. The pipe construct
is not accepted by this predicate.
sseeeeiinngg((_?_S_r_c_D_e_s_t))
Unify the name of the current input stream with _S_r_c_D_e_s_t.
tteelllliinngg((_?_S_r_c_D_e_s_t))
Unify the name of the current output stream with _S_r_c_D_e_s_t.
sseeeenn
Close the current input stream. The new input stream becomes _u_s_e_r.
ttoolldd
Close the current output stream. The new output stream becomes
_u_s_e_r.
44..1166..22 EExxpplliicciitt IInnppuutt aanndd OOuuttppuutt SSttrreeaammss
The predicates below are part of the Quintus compatible stream-based
I/O package. In this package streams are explicitly created using the
predicate open/3. The resulting stream identifier is then passed as a
parameter to the reading and writing predicates to specify the source
or destination of the data.
ooppeenn((_+_S_r_c_D_e_s_t_, _+_M_o_d_e_, _-_S_t_r_e_a_m_, _+_O_p_t_i_o_n_s))
ISO compliant predicate to open a stream. _S_r_c_D_e_s is either an
atom, specifying a Unix file, or a term `pipe(Command)', just
like see/1 and tell/1. _M_o_d_e is one of read, write, append or
update. Mode append opens the file for writing, positioning the
file-pointer at the end. Mode update opens the file for writing,
positioning the file-pointer at the beginning of the file without
truncating the file. See also stream_position/3. _S_t_r_e_a_m is either
a variable, in which case it is bound to an integer identifying the
stream, or an atom, in which case this atom will be the stream
identifier. The _O_p_t_i_o_n_s list can contain the following options:
ttyyppee((_T_y_p_e))
Using type text (default), Prolog will write a text-file in an
operating-system compatible way. Using type binary the bytes
will be read or written without any translation. Note there
is no difference between the two on Unix systems.
aalliiaass((_A_t_o_m))
Gives the stream a name. Below is an example. Be careful
with this option as stream-names are global. See also
set_stream/2.
?- open(data, read, Fd, [alias(input)]).
...,
read(input, Term),
...
eeooff__aaccttiioonn((_A_c_t_i_o_n))
Defines what happens if the end of the input stream is
reached. Action eof_code makes get0/1 and friends return -1
and read/1 and friends return the atom end_of_file. Repetitive
reading keeps yielding the same result. Action error is like
eof_code, but repetitive reading will raise an error. With
action reset, Prolog will examine the file again and return
more data if the file has grown.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
Defines output buffering. The atom full (default) defines
full buffering, line buffering by line, and false implies the
stream is fully unbuffered. Smaller buffering is useful if
another process or the user is waiting for the output as it is
being produced. See also flush_output/[0,1]. This option is
not an ISO option.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
If true (default), the stream is closed on an abort (see
abort/0). If false, the stream is not closed. If it is
an output stream, it will be flushed however. Useful for
logfiles and if the stream is associated to a process (using
the pipe/1 construct).
lloocckk((_L_o_c_k_i_n_g_M_o_d_e))
Try to obtain a lock on the open file. Default is none, which
does not lock the file. The value read or shared means other
processes may read the file, but not write it. The value
write or exclusive means no other process may read or write
the file.
Locks are acquired through the POSIX function fcntl() using
the command F_SETLKW, which makes a blocked call wait for the
lock to be released. Please note that fcntl() locks are
_a_d_v_i_s_o_r_y and therefore only other applications using the same
advisory locks honour your lock. As there are many issues
around locking in Unix, expecially related to NFS (network
file system), please study the fcntl() manual page before
trusting your locks!
The lock option is a SWI-Prolog extension.
The option reposition is not supported in SWI-Prolog. All streams
connected to a file may be repositioned.
ooppeenn((_+_S_r_c_D_e_s_t_, _+_M_o_d_e_, _?_S_t_r_e_a_m))
Equivalent to open/4 with an empty option-list.
ooppeenn__nnuullll__ssttrreeaamm((_?_S_t_r_e_a_m))
Open a stream that produces no output. All counting functions are
enabled on such a stream. An attempt to read from a null-stream
will immediately signal end-of-file. Similar to Unix /dev/null.
_S_t_r_e_a_m can be an atom, giving the null-stream an alias name.
cclloossee((_+_S_t_r_e_a_m))
Close the specified stream. If _S_t_r_e_a_m is not open an error message
is displayed. If the closed stream is the current input or output
stream the terminal is made the current input or output.
cclloossee((_+_S_t_r_e_a_m_, _+_O_p_t_i_o_n_s))
Provides close(_S_t_r_e_a_m_, _[_f_o_r_c_e_(_t_r_u_e_)_]) as the only option. Called
this way, any resource error (such as write-errors while flushing
the output buffer) are ignored.
ssttrreeaamm__pprrooppeerrttyy((_?_S_t_r_e_a_m_, _?_S_t_r_e_a_m_P_r_o_p_e_r_t_y))
ISO compatible predicate for querying status of open I/O streams.
_S_t_r_e_a_m_P_r_o_p_e_r_t_y is one of:
ffiillee__nnaammee((_A_t_o_m))
If _S_t_r_e_a_m is associated to a file, unify _A_t_o_m to the name of
this file.
mmooddee((_I_O_M_o_d_e))
Unify _I_O_M_o_d_e to the mode given to open/4 for opening the
stream. Values are: read, write, append and the SWI-Prolog
extension update.
iinnppuutt
True if _S_t_r_e_a_m has mode read.
oouuttppuutt
True if _S_t_r_e_a_m has mode write, append or update.
aalliiaass((_A_t_o_m))
If _A_t_o_m is bound, test of the stream has the specified alias.
Otherwise unify _A_t_o_m with the first alias of the stream.
ppoossiittiioonn((_T_e_r_m))
Unify _T_e_r_m with the current stream-position. A stream-
position is a term of format $stream_position(_C_h_a_r_I_n_d_e_x_,
_L_i_n_e_N_o_, _L_i_n_e_P_o_s). See also term_position/3.
eenndd__ooff__ssttrreeaamm((_E))
If _S_t_r_e_a_m is an input stream, unify _E with one of the atoms
not, at or past. See also at_end_of_stream/[0,1].
eeooff__aaccttiioonn((_A))
Unify _A with one of eof_code, reset or error. See open/4 for
details.
rreeppoossiittiioonn((_B_o_o_l))
Unify _B_o_o_l with _t_r_u_e if the position of the stream can be
set (see seek/4). It is assumed the position can be set if
the stream has a _s_e_e_k_-_f_u_n_c_t_i_o_n and is not based on a POSIX
file-descriptor that is not associated to a regular file.
ttyyppee((_T))
Unify _B_o_o_l with text or binary.
ffiillee__nnoo((_I_n_t_e_g_e_r))
If the stream is associated with a POSIX file-descriptor,
unify _I_n_t_e_g_e_r with the descriptor number. SWI-Prolog
extension used primarily for integration with foreign code.
See also Sfileno() from SWI-Stream.h.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
SWI-Prolog extension to query the buffering mode of this
stream. _B_u_f_f_e_r_i_n_g is one of full, line or false. See also
open/4.
ccuurrrreenntt__ssttrreeaamm((_?_O_b_j_e_c_t_, _?_M_o_d_e_, _?_S_t_r_e_a_m))
The predicate current_stream/3 is used to access the status of a
stream as well as to generate all open streams. _O_b_j_e_c_t is the name
of the file opened if the stream refers to an open file, an integer
file-descriptor if the stream encapsulates an operating-system
stream or the atom [] if the stream refers to some other object.
_M_o_d_e is one of read or write.
sseett__ssttrreeaamm__ppoossiittiioonn((_+_S_t_r_e_a_m_, _+_P_o_s))
Set the current position of _S_t_r_e_a_m to _P_o_s. _P_o_s is a term
as returned by stream_property/2 using the position(_P_o_s) property.
See also seek/4.
sseeeekk((_+_S_t_r_e_a_m_, _+_O_f_f_s_e_t_, _+_M_e_t_h_o_d_, _-_N_e_w_L_o_c_a_t_i_o_n))
Reposition the current point of the given _S_t_r_e_a_m. _M_e_t_h_o_d is one of
bof, _c_u_r_r_e_n_t or _e_o_f, indicating positioning relative to the start,
current point or end of the underlying object. _N_e_w_L_o_c_a_t_i_o_n is
unified with the new offset, relative to the start of the stream.
If the seek modifies the current location, the line number and
character position in the line are set to 0.
If the stream cannot be repostioned, a reposition error is raised.
The predicate seek/4 is compatible to Quintus Prolog, though the
error conditions and signalling is ISO compliant. See also
stream_position/3.
sseett__ssttrreeaamm((_+_S_t_r_e_a_m_, _+_A_t_t_r_i_b_u_t_e))
Modify an attribute of an existing stream. _A_t_t_r_i_b_u_t_e specifies the
stream property to set. See also stream_property/2 and open/4.
aalliiaass((_A_l_i_a_s_N_a_m_e))
Set the alias of an already created stream. If _A_l_i_a_s_N_a_m_e is
the name of one of the standard streams is used, this stream
is rebound. Thus, set_stream(S, current_input)is the same as
set_input/1 and by setting the alias of a stream to user_input,
etc. all user terminal input is read from this stream. See
also interactor/0.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
Set the buffering mode of an already created stream.
Buffering is one of full, line or false.
eeooff__aaccttiioonn((_A_c_t_i_o_n))
Set end-of-file handling to one of eof_code, reset or error.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
Determine whether or not the stream is closed by abort/0. By
default streams are closed.
44..1166..33 SSwwiittcchhiinngg BBeettwweeeenn IImmpplliicciitt aanndd EExxpplliicciitt II//OO
The predicates below can be used for switching between the implicit-
and the explicit stream based I/O predicates.
sseett__iinnppuutt((_+_S_t_r_e_a_m))
Set the current input stream to become _S_t_r_e_a_m. Thus, open(file,
read, Stream), set_input(Stream) is equivalent to see(file).
sseett__oouuttppuutt((_+_S_t_r_e_a_m))
Set the current output stream to become _S_t_r_e_a_m.
ccuurrrreenntt__iinnppuutt((_-_S_t_r_e_a_m))
Get the current input stream. Useful to get access to the status
predicates associated with streams.
ccuurrrreenntt__oouuttppuutt((_-_S_t_r_e_a_m))
Get the current output stream.
44..1177 SSttaattuuss ooff ssttrreeaammss
wwaaiitt__ffoorr__iinnppuutt((_+_L_i_s_t_O_f_S_t_r_e_a_m_s_, _-_R_e_a_d_y_L_i_s_t_, _+_T_i_m_e_O_u_t))
Wait for input on one of the streams in _L_i_s_t_O_f_S_t_r_e_a_m_s and return
a list of streams on which input is available in _R_e_a_d_y_L_i_s_t.
wait_for_input/3 waits for at most _T_i_m_e_O_u_t seconds. _T_i_m_e_o_u_t may
be specified as a floating point number to specify fractions of a
second. If _T_i_m_e_o_u_t equals 0, wait_for_input/3waits indefinitely.
This predicate can be used to implement timeout while reading and
to handle input from multiple sources. The following example
will wait for input from the user and an explicitly opened second
terminal. On return, _I_n_p_u_t_s may hold user or _P_4 or both.
?- open('/dev/ttyp4', read, P4),
wait_for_input([user, P4], Inputs, 0).
This predicate relies on the select() call on most operating
systems. On Unix this call is implemented for any stream
referring to a file-handle, which implies all OS-based streams:
sockets, terminals, pipes, etc. On non-Unix systems select() is
generally only implemented for socket-based streams. See also
library(socket) from the clib package.
cchhaarraacctteerr__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the current character index. For input streams
this is the number of characters read since the open, for output
streams this is the number of characters written. Counting starts
at 0.
lliinnee__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the number of lines read or written. Counting
starts at 1.
lliinnee__ppoossiittiioonn((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the position on the current line. Note that this
assumes the position is 0 after the open. Tabs are assumed to be
defined on each 8-th character and backspaces are assumed to reduce
the count by one, provided it is positive.
ffiilleeeerrrroorrss((_-_O_l_d_, _+_N_e_w))
Define error behaviour on errors when opening a file for reading or
writing. Valid values are the atoms on (default) and off. First
_O_l_d is unified with the current value. Then the new value is set
to _N_e_w.
44..1188 PPrriimmiittiivvee cchhaarraacctteerr II//OO
See section 4.2 for an overview of supported character representations.
nnll
Write a newline character to the current output stream. On Unix
systems nl/0 is equivalent to put(10).
nnll((_+_S_t_r_e_a_m))
Write a newline to _S_t_r_e_a_m.
ppuutt((_+_C_h_a_r))
Write _C_h_a_r to the current output stream, _C_h_a_r is either an
integer-expression evaluating to an ASCII value (0 _C_h_a_r 255) or
an atom of one character.
ppuutt((_+_S_t_r_e_a_m_, _+_C_h_a_r))
Write _C_h_a_r to _S_t_r_e_a_m.
ppuutt__bbyyttee((_+_B_y_t_e))
Alias for put/1.
ppuutt__bbyyttee((_+_S_t_r_e_a_m_, _+_B_y_t_e))
Alias for put/2
ppuutt__cchhaarr((_+_C_h_a_r))
Alias for put_char/1.
ppuutt((_+_S_t_r_e_a_m_, _+_C_h_a_r))
Alias for put/2
ppuutt__ccooddee((_+_C_o_d_e))
Alias for put/1.
ppuutt__ccooddee((_+_S_t_r_e_a_m_, _+_C_o_d_e))
Alias for put/2
ttaabb((_+_A_m_o_u_n_t))
Writes _A_m_o_u_n_t spaces on the current output stream. _A_m_o_u_n_t
should be an expression that evaluates to a positive integer (see
section 4.26).
ttaabb((_+_S_t_r_e_a_m_, _+_A_m_o_u_n_t))
Writes _A_m_o_u_n_t spaces to _S_t_r_e_a_m.
fflluusshh__oouuttppuutt
Flush pending output on current output stream. flush_output/0 is
automatically generated by read/1 and derivatives if the current
input stream is user and the cursor is not at the left margin.
fflluusshh__oouuttppuutt((_+_S_t_r_e_a_m))
Flush output on the specified stream. The stream must be open for
writing.
ttttyyfflluusshh
Flush pending output on stream _u_s_e_r. See also flush_output/[0,1].
ggeett__bbyyttee((_-_B_y_t_e))
Read the current input stream and unify the next byte with _B_y_t_e (an
integer between 0 and 255. _B_y_t_e is unified with -1 on end of file.
ggeett__bbyyttee((_+_S_t_r_e_a_m_, _-_B_y_t_e))
Read the next byte from _S_t_r_e_a_m.
ggeett__ccooddee((_-_C_o_d_e))
Read the current input stream and unify _C_o_d_e with the character
code of the next character. _C_h_a_r is unified with -1 on end of
file. See also get_char/1.
ggeett__ccooddee((_+_S_t_r_e_a_m_, _-_C_o_d_e))
Read the next character-code from _S_t_r_e_a_m.
ggeett__cchhaarr((_-_C_h_a_r))
Read the current input stream and unify _C_h_a_r with the next
character as a one-character-atom. See also atom_chars/2. On
end-of-file, _C_h_a_r is unified to the atom end_of_file.
ggeett__cchhaarr((_+_S_t_r_e_a_m_, _-_C_h_a_r))
Unify _C_h_a_r with the next character from _S_t_r_e_a_m as a
one-character-atom. See also get_char/2, get_byte/2 and get_code/2.
ggeett00((_-_C_h_a_r))
Edinburgh version of the ISO get_byte/1 predicate.
ggeett00((_+_S_t_r_e_a_m_, _-_C_h_a_r))
Edinburgh version of the ISO get_byte/2 predicate.
ggeett((_-_C_h_a_r))
Read the current input stream and unify the next non-blank
character with _C_h_a_r. _C_h_a_r is unified with -1 on end of file.
ggeett((_+_S_t_r_e_a_m_, _-_C_h_a_r))
Read the next non-blank character from _S_t_r_e_a_m.
ppeeeekk__bbyyttee((_-_B_y_t_e))
Reads the next input byte like get_byte/1, but does not remove it
from the input stream.
ppeeeekk__bbyyttee((_+_S_t_r_e_a_m_, _-_B_y_t_e))
Reads the next input byte like get_byte/2, but does not remove it
from the stream.
ppeeeekk__ccooddee((_-_C_o_d_e))
Reads the next input code like get_code/1, but does not remove it
from the input stream.
ppeeeekk__ccooddee((_+_S_t_r_e_a_m_, _-_C_o_d_e))
Reads the next input code like get_code/2, but does not remove it
from the stream.
ppeeeekk__cchhaarr((_-_C_h_a_r))
Reads the next input character like get_char/1, but does not remove
it from the input stream.
ppeeeekk__cchhaarr((_+_S_t_r_e_a_m_, _-_C_h_a_r))
Reads the next input character like get_char/2, but does not remove
it from the stream.
sskkiipp((_+_C_h_a_r))
Read the input until _C_h_a_r or the end of the file is encountered. A
subsequent call to get0/1 will read the first character after _C_h_a_r.
sskkiipp((_+_S_t_r_e_a_m_, _+_C_h_a_r))
Skip input (as skip/1) on _S_t_r_e_a_m.
ggeett__ssiinnggllee__cchhaarr((_-_C_h_a_r))
Get a single character from input stream `user' (regardless of
the current input stream). Unlike get0/1 this predicate does not
wait for a return. The character is not echoed to the user's
terminal. This predicate is meant for keyboard menu selection etc.
If SWI-Prolog was started with the -tty option this predicate reads
an entire line of input and returns the first non-blank character
on this line, or the ASCII code of the newline (10) if the entire
line consisted of blank characters.
aatt__eenndd__ooff__ssttrreeaamm
Succeeds after the last character of the current input stream has
been read. Also succeeds if there is no valid current input
stream.
aatt__eenndd__ooff__ssttrreeaamm((_+_S_t_r_e_a_m))
Succeeds after the last character of the named stream is read, or
_S_t_r_e_a_m is not a valid input stream. The end-of-stream test is only
available on buffered input stream (unbuffered input streams are
rarely used, see open/4).
ccooppyy__ssttrreeaamm__ddaattaa((_+_S_t_r_e_a_m_I_n_, _+_S_t_r_e_a_m_O_u_t_, _+_L_e_n))
Copy _L_e_n bytes from stream _S_t_r_e_a_m_I_n to _S_t_r_e_a_m_O_u_t.
ccooppyy__ssttrreeaamm__ddaattaa((_+_S_t_r_e_a_m_I_n_, _+_S_t_r_e_a_m_O_u_t))
Copy data all (remaining) data from stream _S_t_r_e_a_m_I_n to _S_t_r_e_a_m_O_u_t.
44..1199 TTeerrmm rreeaaddiinngg aanndd wwrriittiinngg
This section describes the basic term reading and writing predicates.
The predicates term_to_atom/2, atom_to_term/3 and sformat/3 provide
means for translating atoms and strings to terms. The predicates
format/[1,2] and writef/2 provide formatted output.
There are two ways to manipulate the output format. The predicate
print/[1,2] may be programmed using portray/1. The format of
floating point numbers may be manipulated using the prolog_flag (see
current_prolog_flag/2) float_format.
Reading is sensitive to the prolog_flag character_escapes, which
controls the interpretation of the \ character in quoted atoms and
strings.
wwrriittee__tteerrmm((_+_T_e_r_m_, _+_O_p_t_i_o_n_s))
The predicate write_term/2 is the generic form of all Prolog
term-write predicates. Valid options are:
qquuootteedd((true _o_r false))
If true, atoms and functors that needs quotes will be quoted.
The default is false.
cchhaarraacctteerr__eessccaappeess((true _o_r false))
If true, and quoted(_t_r_u_e) is active, special characters in
quoted atoms and strings are emitted as ISO escape-sequences.
Default is taken from the reference module (see below).
iiggnnoorree__ooppss((true _o_r false))
If true, the generic term-representation (<_f_u_n_c_t_o_r>(<_a_r_g_s> ...))
will be used for all terms, Otherwise (default), operators,
list-notation and {}/1 will be written using their special
syntax.
mmoodduullee((_M_o_d_u_l_e))
Define the reference module (default user). This defines the
default value for the character_escapes option as well as the
operator definitions to use. See also op/3.
nnuummbbeerrvvaarrss((true _o_r false))
If true, terms of the format $VAR(N), where <_N> is a positive
integer, will be written as a variable name. The default is
false.
ppoorrttrraayy((true _o_r false))
If true, the hook portray/1 is called before printing a term
that is not a variable. If portray/1 succeeds, the term is
considered printed. See also print/1. The default is false.
This option is an extension to the ISO write_term options.
mmaaxx__ddeepptthh((_I_n_t_e_g_e_r))
If the term is nested deeper than _I_n_t_e_g_e_r, print the remainder
as eclipse (...). A 0 (zero) value (default) imposes no depth
limit. This option also delimits the number of printed for a
list. Example:
?- write_term(a(s(s(s(s(0)))), [a,b,c,d,e,f]), [max_depth(3)]).
a(s(s(...)), [a, b|...])
Yes
Used by the toplevel and debugger to limit screen
output. See also the prolog-flags toplevel_print_options and
debugger_print_options.
wwrriittee__tteerrmm((_+_S_t_r_e_a_m_, _+_T_e_r_m_, _+_O_p_t_i_o_n_s))
As write_term/2, but output is sent to _S_t_r_e_a_m rather than the
current output.
wwrriittee__ccaannoonniiccaall((_+_T_e_r_m))
Write _T_e_r_m on the current output stream using standard paren-
thesised prefix notation (i.e., ignoring operator declarations).
Atoms that need quotes are quoted. Terms written with this
predicate can always be read back, regardless of current operator
declarations. Equivalent to write_term/2 using the options
ignore_ops and quoted.
wwrriittee__ccaannoonniiccaall((_+_S_t_r_e_a_m_, _+_T_e_r_m))
Write _T_e_r_m in canonical form on _S_t_r_e_a_m.
wwrriittee((_+_T_e_r_m))
Write _T_e_r_m to the current output, using brackets and operators
where appropriate. See current_prolog_flag/2 for controlling
floating point output format.
wwrriittee((_+_S_t_r_e_a_m_, _+_T_e_r_m))
Write _T_e_r_m to _S_t_r_e_a_m.
wwrriitteeqq((_+_T_e_r_m))
Write _T_e_r_m to the current output, using brackets and operators
where appropriate. Atoms that need quotes are quoted. Terms
written with this predicate can be read back with read/1 provided
the currently active operator declarations are identical.
wwrriitteeqq((_+_S_t_r_e_a_m_, _+_T_e_r_m))
Write _T_e_r_m to _S_t_r_e_a_m, inserting quotes.
pprriinntt((_+_T_e_r_m))
Prints _T_e_r_m on the current output stream similar to write/1, but
for each (sub)term of _T_e_r_m first the dynamic predicate portray/1 is
called. If this predicate succeeds _p_r_i_n_t assumes the (sub)term has
been written. This allows for user defined term writing.
pprriinntt((_+_S_t_r_e_a_m_, _+_T_e_r_m))
Print _T_e_r_m to _S_t_r_e_a_m.
ppoorrttrraayy((_+_T_e_r_m))
A dynamic predicate, which can be defined by the user to change the
behaviour of print/1 on (sub)terms. For each subterm encountered
that is not a variable print/1 first calls portray/1 using the term
as argument. For lists only the list as a whole is given to
portray/1. If portray succeeds print/1 assumes the term has been
written.
rreeaadd((_-_T_e_r_m))
Read the next Prolog term from the current input stream and unify
it with _T_e_r_m. On a syntax error read/1 displays an error message,
attempts to skip the erroneous term and fails. On reaching
end-of-file _T_e_r_m is unified with the atom end_of_file.
rreeaadd((_+_S_t_r_e_a_m_, _-_T_e_r_m))
Read _T_e_r_m from _S_t_r_e_a_m.
rreeaadd__ccllaauussee((_-_T_e_r_m))
Equivalent to read/1, but warns the user for variables only
occurring once in a term (singleton variables) which do not start
with an underscore if style_check(singleton) is active (default).
Used to read Prolog source files (see consult/1). New code should
use read_term/2 with the option singletons(warning).
rreeaadd__ccllaauussee((_+_S_t_r_e_a_m_, _-_T_e_r_m))
Read a clause from _S_t_r_e_a_m. See read_clause/1.
rreeaadd__tteerrmm((_-_T_e_r_m_, _+_O_p_t_i_o_n_s))
Read a term from the current input stream and unify the term with
_T_e_r_m. The reading is controlled by options from the list of
_O_p_t_i_o_n_s. If this list is empty, the behaviour is the same as for
read/1. The options are upward compatible to Quintus Prolog. The
argument order is according to the ISO standard. Syntax-errors are
always reported using exception-handling (see catch/3). Options:
vvaarriiaabblleess((_V_a_r_s))
Unify _V_a_r_s with a list of variables in the term. The
variables appear in the order they have been read. See also
free_variables/2. (ISO).
vvaarriiaabbllee__nnaammeess((_V_a_r_s))
Unify _V_a_r_s with a list of `_N_a_m_e = _V_a_r', where _N_a_m_e is an atom
describing the variable name and _V_a_r is a variable that shares
with the corresponding variable in _T_e_r_m. (ISO).
ssiinngglleettoonnss((_V_a_r_s))
As variable_names, but only reports the variables occurring
only once in the _T_e_r_m read. Variables starting with an
underscore (`_') are not included in this list. (ISO).
ssyynntteexx__eerrrroorrss((_A_t_o_m))
If error (default), throw and exception on a syntax error.
Other values are fail, which causes a message to be printed
using print_message/2, after which the predicate fails, quiet
which causes the predicate to fail silently and dec10 which
causes syntax errors to be printed, after which read_term/[2,3]
continues reading the next term. Using dec10, read_term/[2,3]
never fails. (Quintus, SICStus).
mmoodduullee((_M_o_d_u_l_e))
Specify _M_o_d_u_l_e for operators, character_escapes flag and
double_quotes flag. The value of the latter two is overruled
if the corresponding read_term/3 option is provided. If
no module is specified, the current `source-module' is used.
(SWI-Prolog).
cchhaarraacctteerr__eessccaappeess((_B_o_o_l))
Defines how to read \ escape-sequences in quoted atoms.
See the prolog-flags character_escapes, current_prolog_flag/2.
(SWI-Prolog).
ddoouubbllee__qquuootteess((_B_o_o_l))
Defines how to read "..." strings. See the prolog-flags
double_quotes, current_prolog_flag/2. (SWI-Prolog).
tteerrmm__ppoossiittiioonn((_P_o_s))
Unifies _P_o_s with the starting position of the term read. _P_o_s
if of the same format as use by stream_position/3.
ssuubbtteerrmm__ppoossiittiioonnss((_T_e_r_m_P_o_s))
Describes the detailed layout of the term. The formats for
the various types of terms if given below. All positions are
character positions. If the input is related to a normal
stream, these positions are relative to the start of the
input, when reading from the terminal, they are relative to
the start of the term.
FFrroomm--TToo
Used for primitive types (atoms, numbers, variables).
ssttrriinngg__ppoossiittiioonn((_F_r_o_m_, _T_o))
Used to indicate the position of a string enclosed in
double quotes (").
bbrraaccee__tteerrmm__ppoossiittiioonn((_F_r_o_m_, _T_o_, _A_r_g))
Term of the form {...}, as used in DCG rules. _A_r_g
describes the argument.
lliisstt__ppoossiittiioonn((_F_r_o_m_, _T_o_, _E_l_m_s_, _T_a_i_l))
A list. _E_l_m_s describes the positions of the elements. If
the list specifies the tail as |<_T_a_i_l_T_e_r_m>, _T_a_i_l is unified
with the term-position of the tail, otherwise with the
atom none.
tteerrmm__ppoossiittiioonn((_F_r_o_m_, _T_o_, _F_F_r_o_m_, _F_T_o_, _S_u_b_P_o_s))
Used for a compound term not matching one of the above.
_F_F_r_o_m and _F_T_o describe the position of the functor.
_S_u_b_P_o_s is a list, each element of which describes the
term-position of the corresponding subterm.
rreeaadd__tteerrmm((_+_S_t_r_e_a_m_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s))
Read term with options from _S_t_r_e_a_m. See read_term/2.
rreeaadd__hhiissttoorryy((_+_S_h_o_w_, _+_H_e_l_p_, _+_S_p_e_c_i_a_l_, _+_P_r_o_m_p_t_, _-_T_e_r_m_, _-_B_i_n_d_i_n_g_s))
Similar to read_term/2 using the option variable_names, but allows
for history substitutions. read_history/6is used by the top level
to read the user's actions. _S_h_o_w is the command the user should
type to show the saved events. _H_e_l_p is the command to get an
overview of the capabilities. _S_p_e_c_i_a_l is a list of commands that
are not saved in the history. _P_r_o_m_p_t is the first prompt given.
Continuation prompts for more lines are determined by prompt/2.
A %w in the prompt is substituted by the event number. See
section 2.7 for available substitutions.
SWI-Prolog calls read_history/6 as follows:
read_history(h, '!h', [trace], '%w ?- ', Goal, Bindings)
pprroommpptt((_-_O_l_d_, _+_N_e_w))
Set prompt associated with read/1 and its derivatives. _O_l_d is
first unified with the current prompt. On success the prompt will
be set to _N_e_w if this is an atom. Otherwise an error message is
displayed. A prompt is printed if one of the read predicates is
called and the cursor is at the left margin. It is also printed
whenever a newline is given and the term has not been terminated.
Prompts are only printed when the current input stream is _u_s_e_r.
pprroommpptt11((_+_P_r_o_m_p_t))
Sets the prompt for the next line to be read. Continuation lines
will be read using the prompt defined by prompt/2.
44..2200 AAnnaallyyssiinngg aanndd CCoonnssttrruuccttiinngg TTeerrmmss
ffuunnccttoorr((_?_T_e_r_m_, _?_F_u_n_c_t_o_r_, _?_A_r_i_t_y))
Succeeds if _T_e_r_m is a term with functor _F_u_n_c_t_o_r and arity _A_r_i_t_y.
If _T_e_r_m is a variable it is unified with a new term holding only
variables. functor/3 silently fails on instantiation faults If
_T_e_r_m is an atom or number, _F_u_n_c_t_o_r will be unified with _T_e_r_m and
arity will be unified with the integer 0 (zero).
aarrgg((_?_A_r_g_, _?_T_e_r_m_, _?_V_a_l_u_e))
_T_e_r_m should be instantiated to a term, _A_r_g to an integer between
1 and the arity of _T_e_r_m. _V_a_l_u_e is unified with the _A_r_g-th
argument of _T_e_r_m. _A_r_g may also be unbound. In this case _V_a_l_u_e
will be unified with the successive arguments of the term. On
successful unification, _A_r_g is unified with the argument number.
Backtracking yields alternative solutions. The predicate arg/3
fails silently if _A_r_g= 0 or _A_r_g > _a_r_i_t_y and raises the exception
domain_error(not_less_then_zero, Arg)if _A_r_g <0.
sseettaarrgg((_+_A_r_g_, _+_T_e_r_m_, _+_V_a_l_u_e))
Extra-logical predicate. Assigns the _A_r_g-th argument of the
compound term _T_e_r_m with the given _V_a_l_u_e. The assignment is undone
if backtracking brings the state back into a position before the
setarg/3 call.
This predicate may be used for destructive assignment to terms,
using them as and extra-logical storage bin.
_?_T_e_r_m =.. _?_L_i_s_t
_L_i_s_t is a list which head is the functor of _T_e_r_m and the remaining
arguments are the arguments of the term. Each of the arguments may
be a variable, but not both. This predicate is called `Univ'.
Examples:
?- foo(hello, X) =.. List.
List = [foo, hello, X]
?- Term =.. [baz, foo(1)]
Term = baz(foo(1))
nnuummbbeerrvvaarrss((_+_T_e_r_m_, _+_F_u_n_c_t_o_r_, _+_S_t_a_r_t_, _-_E_n_d))
Unify the free variables of _T_e_r_m with a term constructed from the
atom _F_u_n_c_t_o_r with one argument. The argument is the number of the
variable. Counting starts at _S_t_a_r_t. _E_n_d is unified with the
number that should be given to the next variable. Example:
?- numbervars(foo(A, B, A), this_is_a_variable, 0, End).
A = this_is_a_variable(0)
B = this_is_a_variable(1)
End = 2
In Edinburgh Prolog the second argument is missing. It is fixed to
be $VAR.
ffrreeee__vvaarriiaabblleess((_+_T_e_r_m_, _-_L_i_s_t))
Unify _L_i_s_t with a list of variables, each sharing with a unique
variable of _T_e_r_m. For example:
?- free_variables(a(X, b(Y, X), Z), L).
L = [G367, G366, G371]
X = G367
Y = G366
Z = G371
ccooppyy__tteerrmm((_+_I_n_, _-_O_u_t))
Make a copy of term _I_n and unify the result with _O_u_t. Ground parts
of _I_n are shared by _O_u_t. Provided _I_n and _O_u_t have no sharing
variables before this call they will have no sharing variables
afterwards. copy_term/2 is semantically equivalent to:
copy_term(In, Out) :-
recorda(copy_key, In, Ref),
recorded(copy_key, Out, Ref),
erase(Ref).
44..2211 AAnnaallyyssiinngg aanndd CCoonnssttrruuccttiinngg AAttoommss
These predicates convert between Prolog constants and lists of ASCII
values. The predicates atom_codes/2, number_codes/2 and name/2 behave
the same when converting from a constant to a list of ASCII values.
When converting the other way around, atom_codes/2 will generate an
atom, number_codes/2 will generate a number or exception and name/2
will return a number if possible and an atom otherwise.
The ISO standard defines atom_chars/2 to describe the `broken-up'
atom as a list of one-character atoms instead of a list of codes.
Upto version 3.2.x, SWI-Prolog's atom_chars/2 behaved, compatible to
Quintus and SICStus Prolog, like atom_codes. As of 3.3.x SWI-Prolog
atom_codes/2 and atom_chars/2are compliant to the ISO standard.
To ease the pain of all variations in the Prolog community, all
SWI-Prolog predicates behave as flexible as possible. This implies
the `list-side' accepts either a code-list or a char-list and the
`atom-side' accept all atomic types (atom, number and string).
aattoomm__ccooddeess((_?_A_t_o_m_, _?_S_t_r_i_n_g))
Convert between an atom and a list of ASCII values. If _A_t_o_m is
instantiated, if will be translated into a list of ASCII values and
the result is unified with _S_t_r_i_n_g. If _A_t_o_m is unbound and _S_t_r_i_n_g
is a list of ASCII values, it will _A_t_o_m will be unified with an
atom constructed from this list.
aattoomm__cchhaarrss((_?_A_t_o_m_, _?_C_h_a_r_L_i_s_t))
As atom_codes/2, but _C_h_a_r_L_i_s_t is a list of one-character atoms
rather than a list of ASCII values.
?- atom_chars(hello, X).
X = [h, e, l, l, o]
cchhaarr__ccooddee((_?_A_t_o_m_, _?_A_S_C_I_I))
Convert between character and ASCII value for a single character.
nnuummbbeerr__cchhaarrss((_?_N_u_m_b_e_r_, _?_C_h_a_r_L_i_s_t))
Similar to atom_chars/2, but converts between a number and its
representation as a list of one-character atoms. Fails with a
representation_error if _N_u_m_b_e_r is unbound and _C_h_a_r_L_i_s_t does not
describe a number.
nnuummbbeerr__ccooddeess((_?_N_u_m_b_e_r_, _?_C_o_d_e_L_i_s_t))
As number_chars/2, but converts to a list of character codes
(normally ASCII values) rather than one-character atoms. In the
mode -, +, both predicates behave identically to improve handling
of non-ISO source.
nnaammee((_?_A_t_o_m_O_r_I_n_t_, _?_S_t_r_i_n_g))
_S_t_r_i_n_g is a list of ASCII values describing _A_t_o_m. Each of the
arguments may be a variable, but not both. When _S_t_r_i_n_g is bound to
an ASCII value list describing an integer and _A_t_o_m is a variable
_A_t_o_m will be unified with the integer value described by _S_t_r_i_n_g
(e.g. `name(N, "300"), 400 is N + 100' succeeds).
iinntt__ttoo__aattoomm((_+_I_n_t_, _+_B_a_s_e_, _-_A_t_o_m))
Convert _I_n_t to an ascii representation using base _B_a_s_e and unify
the result with _A_t_o_m. If _B_a_s_e 6=10 the base will be prepended to
_A_t_o_m. _B_a_s_e= 0 will try to interpret _I_n_t as an ASCII value and
return 0'<_c>. Otherwise 2 _B_a_s_e 36. Some examples are given
below.
int_to_atom(45, 2, A) -! A= 20101101
int_to_atom(97, 0, A) -! A= 00a
int_to_atom(56, 10, A) -! A= 56
iinntt__ttoo__aattoomm((_+_I_n_t_, _-_A_t_o_m))
Equivalent to int_to_atom(Int, 10, Atom).
tteerrmm__ttoo__aattoomm((_?_T_e_r_m_, _?_A_t_o_m))
Succeeds if _A_t_o_m describes a term that unifies with _T_e_r_m. When
_A_t_o_m is instantiated _A_t_o_m is converted and then unified with _T_e_r_m.
If _A_t_o_m has no valid syntax, a syntax_error exception is raised.
Otherwise _T_e_r_m is ``written'' on _A_t_o_m using write/1.
aattoomm__ttoo__tteerrmm((_+_A_t_o_m_, _-_T_e_r_m_, _-_B_i_n_d_i_n_g_s))
Use _A_t_o_m as input to read_term/2 using the option variable_names
and return the read term in _T_e_r_m and the variable bindings in
_B_i_n_d_i_n_g_s. _B_i_n_d_i_n_g_s is a list of _N_a_m_e =_V_a_r couples, thus providing
access to the actual variable names. See also read_term/2. If
_A_t_o_m has no valid syntax, a syntax_error exception is raised.
aattoomm__ccoonnccaatt((_?_A_t_o_m_1_, _?_A_t_o_m_2_, _?_A_t_o_m_3))
_A_t_o_m_3 forms the concatenation of _A_t_o_m_1 and _A_t_o_m_2. At least two of
the arguments must be instantiated to atoms, integers or floating
point numbers. For ISO compliance, the instantiation-pattern
-, -, + is allowed too, non-deterministically splitting the 3-th
argument into two parts (as append/3 does for lists). See also
string_concat/3.
ccoonnccaatt__aattoomm((_+_L_i_s_t_, _-_A_t_o_m))
_L_i_s_t is a list of atoms, integers or floating point numbers.
Succeeds if _A_t_o_m can be unified with the concatenated elements
of _L_i_s_t. If _L_i_s_t has exactly 2 elements it is equivalent to
atom_concat/3, allowing for variables in the list.
ccoonnccaatt__aattoomm((_?_L_i_s_t_, _+_S_e_p_a_r_a_t_o_r_, _?_A_t_o_m))
Creates an atom just like concat_atom/2, but inserts _S_e_p_a_r_a_t_o_r
between each pair of atoms. For example:
?- concat_atom([gnu, gnat], ', ', A).
A = 'gnu, gnat'
This predicate can also be used to split atoms by instantiating
_S_e_p_a_r_a_t_o_r and _A_t_o_m:
?- concat_atom(L, -, 'gnu-gnat').
L = [gnu, gnat]
aattoomm__lleennggtthh((_+_A_t_o_m_, _-_L_e_n_g_t_h))
Succeeds if _A_t_o_m is an atom of _L_e_n_g_t_h characters long. This
predicate also works for strings (see section ????). If the
prolog flag iso is _n_o_t set, it also accepts integers and floats,
expressing the number of characters output when given to write/1 as
well as code-lists and character-lists, expressing the length of
the list.
aattoomm__pprreeffiixx((_+_A_t_o_m_, _+_P_r_e_f_i_x))
Succeeds if _A_t_o_m starts with the characters from _P_r_e_f_i_x. Its
behaviour is equivalent to ?- concat(Prefix, _, Atom), but avoids
the construction of an atom for the `remainder'.
ssuubb__aattoomm((_+_A_t_o_m_, _?_B_e_f_o_r_e_, _?_L_e_n_, _?_A_f_t_e_r_, _?_S_u_b))
ISO predicate for breaking atoms. It maintains the following
relation: _S_u_b is a sub-atom of _A_t_o_m that starts at _B_e_f_o_r_e, has _L_e_n
characters and _A_t_o_m contains _A_f_t_e_r characters after the match.
?- sub_atom(abc, 1, 1, A, S).
A = 1, S = b
The implementation minimalises non-determinism and creation of
atoms. This is a very flexible predicate that can do search,
prefix- and suffix-matching, etc.
44..2222 CCllaassssiiffyyiinngg cchhaarraacctteerrss
SWI-Prolog offers two comprehensive predicates for classifying
characters and character-codes. These predicates are defined as built-
in predicates to exploit the C-character classification's handling of
_l_o_c_a_l_e (handling of local character-sets). These predicates are fast,
logical and deterministic if applicable.
In addition, there is the library library(ctype) providing
compatibility to some other Prolog systems. The predicates of this
library are defined in terms of code_type/2.
cchhaarr__ttyyppee((_?_C_h_a_r_, _?_T_y_p_e))
Tests or generates alternative _T_y_p_es or _C_h_a_rs. The character-types
are inspired by the standard C <ctype.h> primitives.
aallnnuumm
_C_h_a_r is a letter (upper- or lowercase) or digit.
aallpphhaa
_C_h_a_r is a letter (upper- or lowercase).
ccssyymm
_C_h_a_r is a letter (upper- or lowercase), digit or the
underscore (_). These are valid C- and Prolog symbol
characters.
ccssyymmff
_C_h_a_r is a letter (upper- or lowercase) or the underscore (_).
These are valid first characters for C- and Prolog symbols
aasscciiii
_C_h_a_r is a 7-bits ASCII character (0..127).
wwhhiittee
_C_h_a_r is a space or tab. E.i. white space inside a line.
ccnnttrrll
_C_h_a_r is an ASCII control-character (0..31).
ddiiggiitt
_C_h_a_r is a digit.
ddiiggiitt((_W_e_i_g_t_h))
_C_h_a_r is a digit with value _W_e_i_g_t_h. I.e. char_type(X, digit(6)
yields _X = '6'. Useful for parsing numbers.
xxddiiggiitt((_W_e_i_g_t_h))
_C_h_a_r is a haxe-decimal digit with value _W_e_i_g_t_h. I.e.
char_type(a, xdigit(X) yields _X = '10'. Useful for parsing
numbers.
ggrraapphh
_C_h_a_r produces a visible mark on a page when printed. Note
that the space is not included!
lloowweerr
_C_h_a_r is a lower-case letter.
lloowweerr((_U_p_p_e_r))
_C_h_a_r is a lower-case version of _U_p_p_e_r. Only true if _C_h_a_r is
lowercase and _U_p_p_e_r uppercase.
ttoo__lloowweerr((_U_p_p_e_r))
_C_h_a_r is a lower-case version of _U_p_p_e_r. For non-letters, or
letter without case, _C_h_a_r and _L_o_w_e_r are the same.
uuppppeerr
_C_h_a_r is an upper-case letter.
uuppppeerr((_L_o_w_e_r))
_C_h_a_r is an upper-case version of _L_o_w_e_r. Only true if _C_h_a_r is
uppercase and _L_o_w_e_r lowercase.
ttoo__uuppppeerr((_L_o_w_e_r))
_C_h_a_r is an upper-case version of _L_o_w_e_r. For non-letters, or
letter without case, _C_h_a_r and _L_o_w_e_r are the same.
ppuunncctt
_C_h_a_r is a punctuation character. This is a graph character
that is not a letter or digit.
ssppaaccee
_C_h_a_r is some form of layout character (tab, vertical-tab,
newline, etc.).
eenndd__ooff__ffiillee
_C_h_a_r is -1.
eenndd__ooff__lliinnee
_C_h_a_r ends a line (ASCII: 10..13).
nneewwlliinnee
_C_h_a_r is a the newline character (10).
ppeerriioodd
_C_h_a_r counts as the end of a sentence (.,!,?).
qquuoottee
_C_h_a_r is a quote-character (", ', `).
ppaarreenn((_C_l_o_s_e))
_C_h_a_r is an open-parenthesis and _C_l_o_s_e is the corresponding
close-parenthesis.
ccooddee__ttyyppee((_?_C_o_d_e_, _?_T_y_p_e))
As char_type/2, but uses character-codes rather than one-character
atoms. Please note that both predicates are as flexible as
possible. They handle either representation if the argument is
instantiated and only will instantiate with an integer code or
one-character atom depending of the version used. See also the
prolog-flag double_quotes, atom_chars/2 and atom_codes/2.
44..2233 RReepprreesseennttiinngg tteexxtt iinn ssttrriinnggss
SWI-Prolog supports the data type _s_t_r_i_n_g. Strings are a time and
space efficient mechanism to handle text text in Prolog. Strings are
stores as a byte array on the global (term) stack and thus destroyed on
backtracking and reclaimed by the garbage collector.
Strings were added to SWI-Prolog based on an early draft of the ISO
standard, offerring a mechanism to represent temporary character data
efficiently. As SWI-Prolog strings can handle 0-bytes, they are
frequently used through the foreign language interface (section 6) for
storing arbitrary byte-sequences.
Starting with version 3.3, SWI-Prolog offers garbage collection on the
atom-space as well as representing 0-bytes in atoms. Although strings
and atoms still have different features, new code should consider
using atoms to avoid too many representations for text as well as
for compatibility to other Prolog systems. Below are some of the
differences:
o _c_r_e_a_t_i_o_n
Creating strings is fast, as the data is simply copied to the
global stack. Atoms are unique and therefore more expensive in
terms of memory and time to create. On the other hand, if the
same text has to be represented multiple times, atoms are more
efficient.
o _d_e_s_t_r_u_c_t_i_o_n
Backtracking destroys strings at no cost. They are cheap to handle
by the garbage collector, but it should be noted that extensive
use of strings will cause many garbage collections. Atom garbage
collection is generally faster.
See also the prolog-flag double_quotes.
ssttrriinngg__ttoo__aattoomm((_?_S_t_r_i_n_g_, _?_A_t_o_m))
Logical conversion between a string and an atom. At least one
of the two arguments must be instantiated. _A_t_o_m can also be an
integer or floating point number.
ssttrriinngg__ttoo__lliisstt((_?_S_t_r_i_n_g_, _?_L_i_s_t))
Logical conversion between a string and a list of ASCII characters.
At least one of the two arguments must be instantiated.
ssttrriinngg__lleennggtthh((_+_S_t_r_i_n_g_, _-_L_e_n_g_t_h))
Unify _L_e_n_g_t_h with the number of characters in _S_t_r_i_n_g. This
predicate is functionally equivalent to atom_length/2 and also
accepts atoms, integers and floats as its first argument.
ssttrriinngg__ccoonnccaatt((_?_S_t_r_i_n_g_1_, _?_S_t_r_i_n_g_2_, _?_S_t_r_i_n_g_3))
Similar to atom_concat/3, but the unbound argument will be unified
with a string object rather than an atom. Also, if both _S_t_r_i_n_g_1
and _S_t_r_i_n_g_2 are unbound and _S_t_r_i_n_g_3 is bound to text, it breaks
_S_t_r_i_n_g_3, unifying the start with _S_t_r_i_n_g_1 and the end with _S_t_r_i_n_g_2
as append does with lists. Note that this is not particularly
fast on long strings as for each redo the system has to create
two entirely new strings, while the list equivalent only creates a
single new list-cell and moves some pointers around.
ssuubb__ssttrriinngg((_+_S_t_r_i_n_g_, _?_S_t_a_r_t_, _?_L_e_n_g_t_h_, _?_A_f_t_e_r_, _?_S_u_b))
_S_u_b is a substring of _S_t_r_i_n_g starting at _S_t_a_r_t, with length _L_e_n_g_t_h
and _S_t_r_i_n_g has _A_f_t_e_r characters left after the match. See also
sub_atom/5.
44..2244 OOppeerraattoorrss
Operators are defined to improve the readibility of source-code.
For example, without operators, to write 2*3+4*5 one would have to
write +(*(2,3),*(4,5)). In Prolog, a number of operators have been
predefined. All operators, except for the comma (,) can be redefined
by the user.
Some care has to be taken before defining new operators. Defining
too many operators might make your source `natural' looking, but at
the same time lead to hard to understand the limits of your syntax.
To ease the pain, as of SWI-Prolog 3.3.0, operators are local to the
module in which they are defined. The module-table of the module
user acts as default table for all modules. This global table can be
modified explictly from inside a module:
:- module(prove,
[ prove/1
]).
:- op(900, xfx, user:(=>)).
Unlike what many users think, operators and quoted atoms have no
relation: defining a atom as an operator does nnoott influence parsing
characters into atoms and quoting an atom does nnoott stop it from acting
as an operator. To stop an atom acting as an operator, enclose it in
braces like this: (myop).
oopp((_+_P_r_e_c_e_d_e_n_c_e_, _+_T_y_p_e_, _:_N_a_m_e))
Declare _N_a_m_e to be an operator of type _T_y_p_e with precedence
_P_r_e_c_e_d_e_n_c_e. _N_a_m_e can also be a list of names, in which case
all elements of the list are declared to be identical operators.
_P_r_e_c_e_d_e_n_c_e is an integer between 0 and 1200. Precedence 0 removes
the declaration. _T_y_p_e is one of: xf, yf, xfx, xfy, yfx, yfy,
fy or fx. The `f' indicates the position of the functor, while
x and y indicate the position of the arguments. `y' should be
interpreted as ``on this position a term with precedence lower or
equal to the precedence of the functor should occur''. For `x' the
precedence of the argument must be strictly lower. The precedence
of a term is 0, unless its principal functor is an operator, in
which case the precedence is the precedence of this operator. A
term enclosed in brackets (...) has precedence 0.
The predefined operators are shown in table 4.1. Note that all
operators can be redefined by the user.
______________________________________________________________
| 1200 |xfx |-->, :- |
| 1200 | fx |:-, ?- |
| 1150 | fx |dynamic, multifile, module_transparent, discon-|
| | |tiguous, volatile, initialization |
| 1100 |xfy |;, | |
| 1050 |xfy |-> |
| 1000 |xfy |, |
| 954 |xfy |\ |
| 900 | fy |\+ |
| 900 | fx |~ |
| 700 |xfx |<, =, =.., =@=, =:=, =<, ==, =\=, >, >=, @<, |
| | |@=<, @>, @>=, \=, \==, is |
| 600 |xfy |: |
| 500 | yfx |+, -, /\, \/, xor |
| 500 | fx |+, -, ?, \ |
| 400 | yfx |*, /, //, <<, >>, mod, rem |
| 200 |xfx |** |
|__200_|xfy__|^______________________________________________|_
Table 4.1: System operators
ccuurrrreenntt__oopp((_?_P_r_e_c_e_d_e_n_c_e_, _?_T_y_p_e_, _?_:_N_a_m_e))
Succeeds when _N_a_m_e is currently defined as an operator of type _T_y_p_e
with precedence _P_r_e_c_e_d_e_n_c_e. See also op/3.
44..2255 CChhaarraacctteerr CCoonnvveerrssiioonn
Although I wouldn't really know for what you would like to use these
features, they are provided for ISO complicancy.
cchhaarr__ccoonnvveerrssiioonn((_+_C_h_a_r_I_n_, _+_C_h_a_r_O_u_t))
Define that term-input (see read_term/3) maps each character read
as _C_h_a_r_I_n to the character _C_h_a_r_O_u_t. Character conversion is only
executed if the prolog-flag char_conversion is set to true and not
inside quoted atoms or strings. The initial table maps each
character onto itself. See also current_char_conversion/2.
ccuurrrreenntt__cchhaarr__ccoonnvveerrssiioonn((_?_C_h_a_r_I_n_, _?_C_h_a_r_O_u_t))
Queries the current character conversion-table. See
char_conversion/2 for details.
44..2266 AArriitthhmmeettiicc
Arithmetic can be divided into some special purpose integer predicates
and a series of general predicates for floating point and integer
arithmetic as appropriate. The integer predicates are as ``logical''
as possible. Their usage is recommended whenever applicable, resulting
in faster and more ``logical'' programs.
The general arithmetic predicates are optionally compiled now (see
set_prolog_flag/2 and the -O command line option). Compiled
arithmetic reduces global stack requirements and improves performance.
Unfortunately compiled arithmetic cannot be traced, which is why it is
optional.
The general arithmetic predicates all handle _e_x_p_r_e_s_s_i_o_n_s. An
expression is either a simple number or a _f_u_n_c_t_i_o_n. The arguments of a
function are expressions. The functions are described in section 4.27.
bbeettwweeeenn((_+_L_o_w_, _+_H_i_g_h_, _?_V_a_l_u_e))
_L_o_w and _H_i_g_h are integers, _H_i_g_h _L_o_w. If _V_a_l_u_e is an integer,
_L_o_w _V_a_l_u_e _H_i_g_h. When _V_a_l_u_e is a variable it is successively
bound to all integers between _L_o_w and _H_i_g_h.
ssuucccc((_?_I_n_t_1_, _?_I_n_t_2))
Succeeds if _I_n_t_2= _I_n_t_1+ 1. At least one of the arguments must be
instantiated to an integer.
pplluuss((_?_I_n_t_1_, _?_I_n_t_2_, _?_I_n_t_3))
Succeeds if _I_n_t_3= _I_n_t_1+_I_n_t_2. At least two of the three arguments
must be instantiated to integers.
_+_E_x_p_r_1 > _+_E_x_p_r_2
Succeeds when expression _E_x_p_r_1 evaluates to a larger number than
_E_x_p_r_2.
_+_E_x_p_r_1 < _+_E_x_p_r_2
Succeeds when expression _E_x_p_r_1 evaluates to a smaller number than
_E_x_p_r_2.
_+_E_x_p_r_1 =< _+_E_x_p_r_2
Succeeds when expression _E_x_p_r_1 evaluates to a smaller or equal
number to _E_x_p_r_2.
_+_E_x_p_r_1 >= _+_E_x_p_r_2
Succeeds when expression _E_x_p_r_1 evaluates to a larger or equal
number to _E_x_p_r_2.
_+_E_x_p_r_1 =\= _+_E_x_p_r_2
Succeeds when expression _E_x_p_r_1 evaluates to a number non-equal to
_E_x_p_r_2.
_+_E_x_p_r_1 =:= _+_E_x_p_r_2
Succeeds when expression _E_x_p_r_1 evaluates to a number equal to
_E_x_p_r_2.
_-_N_u_m_b_e_r iiss _+_E_x_p_r
Succeeds when _N_u_m_b_e_r has successfully been unified with the
number _E_x_p_r evaluates to. If _E_x_p_r evaluates to a float that
can be represented using an integer (i.e, the value is integer
and within the range that can be described by Prolog's integer
representation), _E_x_p_r is unified with the integer value.
Note that normally, is/2 will be used with unbound left operand.
If equality is to be tested, =:=/2 should be used. For example:
?- 1.0 is sin(pi/2). Fails!. sin(pi/2) evaluates
to 1.0, but is/2 will
represent this as the integer
1, after which unify will
fail.
?- 1.0 is float(sin(pi/2)). Succeeds, as the float/1
function forces the result to
be float.
?- 1.0 =:= sin(pi/2). Succeeds as expected.
44..2277 AArriitthhmmeettiicc FFuunnccttiioonnss
Arithmetic functions are terms which are evaluated by the arithmetic
predicates described above. SWI-Prolog tries to hide the difference
between integer arithmetic and floating point arithmetic from the
Prolog user. Arithmetic is done as integer arithmetic as long as
possible and converted to floating point arithmetic whenever one of
the arguments or the combination of them requires it. If a function
returns a floating point value which is whole it is automatically
transformed into an integer. There are three types of arguments to
functions:
_E_x_p_r Arbitrary expression, returning either a
floating point value or an integer.
_I_n_t_E_x_p_r Arbitrary expression that should evaluate into
an integer.
_I_n_t An integer.
In case integer addition, subtraction and multiplication would lead
to an integer overflow the operands are automatically converted to
floating point numbers. The floating point functions (sin/1, exp/1,
etc.) form a direct interface to the corresponding C library
functions used to compile SWI-Prolog. Please refer to the C library
documentation for details on precision, error handling, etc.
- _+_E_x_p_r
_R_e_s_u_l_t =-_E_x_p_r
_+_E_x_p_r_1 + _+_E_x_p_r_2
_R_e_s_u_l_t =_E_x_p_r_1 +_E_x_p_r_2
_+_E_x_p_r_1 - _+_E_x_p_r_2
_R_e_s_u_l_t =_E_x_p_r_1 -_E_x_p_r_2
_+_E_x_p_r_1 * _+_E_x_p_r_2
_R_e_s_u_l_t =_E_x_p_r_1_*Expr2
_+_E_x_p_r_1 / _+_E_x_p_r_2
_R_e_s_u_l_t =_E_x_p_r_1=_E_x_p_r_2
_+_I_n_t_E_x_p_r_1 mmoodd _+_I_n_t_E_x_p_r_2
Modulo: _R_e_s_u_l_t = _I_n_t_E_x_p_r_1 - (_I_n_t_E_x_p_r_1 // _I_n_t_E_x_p_r_2) * _I_n_t_E_x_p_r_2 The
function mod/2 is implemented using the C % operator. It's
behaviour with negtive values is illustrated in the table below.
2 = 17 mod 5
2 = 17 mod -5
-2 = -17 mod 5
-2 = -17 mod 5
_+_I_n_t_E_x_p_r_1 rreemm _+_I_n_t_E_x_p_r_2
Remainder of division: _R_e_s_u_l_t = float_fractional_part(_I_n_t_E_x_p_r_1/_I_n_t_E_x_p_r_2)
_+_I_n_t_E_x_p_r_1 // _+_I_n_t_E_x_p_r_2
Integer division: _R_e_s_u_l_t = truncate(_E_x_p_r_1/_E_x_p_r_2)
aabbss((_+_E_x_p_r))
Evaluate _E_x_p_r and return the absolute value of it.
ssiiggnn((_+_E_x_p_r))
Evaluate to -1 if _E_x_p_r <0, 1 if _E_x_p_r >0 and 0 if _E_x_p_r =0.
mmaaxx((_+_E_x_p_r_1_, _+_E_x_p_r_2))
Evaluates to the largest of both _E_x_p_r_1 and _E_x_p_r_2.
mmiinn((_+_E_x_p_r_1_, _+_E_x_p_r_2))
Evaluates to the smallest of both _E_x_p_r_1 and _E_x_p_r_2.
.((_+_I_n_t_, _[_]))
A list of one element evaluates to the element. This implies
"a" evaluates to the ASCII value of the letter `a' (97). This
option is available for compatibility only. It will not work if
`style_check(+string)' is active as "a" will then be transformed
into a string object. The recommended way to specify the ASCII
value of the letter `a' is 0'a.
rraannddoomm((_+_I_n_t))
Evaluates to a random integer _i for which 0 i< _I_n_t. The seed
of this random generator is determined by the system clock when
SWI-Prolog was started.
rroouunndd((_+_E_x_p_r))
Evaluates _E_x_p_r and rounds the result to the nearest integer.
iinntteeggeerr((_+_E_x_p_r))
Same as round/1 (backward compatibility).
ffllooaatt((_+_E_x_p_r))
Translate the result to a floating point number. Normally, Prolog
will use integers whenever possible. When used around the 2nd
argument of is/2, the result will be returned as a floating point
number. In other contexts, the operation has no effect.
ffllooaatt__ffrraaccttiioonnaall__ppaarrtt((_+_E_x_p_r))
Fractional part of a floating-point number. Negative if _E_x_p_r is
negative, 0 if _E_x_p_r is integer.
ffllooaatt__iinntteeggeerr__ppaarrtt((_+_E_x_p_r))
Integer part of floating-point number. Negative if _E_x_p_r is
negative, _E_x_p_r if _E_x_p_r is integer.
ttrruunnccaattee((_+_E_x_p_r))
Truncate _E_x_p_r to an integer. Same as float_integer_part/1.
fflloooorr((_+_E_x_p_r))
Evaluates _E_x_p_r and returns the largest integer smaller or equal to
the result of the evaluation.
cceeiilliinngg((_+_E_x_p_r))
Evaluates _E_x_p_r and returns the smallest integer larger or equal to
the result of the evaluation.
cceeiill((_+_E_x_p_r))
Same as ceiling/1 (backward compatibility).
_+_I_n_t_E_x_p_r >> _+_I_n_t_E_x_p_r
Bitwise shift _I_n_t_E_x_p_r_1 by _I_n_t_E_x_p_r_2 bits to the right.
_+_I_n_t_E_x_p_r << _+_I_n_t_E_x_p_r
Bitwise shift _I_n_t_E_x_p_r_1 by _I_n_t_E_x_p_r_2 bits to the left.
_+_I_n_t_E_x_p_r \/ _+_I_n_t_E_x_p_r
Bitwise `or' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
_+_I_n_t_E_x_p_r /\ _+_I_n_t_E_x_p_r
Bitwise `and' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
_+_I_n_t_E_x_p_r xxoorr _+_I_n_t_E_x_p_r
Bitwise `exclusive or' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
\ _+_I_n_t_E_x_p_r
Bitwise negation.
ssqqrrtt((_+_E_x_p_r))
_R_e_s_u_l_t =square root of _E_x_p_r
ssiinn((_+_E_x_p_r))
_R_e_s_u_l_t =sine of _E_x_p_r. _E_x_p_r is the angle in radians.
ccooss((_+_E_x_p_r))
_R_e_s_u_l_t =cosine of _E_x_p_r. _E_x_p_r is the angle in radians.
ttaann((_+_E_x_p_r))
_R_e_s_u_l_t =tangus of _E_x_p_r. _E_x_p_r is the angle in radians.
aassiinn((_+_E_x_p_r))
_R_e_s_u_l_t =inverse sine of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aaccooss((_+_E_x_p_r))
_R_e_s_u_l_t =inverse cosine of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aattaann((_+_E_x_p_r))
_R_e_s_u_l_t =inverse tangus of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aattaann((_+_Y_E_x_p_r_, _+_X_E_x_p_r))
_R_e_s_u_l_t = inverse tangus of _Y_E_x_p_r / _X_E_x_p_r. _R_e_s_u_l_t is the angle in
radians. The return value is in the range [-pi:::pi]. Used to
convert between rectangular and polar coordinate system.
lloogg((_+_E_x_p_r))
_R_e_s_u_l_t =natural logarithm of _E_x_p_r
lloogg1100((_+_E_x_p_r))
_R_e_s_u_l_t =10 base logarithm of _E_x_p_r
eexxpp((_+_E_x_p_r))
_R_e_s_u_l_t =e to the power _E_x_p_r
_+_E_x_p_r_1 ** _+_E_x_p_r_2
_R_e_s_u_l_t =_E_x_p_r_1 to the power _E_x_p_r_2
_+_E_x_p_r_1 ^ _+_E_x_p_r_2
Same as **/2. (backward compatibility).
ppii
Evaluates to the mathematical constant pi (3.141593).
ee
Evaluates to the mathematical constant e (2.718282).
ccppuuttiimmee
Evaluates to a floating point number expressing the cpu time (in
seconds) used by Prolog up till now. See also statistics/2 and
time/1.
44..2288 AAddddiinngg AArriitthhmmeettiicc FFuunnccttiioonnss
Prolog predicates can be given the role of arithmetic function. The
last argument is used to return the result, the arguments before
the last are the inputs. Arithmetic functions are added using the
predicate arithmetic_function/1, which takes the head as its argument.
Arithmetic functions are module sensitive, that is they are only
visible from the module in which the function is defined and declared.
Global arithmetic functions should be defined and registered from
module user. Global definitions can be overruled locally in modules.
The builtin functions described above can be redefined as well.
aarriitthhmmeettiicc__ffuunnccttiioonn((_+_H_e_a_d))
Register a Prolog predicate as an arithmetic function (see is/2,
>/2 , etc.). The Prolog predicate should have one more argument
than specified by _H_e_a_d, which it either a term _N_a_m_e_/_A_r_i_t_y, an atom
or a complex term. This last argument is an unbound variable at
call time and should be instantiated to an integer or floating
point number. The other arguments are the parameters. This
predicate is module sensitive and will declare the arithmetic
function only for the context module, unless declared from module
user. Example:
1 ?- [user].
:- arithmetic_function(mean/2).
mean(A, B, C) :-
C is (A+B)/2.
user compiled, 0.07 sec, 440 bytes.
Yes
2 ?- A is mean(4, 5).
A = 4.500000
ccuurrrreenntt__aarriitthhmmeettiicc__ffuunnccttiioonn((_?_H_e_a_d))
Successively unifies all arithmetic functions that are visible from
the context module with _H_e_a_d.
44..2299 LLiisstt MMaanniippuullaattiioonn
iiss__lliisstt((_+_T_e_r_m))
Succeeds if _T_e_r_m is bound to the empty list ([]) or a term with
functor `.' and arity 2.
pprrooppeerr__lliisstt((_+_T_e_r_m))
Equivalent to is_list/1, but also requires the tail of the list to
be a list (recursively). Examples:
is_list([x|A]) % true
proper_list([x|A]) % false
aappppeenndd((_?_L_i_s_t_1_, _?_L_i_s_t_2_, _?_L_i_s_t_3))
Succeeds when _L_i_s_t_3 unifies with the concatenation of _L_i_s_t_1 and
_L_i_s_t_2. The predicate can be used with any instantiation pattern
(even three variables).
mmeemmbbeerr((_?_E_l_e_m_, _?_L_i_s_t))
Succeeds when _E_l_e_m can be unified with one of the members of _L_i_s_t.
The predicate can be used with any instantiation pattern.
mmeemmbbeerrcchhkk((_?_E_l_e_m_, _+_L_i_s_t))
Equivalent to member/2, but leaves no choice point.
ddeelleettee((_+_L_i_s_t_1_, _?_E_l_e_m_, _?_L_i_s_t_2))
Delete all members of _L_i_s_t_1 that simultaneously unify with _E_l_e_m and
unify the result with _L_i_s_t_2.
sseelleecctt((_?_E_l_e_m_, _?_L_i_s_t_, _?_R_e_s_t))
Select _E_l_e_m from _L_i_s_t leaving _R_e_s_t. It behaves as member/2,
returning the remaining elements in _R_e_s_t. Note that besides
selecting elements from a list, it can also be used to insert
elements.
nntthh00((_?_I_n_d_e_x_, _?_L_i_s_t_, _?_E_l_e_m))
Succeeds when the _I_n_d_e_x-th element of _L_i_s_t unifies with _E_l_e_m.
Counting starts at 0.
nntthh11((_?_I_n_d_e_x_, _?_L_i_s_t_, _?_E_l_e_m))
Succeeds when the _I_n_d_e_x-th element of _L_i_s_t unifies with _E_l_e_m.
Counting starts at 1.
llaasstt((_?_E_l_e_m_, _?_L_i_s_t))
Succeeds if _E_l_e_m unifies with the last element of _L_i_s_t. If _L_i_s_t
is a proper list last/2 is deterministic. If _L_i_s_t has an unbound
tail, backtracking will cause _L_i_s_t to grow.
rreevveerrssee((_+_L_i_s_t_1_, _-_L_i_s_t_2))
Reverse the order of the elements in _L_i_s_t_1 and unify the result
with the elements of _L_i_s_t_2.
ffllaatttteenn((_+_L_i_s_t_1_, _-_L_i_s_t_2))
Transform _L_i_s_t_1, possibly holding lists as elements into a `flat'
list by replacing each list with its elements (recursively). Unify
the resulting flat list with _L_i_s_t_2. Example:
?- flatten([a, [b, [c, d], e]], X).
X = [a, b, c, d, e]
lleennggtthh((_?_L_i_s_t_, _?_I_n_t))
Succeeds if _I_n_t represents the number of elements of list _L_i_s_t.
Can be used to create a list holding only variables.
mmeerrggee((_+_L_i_s_t_1_, _+_L_i_s_t_2_, _-_L_i_s_t_3))
_L_i_s_t_1 and _L_i_s_t_2 are lists, sorted to the standard order of terms
(see section 4.6). _L_i_s_t_3 will be unified with an ordered list
holding both the elements of _L_i_s_t_1 and _L_i_s_t_2. Duplicates are nnoott
removed.
44..3300 SSeett MMaanniippuullaattiioonn
iiss__sseett((_+_S_e_t))
Succeeds if _S_e_t is a proper list (see proper_list/1) without
duplicates.
lliisstt__ttoo__sseett((_+_L_i_s_t_, _-_S_e_t))
Unifies _S_e_t with a list holding the same elements as _L_i_s_t in
the same order. If _l_i_s_t contains duplicates, only the first is
retained. See also sort/2. Example:
?- list_to_set([a,b,a], X)
X = [a,b]
iinntteerrsseeccttiioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_S_e_t_3))
Succeeds if _S_e_t_3 unifies with the intersection of _S_e_t_1 and _S_e_t_2.
_S_e_t_1 and _S_e_t_2 are lists without duplicates. They need not be
ordered.
ssuubbttrraacctt((_+_S_e_t_, _+_D_e_l_e_t_e_, _-_R_e_s_u_l_t))
Delete all elements of set `Delete' from `Set' and unify the
resulting set with `Result'.
uunniioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_S_e_t_3))
Succeeds if _S_e_t_3 unifies with the union of _S_e_t_1 and _S_e_t_2. _S_e_t_1 and
_S_e_t_2 are lists without duplicates. They need not be ordered.
ssuubbsseett((_+_S_u_b_s_e_t_, _+_S_e_t))
Succeeds if all elements of _S_u_b_s_e_t are elements of _S_e_t as well.
mmeerrggee__sseett((_+_S_e_t_1_, _+_S_e_t_2_, _-_S_e_t_3))
_S_e_t_1 and _S_e_t_2 are lists without duplicates, sorted to the standard
order of terms. _S_e_t_3 is unified with an ordered list without
duplicates holding the union of the elements of _S_e_t_1 and _S_e_t_2.
44..3311 SSoorrttiinngg LLiissttss
ssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
Succeeds if _S_o_r_t_e_d can be unified with a list holding the elements
of _L_i_s_t, sorted to the standard order of terms (see section 4.6).
Duplicates are removed. Implemented by translating the input list
into a temporary array, calling the C-library function qsort(3)
using PL_compare() for comparing the elements, after which the
result is translated into the result list.
mmssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
Equivalent to sort/2, but does not remove duplicates.
kkeeyyssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
List is a proper list whose elements are Key-Value, that is, terms
whose principal functor is (-)/2, whose first argument is the
sorting key, and whose second argument is the satellite data to be
carried along with the key. keysort/2 sorts _L_i_s_t like msort/2,
but only compares the keys. Can be used to sort terms not on
standard order, but on any criterion that can be expressed on a
multi-dimensional scale. Sorting on more than one criterion can be
done using terms as keys, putting the first criterion as argument
1, the second as argument 2, etc. The order of multiple elements
that have the same _K_e_y is not changed.
pprreeddssoorrtt((_+_P_r_e_d_, _+_L_i_s_t_, _-_S_o_r_t_e_d))
Sorts similar to sort/2, but determines the order of two terms by
calling _P_r_e_d(-_D_e_l_t_a, +_E_1, +_E_2). This call must unify _D_e_l_t_a with
one of <, const> or =. If built-in predicate compare/3 is used,
the result is the same as sort/2. See also keysort/2.
44..3322 FFiinnddiinngg aallll SSoolluuttiioonnss ttoo aa GGooaall
ffiinnddaallll((_+_V_a_r_, _+_G_o_a_l_, _-_B_a_g))
Creates a list of the instantiations _V_a_r gets successively on
backtracking over _G_o_a_l and unifies the result with _B_a_g. Succeeds
with an empty list if _G_o_a_l has no solutions. findall/3 is
equivalent to bagof/3 with all free variables bound with the
existence operator (^), except that bagof/3 fails when goal has no
solutions.
bbaaggooff((_+_V_a_r_, _+_G_o_a_l_, _-_B_a_g))
Unify _B_a_g with the alternatives of _V_a_r, if _G_o_a_l has free variables
besides the one sharing with _V_a_r bagof will backtrack over the
alternatives of these free variables, unifying _B_a_g with the
corresponding alternatives of _V_a_r. The construct +Var^Goal tells
bagof not to bind _V_a_r in _G_o_a_l. bagof/3 fails if _G_o_a_l has no
solutions.
The example below illustrates bagof/3 and the ^ operator. The
variable bindings are printed together on one line to save paper.
2 ?- listing(foo).
foo(a, b, c).
foo(a, b, d).
foo(b, c, e).
foo(b, c, f).
foo(c, c, g).
Yes
3 ?- bagof(C, foo(A, B, C), Cs).
A = a, B = b, C = G308, Cs = [c, d] ;
A = b, B = c, C = G308, Cs = [e, f] ;
A = c, B = c, C = G308, Cs = [g] ;
No
4 ?- bagof(C, A^foo(A, B, C), Cs).
A = G324, B = b, C = G326, Cs = [c, d] ;
A = G324, B = c, C = G326, Cs = [e, f, g] ;
No
5 ?-
sseettooff((_+_V_a_r_, _+_G_o_a_l_, _-_S_e_t))
Equivalent to bagof/3, but sorts the result using sort/2 to get a
sorted list of alternatives without duplicates.
44..3333 IInnvvookkiinngg PPrreeddiiccaatteess oonn aallll MMeemmbbeerrss ooff aa LLiisstt
All the predicates in this section call a predicate on all members of a
list or until the predicate called fails. The predicate is called via
call/[2..], which implies common arguments can be put in front of the
arguments obtained from the list(s). For example:
?- maplist(plus(1), [0, 1, 2], X).
X = [1, 2, 3]
we will phrase this as ``_P_r_e_d_i_c_a_t_e is applied on ...''
cchheecckklliisstt((_+_P_r_e_d_, _+_L_i_s_t))
_P_r_e_d is applied successively on each element of _L_i_s_t until the end
of the list or _P_r_e_d fails. In the latter case the checklist/2
fails.
mmaapplliisstt((_+_P_r_e_d_, _?_L_i_s_t_1_, _?_L_i_s_t_2))
Apply _P_r_e_d on all successive pairs of elements from _L_i_s_t_1 and
_L_i_s_t_2. Fails if _P_r_e_d can not be applied to a pair. See the
example above.
ssuubblliisstt((_+_P_r_e_d_, _+_L_i_s_t_1_, _?_L_i_s_t_2))
Unify _L_i_s_t_2 with a list of all elements of _L_i_s_t_1 to which _P_r_e_d
applies.
44..3344 FFoorraallll
ffoorraallll((_+_C_o_n_d_, _+_A_c_t_i_o_n))
For all alternative bindings of _C_o_n_d _A_c_t_i_o_n can be proven. The
example verifies that all arithmetic statements in the list _L are
correct. It does not say which is wrong if one proves wrong.
?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]),
Result =:= Formula).
44..3355 FFoorrmmaatttteedd WWrriittee
The current version of SWI-Prolog provides two formatted write
predicates. The first is writef/[1,2], which is compatible with
Edinburgh C-Prolog. The second is format/[1,2], which is compatible
with Quintus Prolog. We hope the Prolog community will once define
a standard formatted write predicate. If you want performance use
format/[1,2] as this predicate is defined in C. Otherwise compatibility
reasons might tell you which predicate to use.
44..3355..11 WWrriitteeff
wwrriitteellnn((_+_T_e_r_m))
Equivalent to write(Term), nl.
wwrriitteeff((_+_A_t_o_m))
Equivalent to writef(Atom, []).
wwrriitteeff((_+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s))
Formatted write. _F_o_r_m_a_t is an atom whose characters will
be printed. _F_o_r_m_a_t may contain certain special character
sequences which specify certain formatting and substitution
actions. _A_r_g_u_m_e_n_t_s then provides all the terms required to be
output.
Escape sequences to generate a single special character:
__________________________________________________
| \n |Output a nemline character (see also |
| |nl/[0,1]) |
| \l |Output a line separator (same as \n) |
| \r |Output a carriage-return character |
| |(ASCII 13) |
| \t |Output the ASCII character TAB (9) |
| \\ |The character \ is output |
| \% |The character % is output |
| \nnn |where <_n_n_n> is an integer (1-3 digits) |
| |the character with ASCII code <_n_n_n> is |
|______|output_(NB_:_<_n_n_n>_is_read_as_ddeecciimmaall)____|
Note that \l, \nnn and \\ are interpreted differently when
character-escapes are in effect. See section 2.15.1.1.
Escape sequences to include arguments from _A_r_g_u_m_e_n_t_s. Each time
a % escape sequence is found in _F_o_r_m_a_t the next argument from
_A_r_g_u_m_e_n_t_s is formatted according to the specification.
_________________________________________________%t
| %w print/1 the next item (mnemonic: term) | |
| %q |write/1the next item |
| |writeq/1the next item |
| %d |Write the term, ignoring operators. See|
| |also write_term/2. Mnemonic: old|
| %p |Edinburgh display/1. |
| |print/1the next item (identical to %t) |
| %n |Put the next item as a character (i.e.,|
| |it is an ASCII value) |
| %r |Write the next item N times where N is|
| |the second item (an integer) |
| %s |Write the next item as a String (so it|
| |must be a list of characters) |
| %f |Perform a ttyflush/0 (no items used) |
| %Nc |Write the next item Centered in N |
| |columns. |
| %Nl |Write the next item Left justified in N |
| |columns. |
| %Nr |Write the next item Right justified in N |
| |columns. N is a decimal number with at|
| |least one digit. The item must be an|
|_____|atom,_integer,_float_or_string.__________|_
sswwrriitteeff((_-_S_t_r_i_n_g_, _+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s))
Equivalent to writef/2, but ``writes'' the result on _S_t_r_i_n_g instead
of the current output stream. Example:
?- swritef(S, '%15L%w', ['Hello', 'World']).
S = "Hello World"
sswwrriitteeff((_-_S_t_r_i_n_g_, _+_F_o_r_m_a_t))
Equivalent to swritef(String, Format, []).
44..3355..22 FFoorrmmaatt
ffoorrmmaatt((_+_F_o_r_m_a_t))
Defined as `format(Format) :- format(Format, []).'
ffoorrmmaatt((_+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s))
_F_o_r_m_a_t is an atom, list of ASCII values, or a Prolog
string. _A_r_g_u_m_e_n_t_s provides the arguments required by the format
specification. If only one argument is required and this is not
a list of ASCII values the argument need not be put in a list.
Otherwise the arguments are put in a list.
Special sequences start with the tilde (~), followed by an optional
numeric argument, followed by a character describing the action to
be undertaken. A numeric argument is either a sequence of digits,
representing a positive decimal number, a sequence `<_c_h_a_r_a_c_t_e_r>,
representing the ASCII value of the character (only useful for ~t)
or a asterisk (*), in when the numeric argument is taken from the
next argument of the argument list, which should be a positive
integer. Actions are:
~ Output the tilde itself.
a Output the next argument, which should be an atom. This
option is equivalent to ww. Compatibility reasons only.
c Output the next argument as an ASCII value. This argument
should be an integer in the range [0, ..., 255] (including 0
and 255).
d Output next argument as a decimal number. It should be
an integer. If a numeric argument is specified a dot is
inserted _a_r_g_u_m_e_n_t positions from the right (useful for doing
fixed point arithmetic with integers, such as handling amounts
of money).
D Same as dd, but makes large values easier to read by inserting
a comma every three digits left to the dot or right.
e Output next argument as a floating point number in exponential
notation. The numeric argument specifies the precision.
Default is 6 digits. Exact representation depends on the C
library function printf(). This function is invoked with the
format %.<_p_r_e_c_i_s_i_o_n>e.
E Equivalent to ee, but outputs a capital E to indicate the
exponent.
f Floating point in non-exponential notation. See C library
function printf().
g Floating point in ee or ff notation, whichever is shorter.
G Floating point in EE or ff notation, whichever is shorter.
i Ignore next argument of the argument list. Produces no
output.
k Give the next argument to displayq/1 (canonical write).
n Output a newline character.
N Only output a newline if the last character output on this
stream was not a newline. Not properly implemented yet.
p Give the next argument to print/1.
q Give the next argument to writeq/1.
r Print integer in radix the numeric argument notation. Thus
~16r prints its argument hexadecimal. The argument should be
in the range [2; :::;36]. Lower case letters are used for digits
above 9.
R Same as rr, but uses upper case letters for digits above 9.
s Output a string of ASCII characters or a string (see string/1
and section 4.23) from the next argument.
t All remaining space between 2 tabs tops is distributed equally
over ~t statements between the tabs tops. This space is
padded with spaces by default. If an argument is supplied
this is taken to be the ASCII value of the character used for
padding. This can be used to do left or right alignment,
centering, distributing, etc. See also ~| and ~+ to set tab
stops. A tabs top is assumed at the start of each line.
| Set a tabs top on the current position. If an argument is
supplied set a tabs top on the position of that argument.
This will cause all ~t's to be distributed between the
previous and this tabs top.
+ Set a tabs top relative to the current position. Further the
same as ~|.
w Give the next argument to write/1.
W Give the next two argument to write_term/2. This option is
SWI-Prolog specific.
Example:
simple_statistics :-
<obtain statistics> % left to the user
format('~tStatistics~t~72|~n~n'),
format('Runtime: ~`.t ~2f~34| Inferences: ~`.t ~D~72|~n',
[RunT, Inf]),
....
Will output
Statistics
Runtime: .................. 3.45 Inferences: .......... 60,345
ffoorrmmaatt((_+_S_t_r_e_a_m_, _+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s))
As format/2, but write the output on the given _S_t_r_e_a_m.
ssffoorrmmaatt((_-_S_t_r_i_n_g_, _+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s))
Equivalent to format/2, but ``writes'' the result on _S_t_r_i_n_g instead
of the current output stream. Example:
?- sformat(S, '~w~t~15|~w', ['Hello', 'World']).
S = "Hello World"
ssffoorrmmaatt((_-_S_t_r_i_n_g_, _+_F_o_r_m_a_t))
Equivalent to `sformat(String, Format, []).'
44..3355..33 PPrrooggrraammmmiinngg FFoorrmmaatt
ffoorrmmaatt__pprreeddiiccaattee((_+_C_h_a_r_, _+_H_e_a_d))
If a sequence ~c (tilde, followed by some character) is found, the
format derivatives will first check whether the user has defined a
predicate to handle the format. If not, the built in formatting
rules described above are used. _C_h_a_r is either an ascii value,
or a one character atom, specifying the letter to be (re)defined.
_H_e_a_d is a term, whose name and arity are used to determine the
predicate to call for the redefined formatting character. The
first argument to the predicate is the numeric argument of the
format command, or the atom default if no argument is specified.
The remaining arguments are filled from the argument list. The
example below redefines ~n to produce _A_r_g times return followed by
linefeed (so a (Grr.) DOS machine is happy with the output).
:- format_predicate(n, dos_newline(_Arg)).
dos_newline(Arg) :-
between(1, Ar, _), put(13), put(10), fail ; true.
ccuurrrreenntt__ffoorrmmaatt__pprreeddiiccaattee((_?_C_o_d_e_, _?_:_H_e_a_d))
Enumerates all user-defined format predicates. _C_o_d_e is the
character code of the format character. _H_e_a_d is unified with
a term with the same name and arity as the predicate. If the
predicate does not reside in module user, _H_e_a_d is qualified with
the definition module of the predicate.
44..3366 TTeerrmmiinnaall CCoonnttrrooll
The following predicates form a simple access mechanism to the
Unix termcap library to provide terminal independent I/O for screen
terminals. These predicates are only available on Unix machines. The
SWI-Prolog Windows consoles accepts the ANSI escape sequences.
ttttyy__ggeett__ccaappaabbiilliittyy((_+_N_a_m_e_, _+_T_y_p_e_, _-_R_e_s_u_l_t))
Get the capability named _N_a_m_e from the termcap library. See
termcap(5) for the capability names. _T_y_p_e specifies the type of
the expected result, and is one of string, number or bool. String
results are returned as an atom, number result as an integer and
bool results as the atom on or off. If an option cannot be found
this predicate fails silently. The results are only computed once.
Successive queries on the same capability are fast.
ttttyy__ggoottoo((_+_X_, _+_Y))
Goto position (_X, _Y) on the screen. Note that the predicates
line_count/2 and line_position/2 will not have a well defined
behaviour while using this predicate.
ttttyy__ppuutt((_+_A_t_o_m_, _+_L_i_n_e_s))
Put an atom via the termcap library function tputs(). This
function decodes padding information in the strings returned by
tty_get_capability/3 and should be used to output these strings.
_L_i_n_e_s is the number of lines affected by the operation, or 1 if not
applicable (as in almost all cases).
sseett__ttttyy((_-_O_l_d_S_t_r_e_a_m_, _+_N_e_w_S_t_r_e_a_m))
Set the output stream, used by tty_put/2 and tty_goto/2 to a
specific stream. Default is user_output.
ttttyy__ssiizzee((_-_R_o_w_s_, _-_C_o_l_u_m_n_s))
Determine the size of the terminal. If the system provides _i_o_c_t_l
calls for this these are used and tty_size/2properly reflects the
actual size after a user resize of the window. As a fallback, the
system uses tty_get_capability/2using li and co capabilities. In
this case the reported size reflects the size at the first call and
is not updated after a user-initiated resize of the terminal.
44..3377 OOppeerraattiinngg SSyysstteemm IInntteerraaccttiioonn
sshheellll((_+_C_o_m_m_a_n_d_, _-_S_t_a_t_u_s))
Execute _C_o_m_m_a_n_d on the operating system. _C_o_m_m_a_n_d is given to the
Bourne shell (/bin/sh). _S_t_a_t_u_s is unified with the exit status of
the command.
On _W_i_n_3_2 systems, shell/[1,2] executes the command using the
CreateProcess() API and waits for the command to terminate. If
the command ends with a & sign, the command is handed to the
WinExec() API, which does not wait for the new task to terminate.
See also win_exec/2 and win_shell/2. Please note that the
CreateProcess() API does nnoott imply the Windows command interpreter
(command.exe on Windows 95/98 and cmd.exe on Windows-NT) and
therefore commands built-in to the command-interpreter can only
be activated using the command interpreter. For example:
'command.exe /C copy file1.txt file2.txt'
sshheellll((_+_C_o_m_m_a_n_d))
Equivalent to `shell(Command, 0)'.
sshheellll
Start an interactive Unix shell. Default is /bin/sh, the
environment variable SHELL overrides this default. Not available
for Win32 platforms.
wwiinn__eexxeecc((_+_C_o_m_m_a_n_d_, _+_S_h_o_w))
Win32 systems only. Spawns a Windows task without waiting for
its completion. _S_h_o_w is either iconic or normal and dictates the
initial status of the window. The iconic option is notably handy
to start (DDE) servers.
wwiinn__sshheellll((_+_O_p_e_r_a_t_i_o_n_, _+_F_i_l_e))
Win32 systems only. Opens the document _F_i_l_e using the windows
shell-rules for doing so. _O_p_e_r_a_t_i_o_n is one of open, print or
explore or another operation registered with the shell for the
given document-type. On modern systems it is also possible to pass
a URL as _F_i_l_e, opening the URL in Windows default browser. This
call interfaces to the Win32 API ShellExecute().
wwiinn__rreeggiissttrryy__ggeett__vvaalluuee((_+_K_e_y_, _+_N_a_m_e_, _-_V_a_l_u_e))
Win32 systems only. Fetches the value of a Win32 registry
key. _K_e_y is an atom formed as a path-name describing the
desired registry key. _N_a_m_e is the desired attribute name of the
key. _V_a_l_u_e is unified with the value. If the value is of
type DWORD, the value is returned as an integer. If the value
is a string it is returned as a Prolog atom. Other types are
currently not supported. The default `root' is HKEY_CURRENT_USER.
Other roots can be specified explicitely as HKEY_CLASSES_ROOT,
HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE or HKEY_USERS. The example
below fetches the extension to use for Prolog files (see README.TXT
on the Windows version):
?- win_registry_get_value('HKEY_LOCAL_MACHINE/Software/SWI/Prolog',
fileExtension,
Ext).
Ext = pl
ggeetteennvv((_+_N_a_m_e_, _-_V_a_l_u_e))
Get environment variable. Fails silently if the variable does
not exist. Please note that environment variable names are
case-sensitive on Unix systems and case-insensitive on Windows.
sseetteennvv((_+_N_a_m_e_, _+_V_a_l_u_e))
Set environment variable. _N_a_m_e and _V_a_l_u_e should be instantiated
to atoms or integers. The environment variable will be passed
to shell/[0-2] and can be requested using getenv/2. They also
influence expand_file_name/2.
uunnsseetteennvv((_+_N_a_m_e))
Remove environment variable from the environment.
uunniixx((_+_C_o_m_m_a_n_d))
This predicate comes from the Quintus compatibility library and
provides a partial implementation thereof. It provides access to
some operating system features and unlike the name suggests, is not
operating system specific. Currently it is the only way to fetch
the Prolog command-line arguments. Defined _C_o_m_m_a_n_d's are below.
ssyysstteemm((_+_C_o_m_m_a_n_d))
Equivalent to calling shell/1. Use for compatibility only.
sshheellll((_+_C_o_m_m_a_n_d))
Equivalent to calling shell/1. Use for compatibility only.
sshheellll
Equivalent to calling shell/0. Use for compatibility only.
ccdd
Equivalent to calling working_directory/2 to the expansion (see
expand_file_name/2) of ~. For compatibility only.
ccdd((_+_D_i_r_e_c_t_o_r_y))
Equivalent to calling working_directory/2. Use for
compatibility only.
aarrggvv((_-_A_r_g_v))
Unify _A_r_g_v with the list of commandline arguments provides to
this Prolog run. Please note that Prolog system-arguments and
application arguments are separated by --. Integer arguments
are passed as Prolog integers, float arguments and Prolog
floating point numbers and all other arguments as Prolog
atoms. New applications should use the prolog-flag argv.
A stand-alone program could use the following skeleton to
handle command-line arguments. See also section 2.10.2.4.
main :-
unix(argv(Argv)),
append(_PrologArgs, [--|AppArgs], Argv), !,
main(AppArgs).
44..3377..11 DDeeaalliinngg wwiitthh ttiimmee aanndd ddaattee
There is no standard for time-representation in the Prolog community.
SWI-Prolog represents it as a floating-point number using the same
basic representation as the POSIX standard, seconds elapsed since the
January 1970, 0 hours. This format is also used for predicates
accessing time-information from files (see time_file/2).
ggeett__ttiimmee((_-_T_i_m_e))
Return the number of seconds that elapsed since the epoch of the
POSIX, tim representation: January 1970, 0 hours. _T_i_m_e is a
floating point number. The granularity is system dependent.
ccoonnvveerrtt__ttiimmee((_+_T_i_m_e_, _-_Y_e_a_r_, _-_M_o_n_t_h_, _-_D_a_y_, _-_H_o_u_r_, _-_M_i_n_u_t_e_, _-_S_e_c_o_n_d_, _-_M_i_l_l_i_S_e_c_o_n_d_s))
Convert a time stamp, provided by get_time/1, time_file/2,
etc. _Y_e_a_r is unified with the year, _M_o_n_t_h with the month number
(January is 1), _D_a_y with the day of the month (starting with 1),
_H_o_u_r with the hour of the day (0--23), _M_i_n_u_t_e with the minute
(0--59). _S_e_c_o_n_d with the second (0--59) and _M_i_l_l_i_S_e_c_o_n_d with the
milliseconds (0--999). Note that the latter might not be accurate
or might always be 0, depending on the timing capabilities of the
system. See also convert_time/2.
ccoonnvveerrtt__ttiimmee((_+_T_i_m_e_, _-_S_t_r_i_n_g))
Convert a time-stamp as obtained though get_time/1 into a textual
representation using the C-library function ctime(). The value is
returned as a SWI-Prolog string object (see section 4.23). See
also convert_time/8.
44..3377..22 HHaannddlliinngg tthhee mmeennuu iinn pprrooggrraammPPLLWWIINN..EEXXEE
The Windows executable PLWIN.EXE has a menu-bar displayed at the top
that can be programmed from Prolog. Being totally non-portable, we do
not advice using it for your own application, but use XPCE or another
portable GUI platform instead. We give the predicates for reference
here.
wwiinn__iinnsseerrtt__mmeennuu((_+_L_a_b_e_l_, _+_B_e_f_o_r_e))
Insert a new entry (pulldown) in the menu. If the menu already
contains this entry, nothing is done. The _L_a_b_e_l is the label
and using the Windows conventions, a letter prefixed with & is
underlined and defines the associated accelerator key. _B_e_f_o_r_e is
the label before which this one must be inserted. Using - adds the
new entry at the end (right). For example, the call below adds a
Application entry just before the Help menu.
win_insert_menu('&Application', '&Help')
wwiinn__iinnsseerrtt__mmeennuu__iitteemm((_+_P_u_l_l_d_o_w_n_, _+_L_a_b_e_l_, _+_B_e_f_o_r_e_, _:_G_o_a_l))
Add an item to the named _P_u_l_l_d_o_w_n menu. _L_a_b_e_l and _B_e_f_o_r_e
are handled as in win_insert_menu/2, but the label - inserts a
_s_e_p_a_r_a_t_o_r. _G_o_a_l is called if the user selects the item.
44..3388 FFiillee SSyysstteemm IInntteerraaccttiioonn
aacccceessss__ffiillee((_+_F_i_l_e_, _+_M_o_d_e))
Succeeds if _F_i_l_e exists and can be accessed by this prolog process
under mode _M_o_d_e. _M_o_d_e is one of the atoms read, write, append,
exist, none or execute. _F_i_l_e may also be the name of a directory.
Fails silently otherwise. access_file(File, none)simply succeeds
without testing anything.
If `Mode' is write or append, this predicate also succeeds if the
file does not exist and the user has write-access to the directory
of the specified location.
eexxiissttss__ffiillee((_+_F_i_l_e))
Succeeds when _F_i_l_e exists. This does not imply the user has read
and/or write permission for the file.
ffiillee__ddiirreeccttoorryy__nnaammee((_+_F_i_l_e_, _-_D_i_r_e_c_t_o_r_y))
Extracts the directory-part of _F_i_l_e. The returned _D_i_r_e_c_t_o_r_y
name does not end in /. There are two special cases. The
directory-name of / is / itself and the directory-name if _F_i_l_e does
not contain any / characters is ..
ffiillee__bbaassee__nnaammee((_+_F_i_l_e_, _-_B_a_s_e_N_a_m_e))
Extracts the filename part from a path specification. If _F_i_l_e does
not contain any directory separators, _F_i_l_e is returned.
ssaammee__ffiillee((_+_F_i_l_e_1_, _+_F_i_l_e_2))
Succeeds if both filenames refer to the same physical file. That
is, if _F_i_l_e_1 and _F_i_l_e_2 are the same string or both names exist
and point to the same file (due to hard or symbolic links and/or
relative vs. absolute paths).
eexxiissttss__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
Succeeds if _D_i_r_e_c_t_o_r_y exists. This does not imply the user has
read, search and or write permission for the directory.
ddeelleettee__ffiillee((_+_F_i_l_e))
Remove _F_i_l_e from the file system.
rreennaammee__ffiillee((_+_F_i_l_e_1_, _+_F_i_l_e_2))
Rename _F_i_l_e_1 into _F_i_l_e_2. Currently files cannot be moved across
devices.
ssiizzee__ffiillee((_+_F_i_l_e_, _-_S_i_z_e))
Unify _S_i_z_e with the size of _F_i_l_e in characters.
ttiimmee__ffiillee((_+_F_i_l_e_, _-_T_i_m_e))
Unify the last modification time of _F_i_l_e with _T_i_m_e. _T_i_m_e is a
floating point number expressing the seconds elapsed since Jan 1,
1970. See also convert_time/[2,8] and get_time/1.
aabbssoolluuttee__ffiillee__nnaammee((_+_F_i_l_e_, _-_A_b_s_o_l_u_t_e))
Expand a local file-name into an absolute path. The absolute path
is canonised: references to . and .. are deleted. This predicate
ensures that expanding a file-name it returns the same absolute
path regardless of how the file is addressed. SWI-Prolog uses
absolute file names to register source files independent of the
current working directory. See also absolute_file_name/3. See
also absolute_file_name/3 and expand_file_name/2.
aabbssoolluuttee__ffiillee__nnaammee((_+_S_p_e_c_, _+_O_p_t_i_o_n_s_, _-_A_b_s_o_l_u_t_e))
Converts the given file specification into an absolute path.
_O_p_t_i_o_n is a list of options to guide the conversion:
eexxtteennssiioonnss((_L_i_s_t_O_f_E_x_t_e_n_s_i_o_n_s))
List of file-extensions to try. Default is ''. For each
extension, absolute_file_name/3 will first add the extension
and then verify the conditions imposed by the other options.
If the condition fails, the next extension of the list is
tried. Extensions may be specified both as ..ext or plain
ext.
aacccceessss((_M_o_d_e))
Imposes the condition access_file(_F_i_l_e, _M_o_d_e). _M_o_d_e is on of
read, write, append, exist or none. See also access_file/2.
ffiillee__ttyyppee((_T_y_p_e))
Defines extensions. Current mapping: txt implies [''],
prolog implies ['.pl', ''], executable implies ['.so', ''],
qlf implies ['.qlf', ''] and directory implies [''].
ffiillee__eerrrroorrss((_f_a_i_l_/_e_r_r_o_r))
If error (default), throw and existence_error exception if the
file cannot be found. If fail, stay silent.
ssoolluuttiioonnss((_f_i_r_s_t_/_a_l_l))
If first (default), the predicates leaves no choice-point.
Otherwise a choice-point will be left and backtracking may
yield more solutions.
The prolog-flag verbose_file_search can be set to true to help
debugging Prolog's search for files.
iiss__aabbssoolluuttee__ffiillee__nnaammee((_+_F_i_l_e))
True if _F_i_l_e specifies and absolute path-name. On Unix systems,
this implies the path starts with a `/'. For Microsoft
based systems this implies the path starts with <_l_e_t_t_e_r>:.
This predicate is intended to provide platform-independent
checking for absolute paths. See also absolute_file_name/2 and
prolog_to_os_filename/2.
ffiillee__nnaammee__eexxtteennssiioonn((_?_B_a_s_e_, _?_E_x_t_e_n_s_i_o_n_, _?_N_a_m_e))
This predicate is used to add, remove or test filename extensions.
The main reason for its introduction is to deal with different
filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will be done
case-insensitive too. _E_x_t_e_n_s_i_o_n may be specified with or without a
leading dot (.). If an _E_x_t_e_n_s_i_o_n is generated, it will not have a
leading dot.
eexxppaanndd__ffiillee__nnaammee((_+_W_i_l_d_C_a_r_d_, _-_L_i_s_t))
Unify _L_i_s_t with a sorted list of files or directories matching
_W_i_l_d_C_a_r_d. The normal Unix wildcard constructs `?', `*', `[...]'
and `{...}' are recognised. The interpretation of `{...}' is
interpreted slightly different from the C shell (csh(1)). The
comma separated argument can be arbitrary patterns, including
`{...}' patterns. The empty pattern is legal as well: `\{.pl,\}'
matches either `.pl' or the empty string.
If the pattern does contains wildcard characters, only existing
files and directories are returned. Expanding a `pattern' without
wildcard characters returns the argument, regardless on whether or
not it exists.
Before expanding wildchards, the construct $var is expanded to the
value of the environment variable _v_a_r and a possible leading ~
character is expanded to the user's home directory..
pprroolloogg__ttoo__ooss__ffiilleennaammee((_?_P_r_o_l_o_g_P_a_t_h_, _?_O_s_P_a_t_h))
Converts between the internal Prolog pathname conventions and the
operating-system pathname conventions. The internal conventions
are Unix and this predicates is equivalent to =/2 (unify) on Unix
systems. On DOS systems it will change the directory-separator,
limit the filename length map dots, except for the last one, onto
underscores.
rreeaadd__lliinnkk((_+_F_i_l_e_, _-_L_i_n_k_, _-_T_a_r_g_e_t))
If _F_i_l_e points to a symbolic link, unify _L_i_n_k with the value of the
link and _T_a_r_g_e_t to the file the link is pointing to. _T_a_r_g_e_t points
to a file, directory or non-existing entry in the file system, but
never to a link. Fails if _F_i_l_e is not a link. Fails always on
systems that do not support symbolic links.
ttmmpp__ffiillee((_+_B_a_s_e_, _-_T_m_p_N_a_m_e))
Create a name for a temporary file. _B_a_s_e is an identifier for the
category of file. The _T_m_p_N_a_m_e is guaranteed to be unique. If the
system halts, it will automatically remove all created temporary
files.
mmaakkee__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
Create a new directory (folder) on the filesystem. Raises an
exception on failure. On Unix systems, the directory is created
with default permissions (defined by the process _u_m_a_s_k setting).
ddeelleettee__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
Delete directory (folder) from the filesystem. Raises an exception
on failure. Please note that in general it will not be possible to
delete a non-empty directory.
wwoorrkkiinngg__ddiirreeccttoorryy((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with an absolute path to the current working directory
and change working directory to _N_e_w. Use the pattern
working_directory(_C_W_D_, _C_W_D) to get the current directory. See also
absolute_file_name/2 and chdir/1.
cchhddiirr((_+_P_a_t_h))
Compatibility predicate. New code should use working_directory/2.
44..3399 MMuullttii--tthhrreeaaddiinngg ((aallpphhaa ccooddee))
TThhee ffeeaattuurreess ddeessccrriibbeedd iinn tthhiiss sseeccttiioonn aarree oonnllyy eennaabblleedd oonn UUnniixx ssyysstteemmss
pprroovviiddiinngg PPOOSSIIXX tthhrreeaaddss aanndd iiff tthhee ssyysstteemm iiss ccoonnffiigguurreedd uussiinngg tthhee
--enable-mt ooppttiioonn.. SSWWII--PPrroolloogg mmuullttii--tthheeaaddiinngg ssuuppppoorrtt iiss eexxppeerriimmeennttaall
aanndd iinn ssoommee aarreeaass nnoott ssaaffee..
SWI-Prolog multithreading is based on standard C-language multithread-
ing support. It is not like _P_a_r_L_o_g or other paralel implementations
of the Prolog language. Prolog threads have their own stacks and only
share the Prolog _h_e_a_p: predicates, records, flags and other global
non-backtrackable data. SWI-Prolog thread support is designed with the
following goals in mind.
o _M_u_l_t_i_-_t_h_r_e_a_d_e_d _s_e_r_v_e_r _a_p_p_l_i_c_a_t_i_o_n_s
Todays computing services often focus on (internet) server
applications. Such applications often have need for communication
between services and/or fast non-blocking service to multiple
concurrent clients. The shared heap provides fast communication
and thread creation is relatively cheap (A Pentium-II/450 can
create and join approx. 10,000 threads per second on Linux 2.2).
o _I_n_t_e_r_a_c_t_i_v_e _a_p_p_l_i_c_a_t_i_o_n_s
Interactive applications often need to perform extensive
computation. If such computations are executed in a new thread,
the main thread can process events and allow the user to cancel
the ongoing computation. User interfaces can also use multiple
threads, each thread dealing with input from a distinct group of
windows.
o _N_a_t_u_r_a_l _i_n_t_e_g_r_a_t_i_o_n _w_i_t_h _f_o_r_e_i_g_n _c_o_d_e
Each Prolog thread runs in a C-thread, automatically making them
cooperate with _M_T_-_s_a_f_e foreign-code. In addition, any foreign
thread can create its own Prolog engine for dealing with calling
Prolog from C-code.
tthhrreeaadd__ccrreeaattee((_:_G_o_a_l_, _-_I_d_, _+_O_p_t_i_o_n_s))
Create a new Prolog thread (and underlying C-thread) and start it
by executing _G_o_a_l. If the thread is created succesfully, the
thread-identifier of the created thread is unified to _I_d. _O_p_t_i_o_n_s
is a list of options. Currently defined options are:
llooccaall((_K_-_B_y_t_e_s))
Set the limit to which the local stack of this thread may
grow. If omited, the limit of the calling thread is used.
See also the -L commandline option.
gglloobbaall((_K_-_B_y_t_e_s))
Set the limit to which the global stack of this thread may
grow. If omited, the limit of the calling thread is used.
See also the -G commandline option.
ttrraaiill((_K_-_B_y_t_e_s))
Set the limit to which the trail stack of this thread may
grow. If omited, the limit of the calling thread is used.
See also the -T commandline option.
aarrgguummeenntt((_K_-_B_y_t_e_s))
Set the limit to which the argument stack of this thread may
grow. If omited, the limit of the calling thread is used.
See also the -A commandline option.
aalliiaass((_A_l_i_a_s_N_a_m_e))
Associate an `alias-name' with the thread. This named may be
used to refer to the thread and remains valid until the thread
is joined (see thread_join/2).
ddeettaacchheedd((_B_o_o_l))
If false (default), the thread can be waited for using
thread_join/2. thread_join/2 must be called on this thread to
reclaim the all resources associated to the thread. If true,
the system will reclaim all associated resources automatically
after the thread finishes. Please not that thread identifiers
are freed for reuse after a detached thread finishes or a
normal thread has been joined.
The _G_o_a_l argument is _c_o_p_i_e_d to the new Prolog engine. This implies
further instantiation of this term in either thread does not have
consequences for the other thread: Prolog threads do not share
data from their stacks.
tthhrreeaadd__sseellff((_-_I_d))
Get the Prolog thread identifier of the running thread. If the
thread has an alias, the alias-name is returned.
ccuurrrreenntt__tthhrreeaadd((_?_I_d_, _?_S_t_a_t_u_s))
Enumerates identifiers and status of all currently known threads.
Calling current_thread/2 does not influence any thread. See also
thread_join/2. For threads that have an alias-name, this name is
returned in _I_d instead of the numerical thread identifier. _S_t_a_t_u_s
is one of:
rruunnnniinngg
The thread is running. This is the initial status of a
thread. Please note that threats waiting for something are
considered running too.
ffaallssee
The _G_o_a_l of the thread has been completed and failed.
ttrruuee
The _G_o_a_l of the thread has been completed and succeeded.
eexxiitteedd((_T_e_r_m))
The _G_o_a_l of the thread has been terminated using thread_exit/1
with _T_e_r_m as argument.
eexxcceeppttiioonn((_T_e_r_m))
The _G_o_a_l of the thread has been terminated due to an uncaught
exception (see throw/1 and catch/3).
tthhrreeaadd__jjooiinn((_+_I_d_, _-_S_t_a_t_u_s))
Wait for the termination of thread with given _I_d. Then unify the
result-status (see thread_exit/1) of the thread with _S_t_a_t_u_s. After
this call, _I_d becomes invalid and all resources associated with the
thread are reclaimed. See also current_thread/2.
A thread that has been completed without thread_join/2 being called
on it is partly reclaimed: the Prolog stacks are released and
the C-thread is destroyed. A small data-structure represening the
exit-status of the thread is retained until thread_join/2 is called
on the thread.
tthhrreeaadd__eexxiitt((_+_T_e_r_m))
Terminates the thread immediately, leaving exited(_T_e_r_m) as
result-state. The Prolog stacks and C-thread are reclaimed.
tthhrreeaadd__aatt__eexxiitt((_:_G_o_a_l))
Run _G_o_a_l after the execution of this thread has terminated. This
is to be compared to at_halt/1, but only for the current thread.
These hooks are ran regardless of why the execution of the thread
has been completed. As these hooks are run, the return-code is
already available through current_thread/2.
44..3399..11 TThhrreeaadd ccoommmmuunniiccaattiioonn
Prolog threads can exchange data using dynamic predicates, database
records, and other globally shared data. In addition, they can send
messages to each other. If a threads needs to wait for another thread
until that thread has produced some data, using only the database
forces the waiting thread to poll the database continuously. Waiting
for a message suspends the thread execution until the message has
arrived in its message queue.
tthhrreeaadd__sseenndd__mmeessssaaggee((_+_T_h_r_e_a_d_I_d_, _+_T_e_r_m))
Place _T_e_r_m in the message queue of the indicated thread (which can
even be the message queue of itself (see thread_self/1). Any term
can be placed in a message queue, but note that the term is copied
to to receiving thread and variable-bindings are thus lost. This
call returns immediately.
tthhrreeaadd__ggeett__mmeessssaaggee((_?_T_e_r_m))
Examines the thread message-queue and if necessary blocks execution
until a term that unifies to _T_e_r_m arrives in the queue. After a
term from the queue has been unified unified to _T_e_r_m, this term is
deleted from the queue and this predicate returns.
Please note that not-unifying messages remain in the queue. After
the following has been executed, thread 1 has the term b(_g_n_u) in
its queue and continues execution using _A is gnat.
<thread 1>
thread_get_message(a(A)),
<thread 2>
thread_send_message(b(gnu)),
thread_send_message(a(gnat)),
See also thread_peek_message/1.
tthhrreeaadd__ppeeeekk__mmeessssaaggee((_?_T_e_r_m))
Examines the thread message-queue and compares the queued terms
with _T_e_r_m until one unifies or the end of the queue has
been reached. In the first case the call succeeds (possibly
instantiating _T_e_r_m. If no term from the queue unifies this call
fails.
tthhrreeaadd__ssiiggnnaall((_+_T_h_r_e_a_d_I_d_, _:_G_o_a_l))
Make thread _T_h_r_e_a_d_I_d execute _G_o_a_l at the first opportunity. In the
current implementation, this implies at the first pass through the
_C_a_l_l_-_p_o_r_t. The predicate thread_signal/2 itself places _G_o_a_l into
the signalled-thread's signal queue and returns immediately.
Signals (interrupts) do not cooperate well with the world of
multi-threading, mainly because the status of mutexes cannot be
guaranteed easily. At the call-port, the Prolog virtual machine
holds no locks and therefore the asynchronous execution is safe.
_G_o_a_l can be any valid Prolog goal, including throw/1 to make the
receiving thread generate an exception and trace/0 to start tracing
the receiving thread.
44..3399..22 TThhrreeaadd ssyynncchhrroonniissaattiioonn
All internal Prolog operations are thread-safe. This implies two
Prolog threads can operate on the same dynamic predicate without
corrupting the consistency of the predicate. This section deals with
user-level _m_u_t_e_x_e_s (called _m_o_n_i_t_o_r_s in ADA or _c_r_i_t_i_c_a_l_-_s_e_c_t_i_o_n_s by
Microsoft). A mutex is a MMUUTTual EEXXclusive device, which implies at
most one thread can _h_o_l_d a mutex.
Mutexes are used to realise related updates to the Prolog database.
With `related', we refer to the situation where a `transaction' implies
two or more changes to the Prolog database. For example, we have
a predicate address/2, representing the address of a person and we
want to change the address by retracting the old and asserting the
new address. Between these two operations the database is invalid:
this person has either no address or two addresses (depending on the
assert/retract order).
Here is how to realise a correct update:
:- initialization
mutex_create(addressbook).
change_address(Id, Address) :-
mutex_lock(addressbook),
retractall(address(Id, _)),
asserta(address(Id, Address)),
mutex_unlock(addressbook).
mmuutteexx__ccrreeaattee((_?_M_u_t_e_x_I_d))
Create a mutex. if _M_u_t_e_x_I_d is an atom, a _n_a_m_e_d mutex is created.
If it is a variable, an anonymous mutex reference is returned.
There is no limit to the number of mutexes that can be created.
mmuutteexx__ddeessttrrooyy((_+_M_u_t_e_x_I_d))
Destroy a mutex. After this call, _M_u_t_e_x_I_d becomes invalid and
further references yield an existence_error exception.
mmuutteexx__lloocckk((_+_M_u_t_e_x_I_d))
Lock the mutex. Prolog mutexes are _r_e_c_u_r_s_i_v_e mutexes: they can
be locked multiple times by the same thread. Only after unlocking
it as many times as it is locked, the mutex becomes available for
locking by other threads. If another thread has locked the mutex
the calling thread is suspended until to mutex is unlocked.
If _M_u_t_e_x_I_d is an atom, and there is no current mutex with that
name, the mutex is created automatically using mutex_create/1.
This implies named mutexes need not be declared explicitly.
Please note that locking and unlocking mutexes should be paired
carefully. Especially make sure to unlock mutexes even if the
protected code fails or raises an exception. For most common
cases use with_mutex/2, wich provides a safer way for handling
prolog-level mutexes.
mmuutteexx__ttrryylloocckk((_+_M_u_t_e_x_I_d))
As mutex_lock/1, but if the mutex is held by another thread, this
predicates fails immediately.
mmuutteexx__uunnlloocckk((_+_M_u_t_e_x_I_d))
Unlock the mutex. This can only be called if the mutex is held by
the calling thread. If this is not the case, a permission_error
exception is raised.
mmuutteexx__uunnlloocckk__aallll
Unlock all mutexes held by the current thread. This call is
especially useful to handle thread-termination using abort/0 or
exceptions. See also thread_signal/2.
ccuurrrreenntt__mmuutteexx((_?_M_u_t_e_x_I_d_, _?_T_h_r_e_a_d_I_d_, _?_C_o_u_n_t))
Enumerates all existing mutexes. If the mutex is held by some
thread, _T_h_r_e_a_d_I_d is unified with the identifier of te holding
thread and _C_o_u_n_t with the recursive count of the mutex. Otherwise,
_T_h_r_e_a_d_I_d is [] and _C_o_u_n_t is 0.
wwiitthh__mmuutteexx((_+_M_u_t_e_x_I_d_, _:_G_o_a_l))
Execute _G_o_a_l while holding _M_u_t_e_x_I_d. If _G_o_a_l leaves choicepointes,
these are destroyed (as in once/1). The mutex is unlocked
regardless of whether _G_o_a_l succeeds, fails or raises an exception.
An exception thrown by _G_o_a_l is re-thrown after the mutex has been
successfully unlocked. See also mutex_create/2.
Although described in the thread-section, this predicate is also
available in the single-threaded version, where it behaves simply
as once/1.
44..3399..33 TThhrreeaadd--ssuuppppoorrtt lliibbrraarryy((tthhrreeaadduuttiill))
This library defines a couple of useful predicates for demonstrating
and debugging multi-threaded applications. This library is certainly
not complete.
tthhrreeaaddss
Lists all current threads and their status. In addition, all
`zombie' threads (finished threads that are not detached, nor
waited for) are joined to reclaim their resources.
iinntteerraaccttoorr
Create a new console and run the Prolog toplevel in this new
console. See also attach_console/0.
aattttaacchh__ccoonnssoollee
If the current thread has no console attached yet, attach one and
redirect the user streams (input, output, and error) to the new
console window. The console is an xterm application. For this to
work, you should be running X-windows and your xterm should know
the -Sccn.
This predicate has a couple of useful applications. One is to
separate (debugging) I/O of different threads. Another is to start
debugging a thread that is running in the background. If thread
10 is running, the following sequence starts the tracer on this
thread:
?- thread_signal(10, (attach_console, trace)).
44..3399..44 SSttaattuuss ooff tthhee tthhrreeaadd iimmpplleemmeennttaattiioonn
It is assumed that the basic Prolog execution is thread-safe. Various
problems are to be expected though, both dead-locks as well as
not-thread-safe code in builtin-predicates.
44..4400 UUsseerr TToopplleevveell MMaanniippuullaattiioonn
bbrreeaakk
Recursively start a new Prolog top level. This Prolog top level
has its own stacks, but shares the heap with all break environments
and the top level. Debugging is switched off on entering a break
and restored on leaving one. The break environment is terminated
by typing the system's end-of-file character (control-D). If the
-t toplevel command line option is given this goal is started
instead of entering the default interactive top level (prolog/0).
aabboorrtt
Abort the Prolog execution and restart the top level. If the
-t toplevel command line options is given this goal is started
instead of entering the default interactive top level.
There are two implementations of abort/0. The default one uses
the exception mechanism (see throw/1), throwing the exception
$aborted. The other one uses the C-construct longjmp() to discard
the entire environment and rebuild a new one. Using exceptions
allows for proper recovery of predicates exploiting exceptions.
Rebuilding the environment is safer if the Prolog stacks are
corrupt. Therefore the system will use the rebuild-strategy if
the abort was generated by an internal consistency check and the
exception mechanism otherwise. Prolog can be forced to use the
rebuild-strategy setting the prolog flag abort_with_exception to
false.
hhaalltt
Terminate Prolog execution. Open files are closed and if the
command line option -tty is not active the terminal status (see
Unix stty(1)) is restored. Hooks may be registered both in Prolog
and in foreign code. Prolog hooks are registered using at_halt/1.
halt/0 is equivalent to halt(0).
hhaalltt((_+_S_t_a_t_u_s))
Terminate Prolog execution with given status. Status is an
integer. See also halt/0.
pprroolloogg
This goal starts the default interactive top level. Queries are
read from the stream user_input. See also the history prolog_flag
(current_prolog_flag/2). The prolog/0 predicate is terminated
(succeeds) by typing the end-of-file character (On most systems
control-D).
The following two hooks allow for expanding queries and handling the
result of a query. These hooks are used by the toplevel variable
expansion mechanism described in section 2.8.
eexxppaanndd__qquueerryy((_+_Q_u_e_r_y_, _-_E_x_p_a_n_d_e_d_, _+_B_i_n_d_i_n_g_s_, _-_E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s))
Hook in module user, normally not defined. _Q_u_e_r_y and _B_i_n_d_i_n_g_s
represents the query read from the user and the names of the
free variables as obtained using read_term/3. If this predicate
succeeds, it should bind _E_x_p_a_n_d_e_d and _E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s to the query
and bindings to be executed by the toplevel. This predicate is
used by the toplevel (prolog/0). See also expand_answer/2 and
term_expansion/2.
eexxppaanndd__aannsswweerr((_+_B_i_n_d_i_n_g_s_, _-_E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s))
Hook in module user, normally not defined. Expand the result of
a successfully executed toplevel query. _B_i_n_d_i_n_g_s is the query
<_N_a_m_e>= <_V_a_l_u_e>binding list from the query. _E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s must
be unified with the bindings the toplevel should print.
44..4411 CCrreeaattiinngg aa PPrroottooccooll ooff tthhee UUsseerr IInntteerraaccttiioonn
SWI-Prolog offers the possibility to log the interaction with the user
on a file. All Prolog interaction, including warnings and tracer
output, are written on the protocol file.
pprroottooccooll((_+_F_i_l_e))
Start protocolling on file _F_i_l_e. If there is already a protocol
file open then close it first. If _F_i_l_e exists it is truncated.
pprroottooccoollaa((_+_F_i_l_e))
Equivalent to protocol/1, but does not truncate the _F_i_l_e if it
exists.
nnoopprroottooccooll
Stop making a protocol of the user interaction. Pending output is
flushed on the file.
pprroottooccoolllliinngg((_-_F_i_l_e))
Succeeds if a protocol was started with protocol/1 or protocola/1
and unifies _F_i_l_e with the current protocol output file.
44..4422 DDeebbuuggggiinngg aanndd TTrraacciinngg PPrrooggrraammss
This section is a reference to the debugger interaction predicates. A
more use-oriented overview of the debugger is in section 2.9.
If you have installed XPCE, you can use the graphical frontend of the
tracer. This frontend is installed using the predicate guitracer/0.
ttrraaccee
Start the tracer. trace/0 itself cannot be seen in the tracer.
Note that the Prolog toplevel treats trace/0 special; it means
`trace the next goal'.
ttrraacciinngg
Succeeds when the tracer is currently switched on. tracing/0
itself can not be seen in the tracer.
nnoottrraaccee
Stop the tracer. notrace/0 itself cannot be seen in the tracer.
gguuiittrraacceerr
Installs hooks (see prolog_trace_interception/4) into the system
that redirects tracing information to a GUI frontend providing
structured access to variable-bindings, graphical overview of the
stack and highlighting of relevant source-code.
nnoogguuiittrraacceerr
Reverts back to the textual tracer.
ttrraaccee((_+_P_r_e_d))
Equivalent to trace(Pred, +all).
ttrraaccee((_+_P_r_e_d_, _+_P_o_r_t_s))
Put a trace-point on all predicates satisfying the predicate
specification _P_r_e_d. _P_o_r_t_s is a list of portnames (call, redo,
exit, fail). The atom all refers to all ports. If the port is
preceded by a - sign the trace-point is cleared for the port. If
it is preceded by a + the trace-point is set.
The predicate trace/2 activates debug mode (see debug/0). Each
time a port (of the 4-port model) is passed that has a trace-point
set the goal is printed as with trace/0. Unlike trace/0 however,
the execution is continued without asking for further information.
Examples:
?- trace(hello). Trace all ports of hello with any
arity in any module.
?- trace(foo/2, +fail). Trace failures of foo/2 in any
module.
?- trace(bar/1, -all). Stop tracing bar/1.
The predicate debugging/0 shows all currently defined trace-points.
nnoottrraaccee((_+_G_o_a_l))
Call _G_o_a_l, but suspend the debugger while _G_o_a_l is executing.
The current implementation cuts the choicepoints of _G_o_a_l after
successful completion. See once/1. Later implementations may have
the same semantics as call/1.
ddeebbuugg
Start debugger. In debug mode, Prolog stops at spy- and
trace-points, disables tail-recursion optimisation and aggressive
destruction of choice-points to make debugging information
accessible. Implemented by the Prolog flag debug.
nnooddeebbuugg
Stop debugger. Implementated by the prolog flag debug. See also
debug/0.
ddeebbuuggggiinngg
Print debug status and spy points on current output stream. See
also the prolog flag debug.
ssppyy((_+_P_r_e_d))
Put a spy point on all predicates meeting the predicate
specification _P_r_e_d. See section 4.4.
nnoossppyy((_+_P_r_e_d))
Remove spy point from all predicates meeting the predicate
specification _P_r_e_d.
nnoossppyyaallll
Remove all spy points from the entire program.
lleeaasshh((_?_P_o_r_t_s))
Set/query leashing (ports which allow for user interaction). _P_o_r_t_s
is one of _+_N_a_m_e, _-_N_a_m_e, _?_N_a_m_e or a list of these. _+_N_a_m_e enables
leashing on that port, _-_N_a_m_e disables it and _?_N_a_m_e succeeds or
fails according to the current setting. Recognised ports are:
call, redo, exit, fail and unify. The special shorthand all refers
to all ports, full refers to all ports except for the unify port
(default). half refers to the call, redo and fail port.
vviissiibbllee((_+_P_o_r_t_s))
Set the ports shown by the debugger. See leash/1 for a description
of the port specification. Default is full.
uunnkknnoowwnn((_-_O_l_d_, _+_N_e_w))
Edinburgh-prolog compatibility predicate, interfacing to the ISO
prolog flag unknown. Values are trace (meaning error) and fail.
If the unknown flag is set to warning, unknown/2 reports the value
as trace.
ssttyyllee__cchheecckk((_+_S_p_e_c))
Set style checking options. _S_p_e_c is either +<_o_p_t_i_o_n>, -<_o_p_t_i_o_n>,
?<_o_p_t_i_o_n> or a list of such options. +<_o_p_t_i_o_n> sets a style
checking option, -<_o_p_t_i_o_n>clears it and ?<_o_p_t_i_o_n> succeeds or fails
according to the current setting. consult/1 and derivatives resets
the style checking options to their value before loading the file.
If---for example---a file containing long atoms should be loaded
the user can start the file with:
:- style_check(-atom).
Currently available options are:
____________________________________________________________________
|_Name__________|Default_|Description_______________________________||singletonon| ||
| read_clause/1 (used by consult/1) warns | ||
| on variables only appearing once in a | ||
| term (clause) which have a name not | ||
||atom | on |starting with an underscore. || ||
| | |read/1 and derivatives will produce an |
| | |error message on quoted atoms or strings |
| | |longer than 5 lines. |
| dollar | off |Accept dollar as a lower case character, |
| | |thus avoiding the need for quoting atoms |
| | |with dollar signs. System maintenance |
| | |use only. |
| discontiguous | on |Warn if the clauses for a predicate are |
| | |not together in the same source file. |
| string | off |Backward compatibility. See |
| | |the prolog-flag double_quotes |
|_______________|________|(current_prolog_flag/2).__________________|
44..4433 OObbttaaiinniinngg RRuunnttiimmee SSttaattiissttiiccss
ssttaattiissttiiccss((_+_K_e_y_, _-_V_a_l_u_e))
Unify system statistics determined by _K_e_y with _V_a_l_u_e. The possible
keys are given in the table 4.2. The last part of the table
contains keys for compatibility to other Prolog implementations
(Quintus) for improved portability. Note that the ISO standard
does not define methods to collect system statistics.
_________________________________________________________________________
| agc |Number of atom garbage-collections performed |
| agc_gained N|umber of atoms removed |
| agc_time T|ime spent in atom garbage-collections |
| cputime |(User) cpu time since Prolog was started in|
| |seconds |
| inferences |Total number of passes via the call and redo|
| |ports since Prolog was started. |
| heap |Estimated total size of the heap (see|
| |section 2.16.1.1) |
| heapused |Bytes heap in use by Prolog. |
| heaplimit |Maximum size of the heap (see sec-|
| |tion 2.16.1.1) |
| local |Allocated size of the local stack in bytes. |
| localused |Number of bytes in use on the local stack. |
| locallimit |Size to which the local stack is allowed to|
| |grow |
| global |Allocated size of the global stack in bytes. |
| globalused |Number of bytes in use on the global stack. |
| globallimit |Size to which the global stack is allowed to|
| |grow |
| trail |Allocated size of the trail stack in bytes. |
| trailused |Number of bytes in use on the trail stack. |
| traillimit |Size to which the trail stack is allowed to|
| |grow |
| atoms |Total number of defined atoms. |
| functors |Total number of defined name/arity pairs. |
| predicates |Total number of predicate definitions. |
| modules |Total number of module definitions. |
| codes |Total amount of byte codes in all clauses. |
| threads |MT-version: number of active threads |
| threads_created M|T-version: number of created threads |
| threads_cputime M|T-version: seconds CPU time used by finished|
|________________________t|hreads________________________________________|
|___________________________Compatibility_keys___________________________ |
| runtime |[ CPU time, CPU time since last ]|
| |(milliseconds) |
| system_time [|System CPU time, System CPU time since last |
| ]|(milliseconds) |
| real_time [|Wall time, Wall time since last ] (seconds |
| s|ince 1970) |
| memory |[ Total unshared data, free memory ] (Uses|
| |getrusage() if available, otherwise incomplete|
| |own statistics. |
| stacks |[ global use, local use ] |
| program |[ heap, 0 ] |
| global_stack [|global use, global free ] |
| local_stack [|local use, local free ] |
| trail |[ trail use, 0 ] |
| garbage_collection [|number of GC, bytes gained, time spent ] |
| stack_shifts [|global shifts, local shifts, time spent ] |
| (|fails if no shifter in this version) |
| atoms |[ number, memory use, 0 ] |
| atom_garbage_collection[|number of AGC, bytes gained, time spent ] |
|_core___________________|Same_as_memory_________________________________|
Table 4.2: Keys for statistics/2
ssttaattiissttiiccss
Display a table of system statistics on the current output stream.
ttiimmee((_+_G_o_a_l))
Execute _G_o_a_l just like once/1 (i.e., leaving no choice points),
but print used time, number of logical inferences and the average
number of _l_i_p_s (logical inferences per second). Note that
SWI-Prolog counts the actual executed number of inferences rather
than the number of passes through the call- and redo ports of the
theoretical 4-port model.
44..4444 FFiinnddiinngg PPeerrffoorrmmaannccee BBoottttlleenneecckkss
SWI-Prolog offers a statistical program profiler similar to Unix
prof(1) for C and some other languages. A profiler is used as an aid
to find performance pigs in programs. It provides information on the
time spent in the various Prolog predicates.
The profiler is based on the assumption that if we monitor the
functions on the execution stack on time intervals not correlated to
the program's execution the number of times we find a procedure on the
environment stack is a measure of the time spent in this procedure.
It is implemented by calling a procedure each time slice Prolog is
active. This procedure scans the local stack and either just counts
the procedure on top of this stack (plain profiling) or all procedures
on the stack (cumulative profiling). To get accurate results each
procedure one is interested in should have a reasonable number of
counts. Typically a minute runtime will suffice to get a rough
overview of the most expensive procedures.
pprrooffiillee((_+_G_o_a_l_, _+_S_t_y_l_e_, _+_N_u_m_b_e_r))
Execute _G_o_a_l just like time/1. Collect profiling statistics
according to style (see profiler/2) and show the top _N_u_m_b_e_r
procedures on the current output stream (see show_profile/1).
The results are kept in the database until reset_profiler/0 or
profile/3 is called and can be displayed again with show_profile/1.
profile/3 is the normal way to invoke the profiler. The predicates
below are low-level predicates that can be used for special cases.
sshhooww__pprrooffiillee((_+_N_u_m_b_e_r))
Show the collected results of the profiler. Stops the profiler
first to avoid interference from show_profile/1. It shows the top
_N_u_m_b_e_r predicates according the percentage cpu-time used.
pprrooffiilleerr((_-_O_l_d_, _+_N_e_w))
Query or change the status of the profiler. The status is one
of off, plain or cumulative. plain implies the time used by
children of a predicate is not added to the time of the predicate.
For status cumulative the time of children is added (except for
recursive calls). Cumulative profiling implies the stack is
scanned up to the top on each time slice to find all active
predicates. This implies the overhead grows with the number of
active frames on the stack. Cumulative profiling starts debugging
mode to disable tail recursion optimisation, which would otherwise
remove the necessary parent environments. Switching status from
plain to cumulative resets the profiler. Switching to and from
status off does not reset the collected statistics, thus allowing
to suspend profiling for certain parts of the program.
rreesseett__pprrooffiilleerr
Switches the profiler to off and clears all collected statistics.
pprrooffiillee__ccoouunntt((_+_H_e_a_d_, _-_C_a_l_l_s_, _-_P_r_o_m_i_l_a_g_e))
Obtain profile statistics of the predicate specified by _H_e_a_d. _H_e_a_d
is an atom for predicates with arity 0 or a term with the same
name and arity as the predicate required (see current_predicate/2).
_C_a_l_l_s is unified with the number of `calls' and `redos' while the
profiler was active. _P_r_o_m_i_l_a_g_e is unified with the relative number
of counts the predicate was active (cumulative) or on top of the
stack (plain). _P_r_o_m_i_l_a_g_e is an integer between 0 and 1000.
44..4455 MMeemmoorryy MMaannaaggeemmeenntt
Note: limit_stack/2 and trim_stacks/0 have no effect on machines
that do not offer dynamic stack expansion. On these machines these
predicates simply succeed to improve portability.
ggaarrbbaaggee__ccoolllleecctt
Invoke the global- and trail stack garbage collector. Normally
the garbage collector is invoked automatically if necessary.
Explicit invocation might be useful to reduce the need for
garbage collections in time critical segments of the code. After
the garbage collection trim_stacks/0 is invoked to release the
collected memory resources.
ggaarrbbaaggee__ccoolllleecctt__aattoommss
Reclaim unused atoms. Normally invoked after agc_margin (a prolog
flag) atoms have been created.
lliimmiitt__ssttaacckk((_+_K_e_y_, _+_K_b_y_t_e_s))
Limit one of the stack areas to the specified value. _K_e_y is one of
local, global or trail. The limit is an integer, expressing the
desired stack limit in K bytes. If the desired limit is smaller
than the currently used value, the limit is set to the nearest
legal value above the currently used value. If the desired value
is larger than the maximum, the maximum is taken. Finally, if the
desired value is either 0 or the atom unlimited the limit is set to
its maximum. The maximum and initial limit is determined by the
command line options -L, -G and -T.
ttrriimm__ssttaacckkss
Release stack memory resources that are not in use at this moment,
returning them to the operating system. Trim stack is a relatively
cheap call. It can be used to release memory resources in a
backtracking loop, where the iterations require typically seconds
of execution time and very different, potentially large, amounts of
stack space. Such a loop should be written as follows:
loop :-
generator,
trim_stacks,
potentially_expensive_operation,
stop_condition, !.
The prolog top level loop is written this way, reclaiming memory
resources after every user query.
ssttaacckk__ppaarraammeetteerr((_+_S_t_a_c_k_, _+_K_e_y_, _-_O_l_d_, _+_N_e_w))
Query/set a parameter for the runtime stacks. _S_t_a_c_k is one of
local, global, trail or argument. The table below describes the
_K_e_y/_V_a_l_u_e pairs. Old is first unified with the current value.
____________________________________________________________
| limit |Maximum size of the stack in bytes |
|_min_free_|Minimum_free_space_at_entry_of_foreign_predicate_|
This predicate is currently only available on versions that use the
stack-shifter to enlarge the runtime stacks when necessary. It's
definition is subject to change.
44..4466 WWiinnddoowwss DDDDEE iinntteerrffaaccee
The predicates in this section deal with MS-Windows `Dynamic Data
Exchange' or DDE protocol. A Windows DDE conversation is a form
of interprocess communication based on sending reserved window-events
between the communicating processes.
See also section 6.4 for loading Windows DLL's into SWI-Prolog.
44..4466..11 DDDDEE cclliieenntt iinntteerrffaaccee
The DDE client interface allows Prolog to talk to DDE server programs.
We will demonstrate the use of the DDE interface using the Windows
PROGMAN (Program Manager) application:
1 ?- open_dde_conversation(progman, progman, C).
C = 0
2 ?- dde_request(0, groups, X)
--> Unifies X with description of groups
3 ?- dde_execute(0, '[CreateGroup("DDE Demo")]').
Yes
4 ?- close_dde_conversation(0).
Yes
For details on interacting with progman, use the SDK online
manual section on the Shell DDE interface. See also the Prolog
library(progman), which may be used to write simple Windows setup
scripts in Prolog.
ooppeenn__ddddee__ccoonnvveerrssaattiioonn((_+_S_e_r_v_i_c_e_, _+_T_o_p_i_c_, _-_H_a_n_d_l_e))
Open a conversation with a server supporting the given service name
and topic (atoms). If successful, _H_a_n_d_l_e may be used to send
transactions to the server. If no willing server is found this
predicate fails silently.
cclloossee__ddddee__ccoonnvveerrssaattiioonn((_+_H_a_n_d_l_e))
Close the conversation associated with _H_a_n_d_l_e. All opened
conversations should be closed when they're no longer needed,
although the system will close any that remain open on process
termination.
ddddee__rreeqquueesstt((_+_H_a_n_d_l_e_, _+_I_t_e_m_, _-_V_a_l_u_e))
Request a value from the server. _I_t_e_m is an atom that identifies
the requested data, and _V_a_l_u_e will be a string (CF_TEXT data
in DDE parlance) representing that data, if the request is
successful. If unsuccessful, _V_a_l_u_e will be unified with a term
of form error(<_R_e_a_s_o_n>), identifying the problem. This call uses
SWI-Prolog string objects to return the value rather then atoms
to reduce the load on the atom-space. See section 4.23 for a
discussion on this data type.
ddddee__eexxeeccuuttee((_+_H_a_n_d_l_e_, _+_C_o_m_m_a_n_d))
Request the DDE server to execute the given command-string.
Succeeds if the command could be executed and fails with error
message otherwise.
ddddee__ppookkee((_+_H_a_n_d_l_e_, _+_I_t_e_m_, _+_C_o_m_m_a_n_d))
Issue a POKE command to the server on the specified _I_t_e_m. Command
is passed as data of type CF_TEXT.
44..4466..22 DDDDEE sseerrvveerr mmooddee
The (autoload) library(dde) defines primitives to realise simple DDE
server applications in SWI-Prolog. These features are provided as of
version 2.0.6 and should be regarded prototypes. The C-part of the DDE
server can handle some more primitives, so if you need features not
provided by this interface, please study library(dde).
ddddee__rreeggiisstteerr__sseerrvviiccee((_+_T_e_m_p_l_a_t_e_, _+_G_o_a_l))
Register a server to handle DDE request or DDE execute requests
from other applications. To register a service for a DDE request,
_T_e_m_p_l_a_t_e is of the form:
+Service(+Topic, +Item, +Value)
_S_e_r_v_i_c_e is the name of the DDE service provided (like progman in
the client example above). _T_o_p_i_c is either an atom, indicating
_G_o_a_l only handles requests on this topic or a variable that also
appears in _G_o_a_l. _I_t_e_m and _V_a_l_u_e are variables that also appear in
_G_o_a_l. _I_t_e_m represents the request data as a Prolog atom.
The example below registers the Prolog current_prolog_flag/2
predicate to be accessible from other applications. The request
may be given from the same Prolog as well as from another
application.
?- dde_register_service(prolog(current_prolog_flag, F, V),
current_prolog_flag(F, V)).
?- open_dde_conversation(prolog, current_prolog_flag, Handle),
dde_request(Handle, home, Home),
close_dde_conversation(Handle).
Home = '/usr/local/lib/pl-2.0.6/'
Handling DDE execute requests is very similar. In this case the
template is of the form:
+Service(+Topic, +Item)
Passing a _V_a_l_u_e argument is not needed as execute requests either
succeed or fail. If _G_o_a_l fails, a `not processed' is passed back
to the caller of the DDE request.
ddddee__uunnrreeggiisstteerr__sseerrvviiccee((_+_S_e_r_v_i_c_e))
Stop responding to _S_e_r_v_i_c_e. If Prolog is halted, it will
automatically call this on all open services.
ddddee__ccuurrrreenntt__sseerrvviiccee((_-_S_e_r_v_i_c_e_, _-_T_o_p_i_c))
Find currently registered services and the topics served on them.
ddddee__ccuurrrreenntt__ccoonnnneeccttiioonn((_-_S_e_r_v_i_c_e_, _-_T_o_p_i_c))
Find currently open conversations.
44..4477 MMiisscceellllaanneeoouuss
ddwwiimm__mmaattcchh((_+_A_t_o_m_1_, _+_A_t_o_m_2))
Succeeds if _A_t_o_m_1 matches _A_t_o_m_2 in `Do What I Mean' sense. Both
_A_t_o_m_1 and _A_t_o_m_2 may also be integers or floats. The two atoms
match if:
o They are identical
o They differ by one character (spy spu)
o One character is inserted/deleted (debug deug)
o Two characters are transposed (trace tarce)
o `Sub-words' are glued differently (existsfile existsFile
exists_file)
o Two adjacent sub words are transposed (existsFile
fileExists)
ddwwiimm__mmaattcchh((_+_A_t_o_m_1_, _+_A_t_o_m_2_, _-_D_i_f_f_e_r_e_n_c_e))
Equivalent to dwim_match/2, but unifies _D_i_f_f_e_r_e_n_c_e with an atom
identifying the the difference between _A_t_o_m_1 and _A_t_o_m_2. The return
values are (in the same order as above): equal, mismatched_char,
inserted_char, transposed_char, separated and transposed_word.
wwiillddccaarrdd__mmaattcchh((_+_P_a_t_t_e_r_n_, _+_S_t_r_i_n_g))
Succeeds if _S_t_r_i_n_g matches the wildcard pattern _P_a_t_t_e_r_n. _P_a_t_t_e_r_n
is very similar the the Unix csh pattern matcher. The patterns are
given below:
? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets.
<_c_h_a_r_1>-<_c_h_a_r_2>indicates a range.
{...} Matches any of the patterns of the comma separated list between the braces.
Example:
?- wildcard_match('[a-z]*.{pro,pl}[%~]', 'a_hello.pl%').
Yes
ggeennssyymm((_+_B_a_s_e_, _-_U_n_i_q_u_e))
Generate a unique atom from base _B_a_s_e and unify it with _U_n_i_q_u_e.
_B_a_s_e should be an atom. The first call will return <_b_a_s_e>1, the
next <_b_a_s_e>2, etc. Note that this is no warrant that the atom is
unique in the system.
sslleeeepp((_+_T_i_m_e))
Suspend execution _T_i_m_e seconds. _T_i_m_e is either a floating point
number or an integer. Granularity is dependent on the system's
timer granularity. A negative time causes the timer to return
immediately. On most non-realtime operating systems we can only
ensure execution is suspended for aatt lleeaasstt _T_i_m_e seconds.
CChhaapptteerr 55.. UUSSIINNGG MMOODDUULLEESS
55..11 WWhhyy UUssiinngg MMoodduulleess??
In traditional Prolog systems the predicate space was flat. This
approach is not very suitable for the development of large
applications, certainly not if these applications are developed by more
than one programmer. In many cases, the definition of a Prolog
predicate requires sub-predicates that are intended only to complete
the definition of the main predicate. With a flat and global predicate
space these support predicates will be visible from the entire program.
For this reason, it is desirable that each source module has it's own
predicate space. A module consists of a declaration for it's name,
it's _p_u_b_l_i_c _p_r_e_d_i_c_a_t_e_s and the predicates themselves. This approach
allow the programmer to use short (local) names for support predicates
without worrying about name conflicts with the support predicates of
other modules. The module declaration also makes explicit which
predicates are meant for public usage and which for private purposes.
Finally, using the module information, cross reference programs can
indicate possible problems much better.
55..22 NNaammee--bbaasseedd vveerrssuuss PPrreeddiiccaattee--bbaasseedd MMoodduulleess
Two approaches to realize a module system are commonly used in Prolog
and other languages. The first one is the _n_a_m_e _b_a_s_e_d module system.
In these systems, each atom read is tagged (normally prefixed) with
the module name, with the exception of those atoms that are defined
_p_u_b_l_i_c. In the second approach, each module actually implements its
own predicate space.
A critical problem with using modules in Prolog is introduced by
the meta-predicates that transform between Prolog data and Prolog
predicates. Consider the case where we write:
:- module(extend, [add_extension/3]).
add_extension(Extension, Plain, Extended) :-
maplist(extend_atom(Extension), Plain, Extended).
extend_atom(Extension, Plain, Extended) :-
concat(Plain, Extension, Extended).
In this case we would like maplist to call extend_atom/3 in the module
extend. A name based module system will do this correctly. It will
tag the atom extend_atom with the module and maplist will use this to
construct the tagged term extend_atom/3. A name based module however,
will not only tag the atoms that will eventually be used to refer to a
predicate, but aallll atoms that are not declared public. So, with a name
based module system also data is local to the module. This introduces
another serious problem:
:- module(action, [action/3]).
action(Object, sleep, Arg) :- ....
action(Object, awake, Arg) :- ....
:- module(process, [awake_process/2]).
awake_process(Process, Arg) :-
action(Process, awake, Arg).
This code uses a simple object-oriented implementation technique were
atoms are used as method selectors. Using a name based module system,
this code will not work, unless we declare the selectors public atoms
in all modules that use them. Predicate based module systems do not
require particular precautions for handling this case.
It appears we have to choose either to have local data, or to
have trouble with meta-predicates. Probably it is best to choose
for the predicate based approach as novice users will not often
write generic meta-predicates that have to be used across multiple
modules, but are likely to write programs that pass data around across
modules. Experienced Prolog programmers should be able to deal with
the complexities of meta-predicates in a predicate based module system.
55..33 DDeeffiinniinngg aa MMoodduullee
Modules normally are created by loading a _m_o_d_u_l_e _f_i_l_e. A module file
is a file holding a module/2 directive as its first term. The module/2
directive declares the name and the public (i.e., externally visible)
predicates of the module. The rest of the file is loaded into the
module. Below is an example of a module file, defining reverse/2.
:- module(reverse, [reverse/2]).
reverse(List1, List2) :-
rev(List1, [], List2).
rev([], List, List).
rev([Head|List1], List2, List3) :-
rev(List1, [Head|List2], List3).
55..44 IImmppoorrttiinngg PPrreeddiiccaatteess iinnttoo aa MMoodduullee
As explained before, in the predicate based approach adapted by
SWI-Prolog, each module has it's own predicate space. In SWI-Prolog,
a module initially is completely empty. Predicates can be added to
a module by loading a module file as demonstrated in the previous
section, using assert or by _i_m_p_o_r_t_i_n_g them from another module.
Two mechanisms for importing predicates explicitly from another module
exist. The use_module/[1,2] predicates load a module file and import
(part of the) public predicates of the file. The import/1 predicate
imports any predicate from any module.
uussee__mmoodduullee((_+_F_i_l_e))
Load the file(s) specified with _F_i_l_e just like ensure_loaded/1.
The files should all be module files. All exported predicates
from the loaded files are imported into the context module.
The difference between this predicate and ensure_loaded/1 becomes
apparent if the file is already loaded into another module. In
this case ensure_loaded/1 does nothing; use_module will import all
public predicates of the module into the current context module.
uussee__mmoodduullee((_+_F_i_l_e_, _+_I_m_p_o_r_t_L_i_s_t))
Load the file specified with _F_i_l_e (only one file is accepted).
_F_i_l_e should be a module file. _I_m_p_o_r_t_L_i_s_t is a list of name/arity
pairs specifying the predicates that should be imported from the
loaded module. If a predicate is specified that is not exported
from the loaded module a warning will be printed. The predicate
will nevertheless be imported to simplify debugging.
iimmppoorrtt((_+_H_e_a_d))
Import predicate _H_e_a_d into the current context module. _H_e_a_d should
specify the source module using the <_m_o_d_u_l_e>:<_t_e_r_m>construct. Note
that predicates are normally imported using one of the directives
use_module/[1,2]. import/1 is meant for handling imports into
dynamically created modules.
It would be rather inconvenient to have to import each predicate
referred to by the module, including the system predicates. For this
reason each module is assigned a _d_e_f_a_u_l_t _m_o_d_u_l_e. All predicates in
the default module are available without extra declarations. Their
definition however can be overruled in the local module. This schedule
is implemented by the exception handling mechanism of SWI-Prolog: if
an undefined predicate exception is raised for a predicate in some
module, the exception handler first tries to import the predicate from
the module's default module. On success, normal execution is resumed.
55..44..11 RReesseerrvveedd MMoodduulleess
SWI-Prolog contains two special modules. The first one is the module
system. This module contains all built-in predicates described in
this manual. Module system has no default module assigned to it.
The second special module is the module user. This module forms the
initial working space of the user. Initially it is empty. The
default module of module user is system, making all built-in predicate
definitions available as defaults. Built-in predicates thus can be
overruled by defining them in module user before they are used.
All other modules default to module user. This implies they can use
all predicates imported into user without explicitly importing them.
55..55 UUssiinngg tthhee MMoodduullee SSyysstteemm
The current structure of the module system has been designed with
some specific organisations for large programs in mind. Many large
programs define a basic library layer on top of which the actual
program itself is defined. The module user, acting as the default
module for all other modules of the program can be used to distribute
these definitions over all program module without introducing the need
to import this common layer each time explicitly. It can also be
used to redefine built-in predicates if this is required to maintain
compatibility to some other Prolog implementation. Typically, the
loadfile of a large application looks like this:
:- use_module(compatibility). % load XYZ prolog compatibility
:- use_module( % load generic parts
[ error % errors and warnings
, goodies % general goodies (library extensions)
, debug % application specific debugging
, virtual_machine % virtual machine of application
, ... % more generic stuff
]).
:- ensure_loaded(
[ ... % the application itself
]).
The `use_module' declarations will import the public predicates from
the generic modules into the user module. The `ensure_loaded'
directive loads the modules that constitute the actual application.
It is assumed these modules import predicates from each other using
use_module/[1,2] as far as necessary.
In combination with the object-oriented schema described below it is
possible to define a neat modular architecture. The generic code
defines general utilities and the message passing predicates (invoke/3
in the example below). The application modules define classes that
communicate using the message passing predicates.
55..55..11 OObbjjeecctt OOrriieenntteedd PPrrooggrraammmmiinngg
Another typical way to use the module system is for defining classes
within an object oriented paradigm. The class structure and the
methods of a class can be defined in a module and the explicit
module-boundary overruling describes in section 5.6.2 can by used by
the message passing code to invoke the behaviour. An outline of this
mechanism is given below.
% Define class point
:- module(point, []). % class point, no exports
% name type, default access
% value
variable(x, integer, 0, both).
variable(y, integer, 0, both).
% method name predicate name arguments
behaviour(mirror, mirror, []).
mirror(P) :-
fetch(P, x, X),
fetch(P, y, Y),
store(P, y, X),
store(P, x, Y).
The predicates fetch/3 and store/3 are predicates that change instance
variables of instances. The figure below indicates how message passing
can easily be implemented:
% invoke(+Instance, +Selector, ?ArgumentList)
% send a message to an instance
invoke(I, S, Args) :-
class_of_instance(I, Class),
Class:behaviour(S, P, ArgCheck), !,
convert_arguments(ArgCheck, Args, ConvArgs),
Goal =.. [P|ConvArgs],
Class:Goal.
The construct <_M_o_d_u_l_e>:<_G_o_a_l> explicitly calls _G_o_a_l in module _M_o_d_u_l_e.
It is discussed in more detail in section 4.8.
55..66 MMeettaa--PPrreeddiiccaatteess iinn MMoodduulleess
As indicated in the introduction, the problem with a predicate based
module system lies in the difficulty to find the correct predicate from
a Prolog term. The predicate `solution(Solution)' can exist in more
than one module, but `assert(solution(4))' in some module is supposed
to refer to the correct version of solution/1.
Various approaches are possible to solve this problem. One is to
add an extra argument to all predicates (e.g. `assert(Module, Term)').
Another is to tag the term somehow to indicate which module is desired
(e.g. `assert(Module:Term)'). Both approaches are not very attractive
as they make the user responsible for choosing the correct module,
inviting unclear programming by asserting in other modules. The
predicate assert/1 is supposed to assert in the module it is called
from and should do so without being told explicitly. For this reason,
the notion _c_o_n_t_e_x_t _m_o_d_u_l_e has been introduced.
55..66..11 DDeeffiinniittiioonn aanndd CCoonntteexxtt MMoodduullee
Each predicate of the program is assigned a module, called it's
_d_e_f_i_n_i_t_i_o_n _m_o_d_u_l_e. The definition module of a predicate is always the
module in which the predicate was originally defined. Each active goal
in the Prolog system has a _c_o_n_t_e_x_t _m_o_d_u_l_e assigned to it.
The context module is used to find predicates from a Prolog term.
By default, this module is the definition module of the predicate
running the goal. For meta-predicates however, this is the context
module of the goal that invoked them. We call this _m_o_d_u_l_e___t_r_a_n_s_p_a_r_e_n_t
in SWI-Prolog. In the `using maplist' example above, the predicate
maplist/3 is declared module_transparent. This implies the context
module remains extend, the context module of add_extension/3. This way
maplist/3 can decide to call extend_atom in module extend rather than in
it's own definition module.
All built-in predicates that refer to predicates via a Prolog term are
declared module_transparent. Below is the code defining maplist.
:- module(maplist, maplist/3).
:- module_transparent maplist/3.
% maplist(+Goal, +List1, ?List2)
% True if Goal can successfully be applied to all succes-
sive pairs
% of elements of List1 and List2.
maplist(_, [], []).
maplist(Goal, [Elem1|Tail1], [Elem2|Tail2]) :-
apply(Goal, [Elem1, Elem2]),
maplist(Goal, Tail1, Tail2).
55..66..22 OOvveerrrruulliinngg MMoodduullee BBoouunnddaarriieess
The mechanism above is sufficient to create an acceptable module
system. There are however cases in which we would like to be able to
overrule this schema and explicitly call a predicate in some module
or assert explicitly in some module. The first is useful to invoke
goals in some module from the user's toplevel or to implement a
object-oriented system (see above). The latter is useful to create and
modify _d_y_n_a_m_i_c _m_o_d_u_l_e_s (see section 5.7).
For this purpose, the reserved term :/2 has been introduced. All
built-in predicates that transform a term into a predicate reference
will check whether this term is of the form `<_M_o_d_u_l_e>:<_T_e_r_m>'. If so,
the predicate is searched for in _M_o_d_u_l_e instead of the goal's context
module. The : operator may be nested, in which case the inner-most
module is used.
The special calling construct <_M_o_d_u_l_e>:<_G_o_a_l>pretends _G_o_a_l is called
from _M_o_d_u_l_e instead of the context module. Examples:
?- assert(world:done). % asserts done/0 into module world
?- world:assert(done). % the same
?- world:done. % calls done/0 in module world
55..77 DDyynnaammiicc MMoodduulleess
So far, we discussed modules that were created by loading a
module-file. These modules have been introduced on facilitate
the development of large applications. The modules are fully
defined at load-time of the application and normally will not change
during execution. Having the notion of a set of predicates as a
self-contained world can be attractive for other purposes as well. For
example, assume an application that can reason about multiple worlds.
It is attractive to store the data of a particular world in a module,
so we extract information from a world simply by invoking goals in this
world.
Dynamic modules can easily be created. Any built-in predicate that
tries to locate a predicate in a specific module will create this
module as a side-effect if it did not yet exist. Example:
?- assert(world_a:consistent),
world_a:unknown(_, fail).
These calls create a module called `world_a' and make the call
`world_a:consistent' succeed. Undefined predicates will not start the
tracer or autoloader for this module (see unknown/2).
Import and export from dynamically created world is arranged via the
predicates import/1 and export/1:
?- world_b:export(solve(_,_)). % exports solve/2 from world_b
?- world_c:import(world_b:solve(_,_)). % and import it to world_c
55..88 MMoodduullee HHaannddlliinngg PPrreeddiiccaatteess
This section gives the predicate definitions for the remaining built-in
predicates that handle modules.
::-- mmoodduullee((_+_M_o_d_u_l_e_, _+_P_u_b_l_i_c_L_i_s_t))
This directive can only be used as the first term of a source file.
It declares the file to be a _m_o_d_u_l_e _f_i_l_e, defining _M_o_d_u_l_e and
exporting the predicates of _P_u_b_l_i_c_L_i_s_t. _P_u_b_l_i_c_L_i_s_t is a list of
name/arity pairs.
mmoodduullee__ttrraannssppaarreenntt _+_P_r_e_d_s
_P_r_e_d_s is a comma separated list of name/arity pairs (like
dynamic/1). Each goal associated with a transparent declared
predicate will inherit the _c_o_n_t_e_x_t _m_o_d_u_l_e from its parent goal.
mmeettaa__pprreeddiiccaattee _+_H_e_a_d_s
This predicate is defined in library(quintus) and provides a
partial emulation of the Quintus predicate. See section 5.9.1 for
details.
ccuurrrreenntt__mmoodduullee((_-_M_o_d_u_l_e))
Generates all currently known modules.
ccuurrrreenntt__mmoodduullee((_?_M_o_d_u_l_e_, _?_F_i_l_e))
Is true if _F_i_l_e is the file from which _M_o_d_u_l_e was loaded. _F_i_l_e is
the internal canonical filename. See also source_file/[1,2].
ccoonntteexxtt__mmoodduullee((_-_M_o_d_u_l_e))
Unify _M_o_d_u_l_e with the context module of the current goal.
context_module/1 itself is transparent.
eexxppoorrtt((_+_H_e_a_d))
Add a predicate to the public list of the context module. This
implies the predicate will be imported into another module if this
module is imported with use_module/[1,2]. Note that predicates are
normally exported using the directive module/2. export/1 is meant
to handle export from dynamically created modules.
eexxppoorrtt__lliisstt((_+_M_o_d_u_l_e_, _?_E_x_p_o_r_t_s))
Unifies _E_x_p_o_r_t_s with a list of terms. Each term has the name and
arity of a public predicate of _M_o_d_u_l_e. The order of the terms in
_E_x_p_o_r_t_s is not defined. See also predicate_property/2.
ddeeffaauulltt__mmoodduullee((_+_M_o_d_u_l_e_, _-_D_e_f_a_u_l_t))
Succesively unifies _D_e_f_a_u_l_t with the module names from which a call
in _M_o_d_u_l_e attempts to use the definition. For the module user,
this will generate user and system. For any other module, this
will generate the module itself, followed by user and system.
mmoodduullee((_+_M_o_d_u_l_e))
The call module(Module) may be used to switch the default working
module for the interactive toplevel (see prolog/0). This may be
used to when debugging a module. The example below lists the
clauses of file_of_label/2 in the module tex.
1 ?- module(tex).
Yes
tex: 2 ?- listing(file_of_label/2).
...
55..99 CCoommppaattiibbiilliittyy ooff tthhee MMoodduullee SSyysstteemm
The principles behind the module system of SWI-Prolog differ in a
number of aspects from the Quintus Prolog module system.
o The SWI-Prolog module system allows the user to redefine system
predicates.
o All predicates that are available in the system and user modules
are visible in all other modules as well.
o Quintus has the `meta_predicate/1' declaration were SWI-Prolog has
the module_transparent/1 declaration.
The meta_predicate/1 declaration causes the compiler to tag arguments
that pass module sensitive information with the module using the :/2
operator. This approach has some disadvantages:
o Changing a meta_predicate declaration implies all predicates
ccaalllliinngg the predicate need to be reloaded. This can cause serious
consistency problems.
o It does not help for dynamically defined predicates calling module
sensitive predicates.
o It slows down the compiler (at least in the SWI-Prolog
architecture).
o At least within the SWI-Prolog architecture the run-time overhead
is larger than the overhead introduced by the transparent
mechanism.
Unfortunately the transparent predicate approach also has some
disadvantages. If a predicate A passes module sensitive information
to a predicate B, passing the same information to a module sensitive
system predicate both A and B should be declared transparent. Using
the Quintus approach only A needs to be treated special (i.e., declared
with meta_predicate/1). A second problem arises if the body of a
transparent predicate uses module sensitive predicates for which it
wants to refer to its own module. Suppose we want to define findall/3
using assert/1 and retract/1. The example in figure 5.1 gives the
solution.
:- module(findall, [findall/3]).
:- dynamic
solution/1.
:- module_transparent
findall/3,
store/2.
findall(Var, Goal, Bag) :-
assert(findall:solution('$mark')),
store(Var, Goal),
collect(Bag).
store(Var, Goal) :-
Goal, % refers to context module of
% caller of findall/3
assert(findall:solution(Var)),
fail.
store(_, _).
collect(Bag) :-
...,
Figure 5.1: findall/3 using modules
55..99..11 EEmmuullaattiinngg meta_predicate/1
The Quintus meta_predicate/1 directive can in many cases be replaced
by the transparent declaration. Below is the definition of
meta_predicate/1 as available from library(quintus).
:- op(1150, fx, (meta_predicate)).
meta_predicate((Head, More)) :- !,
meta_predicate1(Head),
meta_predicate(More).
meta_predicate(Head) :-
meta_predicate1(Head).
meta_predicate1(Head) :-
Head =.. [Name|Arguments],
member(Arg, Arguments),
module_expansion_argument(Arg), !,
functor(Head, Name, Arity),
module_transparent(Name/Arity).
meta_predicate1(_). % just a mode declaration
module_expansion_argument(:).
module_expansion_argument(N) :- integer(N).
The discussion above about the problems with the transparent mechanism
show the two cases in which this simple transformation does not work.
CChhaapptteerr 66.. FFOORREEIIGGNN LLAANNGGUUAAGGEE IINNTTEERRFFAACCEE
SWI-Prolog offers a powerful interface to C
[Kernighan & Ritchie, 1978]. The main design objectives of the
foreign language interface are flexibility and performance. A foreign
predicate is a C-function that has the same number of arguments as
the predicate represented. C-functions are provided to analyse the
passed terms, convert them to basic C-types as well as to instantiate
arguments using unification. Non-deterministic foreign predicates are
supported, providing the foreign function with a handle to control
backtracking.
C can call Prolog predicates, providing both an query interface and
an interface to extract multiple solutions from an non-deterministic
Prolog predicate. There is no limit to the nesting of Prolog calling
C, calling Prolog, etc. It is also possible to write the `main' in C
and use Prolog as an embedded logical engine.
66..11 OOvveerrvviieeww ooff tthhee IInntteerrffaaccee
A special include file called SWI-Prolog.h should be included with each
C-source file that is to be loaded via the foreign interface. The
installation process installs this file in the directory include in the
SWI-Prolog home directory (?- current_prolog_flag(home, Home).). This
C-header file defines various data types, macros and functions that can
be used to communicate with SWI-Prolog. Functions and macros can be
divided into the following categories:
o Analysing Prolog terms
o Constructing new terms
o Unifying terms
o Returning control information to Prolog
o Registering foreign predicates with Prolog
o Calling Prolog from C
o Recorded database interactions
o Global actions on Prolog (halt, break, abort, etc.)
66..22 LLiinnkkiinngg FFoorreeiiggnn MMoodduulleess
Foreign modules may be linked to Prolog in three ways. Using _s_t_a_t_i_c
_l_i_n_k_i_n_g, the extensions, a small description file and the basic
SWI-Prolog object file are linked together to form a new executable.
Using _d_y_n_a_m_i_c _l_i_n_k_i_n_g, the extensions are linked to a shared library
(.so file on most Unix systems) or dynamic-link library (.DLL file on
Microsoft platforms) and loaded into the the running Prolog process..
66..22..11 WWhhaatt lliinnkkiinngg iiss pprroovviiddeedd??
The _s_t_a_t_i_c _l_i_n_k_i_n_g schema can be used on all versions of SWI-Prolog.
Whether or not dynamic linking is supported can be deduced from the
prolog-flag open_shared_object (see current_prolog_flag/2). If this
prolog-flag yields true, open_shared_object/2 and related predicates are
defined. See section 6.4 for a suitable high-level interface to these
predicates.
66..22..22 WWhhaatt kkiinndd ooff llooaaddiinngg sshhoouulldd II bbee uussiinngg??
All described approaches have their advantages and disadvantages.
Static linking is portable and allows for debugging on all platforms.
It is relatively cumbersome and the libraries you need to pass to the
linker may vary from system to system, though the utility program plld
described in section 6.7 often hides these problems from the user.
Loading shared objects (DLL files on Windows) provides sharing and
protection and is generally the best choice. If a saved-state is
created using qsave_program/[1,2], an initialization/1 directive may be
used to load the appropriate library at startup.
Note that the definition of the foreign predicates is the same,
regardless of the linking type used.
66..33 DDyynnaammiicc LLiinnkkiinngg ooff sshhaarreedd lliibbrraarriieess
The interface defined in this section allows the user to load shared
libraries (.so files on most Unix systems, .dll files on Windows).
This interface is portable to Windows as well as to Unix machines
providing dlopen(2) (Solaris, Linux, FreeBSD, Irix and many more)
or shl_open(2) (HP/UX). It is advised to use the predicates from
section 6.4 in your application.
ooppeenn__sshhaarreedd__oobbjjeecctt((_+_F_i_l_e_, _-_H_a_n_d_l_e))
_F_i_l_e is the name of a .so file (see your C programmers documenta-
tion on how to create a .so file). This file is attached to the
current process and _H_a_n_d_l_e is unified with a handle to the shared
object. Equivalent to open_shared_object(File, [global], Handle).
See also load_foreign_library/[1,2].
On errors, an exception shared_object(_A_c_t_i_o_n_, _M_e_s_s_a_g_e) is raised.
_M_e_s_s_a_g_e is the return value from dlerror().
ooppeenn__sshhaarreedd__oobbjjeecctt((_+_F_i_l_e_, _+_O_p_t_i_o_n_s_, _-_H_a_n_d_l_e))
As open_shared_object/2, but allows for additional flags to be
passed. _O_p_t_i_o_n_s is a list of atoms. now implies the symbols are
resolved immediately rather than lazy (default). global implies
symbols of the loaded object are visible while loading other shared
objects (by default they are local). Note that these flags may not
be supported by your operating system. Check the documentation of
dlopen() or equivalent on your operating system. Unsupported flags
are silently ignored.
cclloossee__sshhaarreedd__oobbjjeecctt((_+_H_a_n_d_l_e))
Detach the shared object identified by _H_a_n_d_l_e.
ccaallll__sshhaarreedd__oobbjjeecctt__ffuunnccttiioonn((_+_H_a_n_d_l_e_, _+_F_u_n_c_t_i_o_n))
Call the named function in the loaded shared library. The function
is called without arguments and the return-value is ignored.
Normally this function installs foreign language predicates using
calls to PL_register_foreign().
66..44 UUssiinngg tthhee lliibbrraarryy sshhlliibb ffoorr .DLL aanndd .so ffiilleess
This section discusses the functionality of the (autoload) library
shlib.pl, providing an interface to shared libraries. This library can
only be used if the prolog-flag open_shared_object is enabled.
llooaadd__ffoorreeiiggnn__lliibbrraarryy((_+_L_i_b_, _+_E_n_t_r_y))
Search for the given foreign library and link it to the current
SWI-Prolog instance. The library may be specified with or without
the extension. First, absolute_file_name/3 is used to locate
the file. If this succeeds, the full path is passed to the
low-level function to open the library. Otherwise, the plain
library name is passed, exploiting the operating-system defined
search mechanism for the shared library. The file_search_path/2
alias mechanism defines the alias foreign, which refers to the
directories <_p_l_h_o_m_e>/lib/<_a_r_c_h>and <_p_l_h_o_m_e>/lib, in this order.
If the library can be loaded, the function called _E_n_t_r_y will be
called without arguments. The return value of the function is
ignored.
The _E_n_t_r_y function will normally call PL_register_foreign() to
declare functions in the library as foreign predicates.
llooaadd__ffoorreeiiggnn__lliibbrraarryy((_+_L_i_b))
Equivalent to load_foreign_library/2. For the entry-point, this
function first identifies the `base-name' of the library, which is
defined to be the file-name with path nor extension. It will then
try the entry-point install-<_b_a_s_e>. On failure it will try to
function install(). Otherwise no install function will be called.
uunnllooaadd__ffoorreeiiggnn__lliibbrraarryy((_+_L_i_b))
If the foreign library defines the function uninstall_<_b_a_s_e>() or
uninstall(), this function will be called without arguments and
its return value is ignored. Next, abolish/2 is used to remove
all known foreign predicates defined in the library. Finally the
library itself is detached from the process.
ccuurrrreenntt__ffoorreeiiggnn__lliibbrraarryy((_-_L_i_b_, _-_P_r_e_d_i_c_a_t_e_s))
Query the currently loaded foreign libraries and their predicates.
_P_r_e_d_i_c_a_t_e_s is a list with elements of the form _M_o_d_u_l_e_:_H_e_a_d,
indicating the predicates installed with PL_register_foreign() when
the entry-point of the library was called.
Figure 6.1 connects a Windows message-box using a foreign function.
This example was tested using Windows NT and Microsoft Visual C++ 2.0.
#include <windows.h>
#include <SWI-Prolog.h>
static foreign_t
pl_say_hello(term_t to)
{ char *a;
if ( PL_get_atom_chars(to, &a) )
{ MessageBox(NULL, a, "DLL test", MB_OK|MB_TASKMODAL);
PL_succeed;
}
PL_fail;
}
install_t
install()
{ PL_register_foreign("say_hello", 1, pl_say_hello, 0);
}
Figure 6.1: MessageBox() example in Windows NT
66..44..11 SSttaattiicc LLiinnkkiinngg
Below is an outline of the files structure required for statically
linking SWI-Prolog with foreign extensions. \ldots/pl refers to
the SWI-Prolog home directory (see current_prolog_flag/2). <_a_r_c_h>
refers to the architecture identifier that may be obtained using
current_prolog_flag/2.
.../pl/runtime/<_a_r_c_h>/libpl.a SWI-Library
\ldots/pl/include/SWI-Prolog.h Include file
\ldots/pl/include/SWI-Stream.h Stream I/O include file
\ldots/pl/include/SWI-Exports Export declarations (AIX only)
\ldots/pl/include/stub.c Extension stub
The definition of the foreign predicates is the same as for
dynamic linking. Unlike with dynamic linking however, there is no
initialisation function. Instead, the file \ldots/pl/include/stub.c
may be copied to your project and modified to define the foreign
extensions. Below is stub.c, modified to link the lowercase example
described later in this chapter:
/* Copyright (c) 1991 Jan Wielemaker. All rights reserved.
jan@swi.psy.uva.nl
Purpose: Skeleton for extensions
*/
#include <stdio.h>
#include <SWI-Prolog.h>
extern foreign_t pl_lowercase(term, term);
PL_extension predicates[] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/
{ "lowercase", 2 pl_lowercase, 0 },
{ NULL, 0, NULL, 0 } /* terminating line */
};
int
main(int argc, char **argv)
{ PL_register_extensions(predicates);
if ( !PL_initialise(argc, argv) )
PL_halt(1);
PL_install_readline(); /* delete if not required */
PL_halt(PL_toplevel() ? 0 : 1);
}
Now, a new executable may be created by compiling this file and linking
it to libpl.a from the runtime directory and the libraries required by
both the extensions and the SWI-Prolog kernel. This may be done by
hand, or using the plld utility described in secrefplld.
66..55 IInntteerrffaaccee DDaattaa ttyyppeess
66..55..11 TTyyppee term_t:: aa rreeffeerreennccee ttoo aa PPrroolloogg tteerrmm
The principal data-type is term_t. Type term_t is what Quintus calls
QP_term_ref. This name indicates better what the type represents: it
is a _h_a_n_d_l_e for a term rather than the term itself. Terms can only be
represented and manipulated using this type, as this is the only safe
way to ensure the Prolog kernel is aware of all terms referenced by
foreign code and thus allows the kernel to perform garbage-collection
and/or stack-shifts while foreign code is active, for example during a
callback from C.
A term reference is a C unsigned long, representing the offset of a
variable on the Prolog environment-stack. A foreign function is passed
term references for the predicate-arguments, one for each argument. If
references for intermediate results are needed, such references may be
created using PL_new_term_ref() or PL_new_term_refs(). These references
normally live till the foreign function returns control back to Prolog.
Their scope can be explicitly limited using PL_open_foreign_frame() and
PL_close_foreign_frame()/PL_discard_foreign_frame().
A term_t always refers to a valid Prolog term (variable, atom, integer,
float or compound term). A term lives either until backtracking
takes us back to a point before the term was created, the garbage
collector has collected the term or the term was created after a
PL_open_foreign_frame()and PL_discard_foreign_frame()has been called.
The foreign-interface functions can either _r_e_a_d, _u_n_i_f_y or _w_r_i_t_e to
term-references. In the this document we use the following notation
for arguments of type term_t:
term_t +t Accessed in read-mode. The `+'
indicates the argument is `input'.
term_t -t Accessed in write-mode.
term_t ?t Accessed in unify-mode.
Term references are obtained in any of the following ways.
o _P_a_s_s_e_d _a_s _a_r_g_u_m_e_n_t
The C-functions implementing foreign predicates are passed their
arguments as term-references. These references may be read or
unified. Writing to these variables causes undefined behaviour.
o _C_r_e_a_t_e_d _b_y PL_new_term_ref()
A term created by PL_new_term_ref() is normally used to build
temporary terms or be written by one of the interface functions.
For example, PL_get_arg() writes a reference to the term-argument
in its last argument.
o _C_r_e_a_t_e_d _b_y PL_new_term_refs(_i_n_t _n)
This function returns a set of term refs with the same
characteristics as PL_new_term_ref(). See PL_open_query().
o _C_r_e_a_t_e_d _b_y PL_copy_term_ref(_t_e_r_m___t _t)
Creates a new term-reference to the same term as the argument. The
term may be written to. See figure 6.3.
Term-references can safely be copied to other C-variables of type
term_t, but all copies will always refer to the same term.
term_t PPLL__nneeww__tteerrmm__rreeff()
Return a fresh reference to a term. The reference is allocated
on the _l_o_c_a_l stack. Allocating a term-reference may trigger a
stack-shift on machines that cannot use sparse-memory management
for allocation the Prolog stacks. The returned reference describes
a variable.
term_t PPLL__nneeww__tteerrmm__rreeffss(_i_n_t _n)
Return _n new term references. The first term-reference is
returned. The others are _t +1, _t +2, etc. There are two reasons
for using this function. PL_open_query()expects the arguments as
a set of consecutive term references and _v_e_r_y time-critical code
requiring a number of term-references can be written as:
pl_mypredicate(term_t a0, term_t a1)
{ term_t t0 = PL_new_term_refs(2);
term_t t1 = t0+1;
...
}
term_t PPLL__ccooppyy__tteerrmm__rreeff(_t_e_r_m___t _f_r_o_m)
Create a new term reference and make it point initially to the same
term as _f_r_o_m. This function is commonly used to copy a predicate
argument to a term reference that may be written.
void PPLL__rreesseett__tteerrmm__rreeffss(_t_e_r_m___t _a_f_t_e_r)
Destroy all term references that have been created after _a_f_t_e_r,
including _a_f_t_e_r itself. Any reference to the invalidated term
references after this call results in undefined behaviour.
Note that returning from the foreign context to Prolog will
reclaim all references used in the foreign context. This call
is only necessary if references are created inside a loop that
never exits back to Prolog. See also PL_open_foreign_frame(),
PL_close_foreign_frame() and PL_discard_foreign_frame().
66..55..11..11 IInntteerraaccttiioonn wwiitthh tthhee ggaarrbbaaggee ccoolllleeccttoorr aanndd ssttaacckk--sshhiifftteerr
Prolog implements two mechanisms for avoiding stack overflow: garbage
collection and stack expansion. On machines that allow for it, Prolog
will use virtual memory management to detect stack overflow and expand
the runtime stacks. On other machines Prolog will reallocate the
stacks and update all pointers to them. To do so, Prolog needs to know
which data is referenced by C-code. As all Prolog data known by C is
referenced through term references (term_t), Prolog has all information
necessary to perform its memory management without special precautions
from the C-programmer.
66..55..22 OOtthheerr ffoorreeiiggnn iinntteerrffaaccee ttyyppeess
aattoomm__tt An atom in Prologs internal representation. Atoms are pointers
to an opaque structure. They are a unique representation for
represented text, which implies that atom A represents the same
text as atom B if-and-only-if A and B are the same pointer.
Atoms are the central representation for textual constants in
Prolog The transformation of C a character string to an atom
implies a hash-table lookup. If the same atom is needed often, it
is advised to store its reference in a global variable to avoid
repeated lookup.
ffuunnccttoorr__tt A functor is the internal representation of a name/arity
pair. They are used to find the name and arity of a compound term
as well as to construct new compound terms. Like atoms they live
for the whole Prolog session and are unique.
pprreeddiiccaattee__tt Handle to a Prolog predicate. Predicate handles live
forever (although they can loose their definition).
qqiidd__tt Query Identifier. Used by
PL_open_query()/PL_next_solution()/PL_close_query() to handle back-
tracking from C.
ffiidd__tt Frame Identifier. Used by
PL_open_foreign_frame()/PL_close_foreign_frame().
mmoodduullee__tt A module is a unique handle to a Prolog module. Modules are
used only to call predicates in a specific module.
ffoorreeiiggnn__tt Return type for a C-function implementing a Prolog predicate.
ccoonnttrrooll__tt Passed as additional argument to non-deterministic foreign
functions. See PL_retry*() and PL_foreign_context*().
iinnssttaallll__tt Type for the install() and uninstall() functions of shared or
dynamic link libraries. See secrefshlib.
66..66 TThhee FFoorreeiiggnn IInncclluuddee FFiillee
66..66..11 AArrgguummeenntt PPaassssiinngg aanndd CCoonnttrrooll
If Prolog encounters a foreign predicate at run time it will call
a function specified in the predicate definition of the foreign
predicate. The arguments 1;:::; <_a_r_i_t_y>pass the Prolog arguments to the
goal as Prolog terms. Foreign functions should be declared of type
foreign_t. Deterministic foreign functions have two alternatives to
return control back to Prolog:
_v_o_i_d PPLL__ssuucccceeeedd(())
Succeed deterministically. PL_succeed is defined as return TRUE.
_v_o_i_d PPLL__ffaaiill(())
Fail and start Prolog backtracking. PL_fail is defined as
return FALSE.
66..66..11..11 NNoonn--ddeetteerrmmiinniissttiicc FFoorreeiiggnn PPrreeddiiccaatteess
By default foreign predicates are deterministic. Using the
PL_FA_NONDETERMINISTIC attribute (see PL_register_foreign()) it is
possible to register a predicate as a non-deterministic predicate.
Writing non-deterministic foreign predicates is slightly more
complicated as the foreign function needs context information for
generating the next solution. Note that the same foreign function
should be prepared to be simultaneously active in more than one
goal. Suppose the natural_number_below_n/2 is a non-deterministic
foreign predicate, backtracking over all natural numbers lower than the
first argument. Now consider the following predicate:
quotient_below_n(Q, N) :-
natural_number_below_n(N, N1),
natural_number_below_n(N, N2),
Q =:= N1 / N2, !.
In this predicate the function natural_number_below_n/2 simultaneously
generates solutions for both its invocations.
Non-deterministic foreign functions should be prepared to handle three
different calls from Prolog:
o _I_n_i_t_i_a_l _c_a_l_l _(PL_FIRST_CALL_)
Prolog has just created a frame for the foreign function and asks
it to produce the first answer.
o _R_e_d_o _c_a_l_l _(PL_REDO_)
The previous invocation of the foreign function associated with the
current goal indicated it was possible to backtrack. The foreign
function should produce the next solution.
o _T_e_r_m_i_n_a_t_e _c_a_l_l _(PL_CUTTED_)
The choice point left by the foreign function has been destroyed by
a cut. The foreign function is given the opportunity to clean the
environment.
Both the context information and the type of call is provided
by an argument of type control_t appended to the argument list
for deterministic foreign functions. The macro PL_foreign_control()
extracts the type of call from the control argument. The
foreign function can pass a context handle using the PL_retry*()
macros and extract the handle from the extra argument using the
PL_foreign_context*() macro.
_v_o_i_d PPLL__rreettrryy((_l_o_n_g))
The foreign function succeeds while leaving a choice point. On
backtracking over this goal the foreign function will be called
again, but the control argument now indicates it is a `Redo' call
and the macro PL_foreign_context() will return the handle passed
via PL_retry(). This handle is a 30 bits signed value (two bits
are used for status indication).
_v_o_i_d PPLL__rreettrryy__aaddddrreessss((_v_o_i_d _*))
As PL_retry(), but ensures an address as returned by malloc() is
correctly recovered by PL_foreign_context_address().
_i_n_t PPLL__ffoorreeiiggnn__ccoonnttrrooll((_c_o_n_t_r_o_l___t))
Extracts the type of call from the control argument. The return
values are described above. Note that the function should be
prepared to handle the PL_CUTTED case and should be aware that the
other arguments are not valid in this case.
_l_o_n_g PPLL__ffoorreeiiggnn__ccoonntteexxtt((_c_o_n_t_r_o_l___t))
Extracts the context from the context argument. In the call type
is PL_FIRST_CALL the context value is 0L. Otherwise it is the value
returned by the last PL_retry() associated with this goal (both if
the call type is PL_REDO as PL_CUTTED).
_v_o_i_d _* PPLL__ffoorreeiiggnn__ccoonntteexxtt__aaddddrreessss((_c_o_n_t_r_o_l___t))
Extracts an address as passed in by PL_retry_address().
Note: If a non-deterministic foreign function returns using PL_succeed
or PL_fail, Prolog assumes the foreign function has cleaned its
environment. NNoo call with control argument PL_CUTTED will follow.
The code of figure 6.2 shows a skeleton for a non-deterministic foreign
predicate definition.
typedef struct /* define a context structure */
{ ...
} context;
foreign_t
my_function(term_t a0, term_t a1, foreign_t handle)
{ struct context * ctxt;
switch( PL_foreign_control(handle) )
{ case PL_FIRST_CALL:
ctxt = malloc(sizeof(struct context));
...
PL_retry_address(ctxt);
case PL_REDO:
ctxt = PL_foreign_context_address(handle);
...
PL_retry_address(ctxt);
case PL_CUTTED:
free(ctxt);
PL_succeed;
}
}
Figure 6.2: Skeleton for non-deterministic foreign functions
66..66..22 AAttoommss aanndd ffuunnccttoorrss
The following functions provide for communication using atoms and
functors.
atom_t PPLL__nneeww__aattoomm(_c_o_n_s_t _c_h_a_r _*)
Return an atom handle for the given C-string. This function always
succeeds. The returned handle is valid as long as the atom is
referenced (see section 6.6.2.1).
const char* PPLL__aattoomm__cchhaarrss(_a_t_o_m___t _a_t_o_m)
Return a C-string for the text represented by the given atom. The
returned text will not be changed by Prolog. It is not allowed to
modify the contents, not even `temporary' as the string may reside
in read-only memory.
functor_t PPLL__nneeww__ffuunnccttoorr(_a_t_o_m___t _n_a_m_e_, _i_n_t _a_r_i_t_y)
Returns a _f_u_n_c_t_o_r _i_d_e_n_t_i_f_i_e_r, a handle for the name/arity pair.
The returned handle is valid for the entire Prolog session.
atom_t PPLL__ffuunnccttoorr__nnaammee(_f_u_n_c_t_o_r___t _f)
Return an atom representing the name of the given functor.
int PPLL__ffuunnccttoorr__aarriittyy(_f_u_n_c_t_o_r___t _f)
Return the arity of the given functor.
66..66..22..11 AAttoommss aanndd aattoomm--ggaarrbbaaggee ccoolllleeccttiioonn
With the introduction of atom-garbage collection in version 3.3.0,
atoms no longer have live as long as the process. Instead, their
lifetime is guaranteed only as long as they are referenced. In the
single-threaded version, atom garbage collections are only invoked at
the _c_a_l_l_-_p_o_r_t. In the multi-threaded version (see section 4.39, they
appear asynchronously, except for the invoking thread.
For dealing with atom garbage collection, two additional functions are
provided:
void PPLL__rreeggiisstteerr__aattoomm(_a_t_o_m___t _a_t_o_m)
Increment the reference count of the atom by one. PL_new_atom()
performs this automatically, returning an atom with a reference
count of at least one.
void PPLL__uunnrreeggiisstteerr__aattoomm(_a_t_o_m___t _a_t_o_m)
Decrement the reference count of the atom. If the reference-count
drops below zero, an assertion error is raised.
Please note that the following two calls are different with respect to
atom garbage collection:
PL_unify_atom_chars(t, "text");
PL_unify_atom(t, PL_new_atom("text"));
The latter increments the reference count of the atom text, which
effectively ensures the atom will never be collected. It is advised to
use the *_chars() or *_nchars() functions whenever applicable.
66..66..33 AAnnaallyyssiinngg TTeerrmmss vviiaa tthhee FFoorreeiiggnn IInntteerrffaaccee
Each argument of a foreign function (except for the control argument)
is of type term_t, an opaque handle to a Prolog term. Three groups of
functions are available for the analysis of terms. The first just
validates the type, like the Prolog predicates var/1, atom/1, etc and
are called PL_is_*(). The second group attempts to translate the
argument into a C primitive type. These predicates take a term_t and a
pointer to the appropriate C-type and return TRUE or FALSE depending on
successful or unsuccessful translation. If the translation fails, the
pointed-to data is never modified.
66..66..33..11 TTeessttiinngg tthhee ttyyppee ooff aa tteerrmm
int PPLL__tteerrmm__ttyyppee(_t_e_r_m___t)
Obtain the type of a term, which should be a term returned by
one of the other interface predicates or passed as an argument.
The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functions
PL_ge_t*() also validate the type and thus the two sections below
are equivalent.
if ( PL_is_atom(t) )
{ char *s;
PL_get_atom_chars(t, &s);
...;
}
or
char *s;
if ( PL_get_atom_chars(t, &s) )
{ ...;
}
___________________________________________________________________
| PL_VARIABLE |An unbound variable. The value of term|
| |as such is a unique identifier for the|
| |variable. |
| PL_ATOM |A Prolog atom. |
| PL_STRING |A Prolog string. |
| PL_INTEGER |A Prolog integer. |
| PL_FLOAT |A Prolog floating point number. |
| PL_TERM |A compound term. Note that a list is a|
|________________________|compound_term_./2._______________________|
The functions PL_is_<_t_y_p_e> are an alternative to PL_term_type(). The test
PL_is_variable(_t_e_r_m) is equivalent to PL_term_type(_t_e_r_m)== PL_VARIABLE,
but the first is considerably faster. On the other hand, using a
switch over PL_term_type() is faster and more readable then using an
if-then-else using the functions below. All these functions return
either TRUE or FALSE.
int PPLL__iiss__vvaarriiaabbllee(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a variable.
int PPLL__iiss__aattoomm(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an atom.
int PPLL__iiss__ssttrriinngg(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a string.
int PPLL__iiss__iinntteeggeerr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an integer.
int PPLL__iiss__ffllooaatt(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a float.
int PPLL__iiss__ccoommppoouunndd(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term.
int PPLL__iiss__ffuunnccttoorr(_t_e_r_m___t_, _f_u_n_c_t_o_r___t)
Returns non-zero if _t_e_r_m is compound and its functor is _f_u_n_c_t_o_r.
This test is equivalent to PL_get_functor(), followed by testing
the functor, but easier to write and faster.
int PPLL__iiss__lliisstt(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term with functor ./2 or the
atom [].
int PPLL__iiss__aattoommiicc(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is atomic (not variable or compound).
int PPLL__iiss__nnuummbbeerr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an integer or float.
66..66..33..22 RReeaaddiinngg ddaattaa ffrroomm aa tteerrmm
The functions PL_get_*() read information from a Prolog term. Most of
them take two arguments. The first is the input term and the second is
a pointer to the output value or a term-reference.
int PPLL__ggeett__aattoomm(_t_e_r_m___t _+_t_, _a_t_o_m___t _*_a)
If _t is an atom, store the unique atom identifier over _a. See also
PL_atom_chars() and PL_new_atom(). If there is no need to access
the data (characters) of an atom, it is advised to manipulate atoms
using their handle. As the atom is referenced by _t, it will live
at least as long as _t does. If longer live-time is required, the
atom should be locked using PL_register_atom().
int PPLL__ggeett__aattoomm__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s)
If _t is an atom, store a pointer to a 0-terminated C-string in _s.
It is explicitly nnoott allowed to modify the contents of this string.
Some built-in atoms may have the string allocated in read-only
memory, so `temporary manipulation' can cause an error.
int PPLL__ggeett__ssttrriinngg__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s_, _i_n_t _*_l_e_n)
If _t is a string object, store a pointer to a 0-terminated
C-string in _s and the length of the string in _l_e_n. Note that
this pointer is invalidated by backtracking, garbage-collection and
stack-shifts, so generally the only save operations are to pass it
immediately to a C-function that doesn't involve Prolog.
int PPLL__ggeett__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Convert the argument term _t to a 0-terminated C-string. _f_l_a_g_s is
a bitwise disjunction from two groups of constants. The first
specifies which term-types should converted and the second how the
argument is stored. Below is a specification of these constants.
BUF_RING implies, if the data is not static (as from an atom), the
data is copied to the next buffer from a ring of 16 buffers. This
is a convenient way of converting multiple arguments passed to a
foreign predicate to C-strings. If BUF_MALLOC is used, the data
must be freed using free() when not needed any longer.
___________________________________________________________________
| CVT_ATOM |Convert if term is an atom |
| CVT_STRING |Convert if term is a string |
| CVT_LIST |Convert if term is a list of integers|
| |between 1 and 255 |
| CVT_INTEGER |Convert if term is an integer (using %d) |
| CVT_FLOAT |Convert if term is a float (using %f) |
| CVT_NUMBER |Convert if term is a integer or float |
| CVT_ATOMIC |Convert if term is atomic |
| CVT_VARIABLE |Convert variable to print-name |
| CVT_WRITE |Convert any term that is not converted|
| |by any of the other flags using write/1.|
| |If no BUF_* is provided, BUF_RING is|
| |implied. |
| CVT_ALL |Convert if term is any of the above,|
|________________________|except_for_CVT_VARIABLE_and_CVT_WRITE____|
| BUF_DISCARDABLE |Data must copied immediately |
| BUF_RING |Data is stored in a ring of buffers |
| BUF_MALLOC |Data is copied to a new buffer returned|
|________________________|by_malloc(3)_____________________________|
int PPLL__ggeett__lliisstt__cchhaarrss(_+_t_e_r_m___t _l_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Same as PL_get_chars(_l_, _s_, _C_V_T___L_I_S_T___f_l_a_g_s), provided _f_l_a_g_s contains
no of the CVT_* flags.
int PPLL__ggeett__iinntteeggeerr(_+_t_e_r_m___t _t_, _i_n_t _*_i)
If _t is a Prolog integer, assign its value over _i. On 32-bit
machines, this is the same as PL_get_long(), but avoids a warning
from the compiler. See also PL_get_long().
int PPLL__ggeett__lloonngg(_t_e_r_m___t _+_t_, _l_o_n_g _*_i)
If _t is a Prolog integer, assign its value over _i. Note that
Prolog integers have limited value-range. If _t is a floating point
number that can be represented as a long, this function succeeds as
well.
int PPLL__ggeett__ppooiinntteerr(_t_e_r_m___t _+_t_, _v_o_i_d _*_*_p_t_r)
In the current system, pointers are represented by Prolog
integers, but need some manipulation to make sure they do
not get truncated due to the limited Prolog integer range.
PL_put_pointer()/PL_get_pointer() guarantees pointers in the range
of malloc() are handled without truncating.
int PPLL__ggeett__ffllooaatt(_t_e_r_m___t _+_t_, _d_o_u_b_l_e _*_f)
If _t is a float or integer, its value is assigned over _f.
int PPLL__ggeett__ffuunnccttoorr(_t_e_r_m___t _+_t_, _f_u_n_c_t_o_r___t _*_f)
If _t is compound or an atom, the Prolog representation of
the name-arity pair will be assigned over _f. See also
PL_get_name_arity() and PL_is_functor().
int PPLL__ggeett__nnaammee__aarriittyy(_t_e_r_m___t _+_t_, _a_t_o_m___t _*_n_a_m_e_, _i_n_t _*_a_r_i_t_y)
If _t is compound or an atom, the functor-name will be assigned
over _n_a_m_e and the arity over _a_r_i_t_y. See also PL_get_functor() and
PL_is_functor().
int PPLL__ggeett__mmoodduullee(_t_e_r_m___t _+_t_, _m_o_d_u_l_e___t _*_m_o_d_u_l_e)
If _t is an atom, the system will lookup or create the corresponding
module and assign an opaque pointer to it over _m_o_d_u_l_e,.
int PPLL__ggeett__aarrgg(_i_n_t _i_n_d_e_x_, _t_e_r_m___t _+_t_, _t_e_r_m___t _-_a)
If _t is compound and index is between 1 and arity (including),
assign _a with a term-reference to the argument.
int _PPLL__ggeett__aarrgg(_i_n_t _i_n_d_e_x_, _t_e_r_m___t _+_t_, _t_e_r_m___t _-_a)
Same as PL_get_arg(), but no checking is performed, nor whether _t
is actually a term, nor whether _i_n_d_e_x is a valid argument-index.
66..66..33..33 EExxcchhaannggiinngg tteexxtt uussiinngg lleennggtthh aanndd ssttrriinngg
All internal text-representation of SWI-Prolog is represented using
char * plus length and allow for _0_-_b_y_t_e_s in them. The foreign library
supports this by implementing a *_nchars() function for each applicable
*_chars() function. Below we briefly present the signatures of these
functions. For full documentation consult the *_chars() function.
int PPLL__ggeett__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_h_a_r _*_*_s)
int PPLL__ggeett__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_h_a_r _*_*_s)
int PPLL__ggeett__nncchhaarrss(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _i_n_t _f_l_a_g_s)
int PPLL__ppuutt__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
int PPLL__ppuutt__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
int PPLL__ppuutt__lliisstt__nnccooddeess(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
int PPLL__ppuutt__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
int PPLL__uunniiffyy__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
int PPLL__uunniiffyy__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
int PPLL__uunniiffyy__lliisstt__nnccooddeess(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
int PPLL__uunniiffyy__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
In addition, the following functions are available for creating and
inspecting atoms:
atom_t PPLL__nneeww__aattoomm__nncchhaarrss(_u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
Create a new atom as PL_new_atom(), but from length and characters.
const char * PPLL__aattoomm__nncchhaarrss(_a_t_o_m___t _a_, _u_n_s_i_g_n_e_d _i_n_t _*_l_e_n)
Extract text and length of an atom.
66..66..33..44 RReeaaddiinngg aa lliisstt
The functions from this section are intended to read a Prolog list from
C. Suppose we expect a list of atoms, the following code will print the
atoms, each on a line:
foreign_t
pl_write_atoms(term_t l)
{ term_t head = PL_new_term_ref(); /* variable for the elements */
term_t list = PL_copy_term_ref(l); /* copy as we need to write */
while( PL_get_list(list, head, list) )
{ char *s;
if ( PL_get_atom_chars(head, &s) )
Sprintf("%s\n", s);
else
PL_fail;
}
return PL_get_nil(list); /* test end for [] */
}
int PPLL__ggeett__lliisstt(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_h_, _t_e_r_m___t _-_t)
If _l is a list and not [] assign a term-reference to the head to _h
and to the tail to _t.
int PPLL__ggeett__hheeaadd(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_h)
If _l is a list and not [] assign a term-reference to the head to _h.
int PPLL__ggeett__ttaaiill(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_t)
If _l is a list and not [] assign a term-reference to the tail to _t.
int PPLL__ggeett__nniill(_t_e_r_m___t _+_l)
Succeeds if represents the atom [].
66..66..33..55 AAnn eexxaammppllee:: ddeeffiinniinngg write/1 iinn CC
Figure 6.3 shows a simplified definition of write/1 to illustrate
the described functions. This simplified version does not deal with
operators. It is called display/1, because it mimics closely the
behaviour of this Edinburgh predicate.
foreign_t
pl_display(term_t t)
{ functor_t functor;
int arity, len, n;
char *s;
switch( PL_term_type(t) )
{ case PL_VARIABLE:
case PL_ATOM:
case PL_INTEGER:
case PL_FLOAT:
PL_get_chars(t, &s, CVT_ALL);
Sprintf("%s", s);
break;
case PL_STRING:
PL_get_string_chars(t, &s, &len);
Sprintf("\"%s\"", s);
break;
case PL_TERM:
{ term_t a = PL_new_term_ref();
PL_get_name_arity(t, &name, &arity);
Sprintf("%s(", PL_atom_chars(name));
for(n=1; n<=arity; n++)
{ PL_get_arg(n, t, a);
if ( n > 1 )
Sprintf(", ");
pl_display(a);
}
Sprintf(")");
break;
default:
PL_fail; /* should not happen */
}
PL_succeed;
}
Figure 6.3: A Foreign definition of display/1
66..66..44 CCoonnssttrruuccttiinngg TTeerrmmss
Terms can be constructed using functions from the PL_put_*() and
PL_cons_*() families. This approach builds the term `inside-out',
starting at the leaves and subsequently creating compound terms.
Alternatively, terms may be created `top-down', first creating
a compound holding only variables and subsequently unifying the
arguments. This section discusses functions for the first approach.
This approach is generally used for creating arguments for PL_call()
and PL_open_query.
void PPLL__ppuutt__vvaarriiaabbllee(_t_e_r_m___t _-_t)
Put a fresh variable in the term. The new variable lives on the
global stack. Note that the initial variable lives on the local
stack and is lost after a write to the term-references. After
using this function, the variable will continue to live.
void PPLL__ppuutt__aattoomm(_t_e_r_m___t _-_t_, _a_t_o_m___t _a)
Put an atom in the term reference from a handle. See also
PL_new_atom() and PL_atom_chars().
void PPLL__ppuutt__aattoomm__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put an atom in the term-reference constructed from the 0-terminated
string. The string itself will never be references by Prolog after
this function.
void PPLL__ppuutt__ssttrriinngg__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a zero-terminated string in the term-reference. The data will
be copied. See also PL_put_string_nchars().
void PPLL__ppuutt__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _-_t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a string, represented by a length/start pointer pair in the
term-reference. The data will be copied. This interface can deal
with 0-bytes in the string. See also section 6.6.18.
void PPLL__ppuutt__lliisstt__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a list of ASCII values in the term-reference.
void PPLL__ppuutt__iinntteeggeerr(_t_e_r_m___t _-_t_, _l_o_n_g _i)
Put a Prolog integer in the term reference.
void PPLL__ppuutt__ppooiinntteerr(_t_e_r_m___t _-_t_, _v_o_i_d _*_p_t_r)
Put a Prolog integer in the term-reference. Provided ptr is in the
`malloc()-area', PL_get_pointer() will get the pointer back.
void PPLL__ppuutt__ffllooaatt(_t_e_r_m___t _-_t_, _d_o_u_b_l_e _f)
Put a floating-point value in the term-reference.
void PPLL__ppuutt__ffuunnccttoorr(_t_e_r_m___t _-_t_, _f_u_n_c_t_o_r___t _f_u_n_c_t_o_r)
Create a new compound term from _f_u_n_c_t_o_r and bind _t to this term.
All arguments of the term will be variables. To create a term with
instantiated arguments, either instantiate the arguments using the
PL_unify_*() functions or use PL_cons_functor().
void PPLL__ppuutt__lliisstt(_t_e_r_m___t _-_l)
Same as PL_put_functor(_l_, _P_L___n_e_w___f_u_n_c_t_o_r_(_P_L___n_e_w___a_t_o_m_(_"_._"), 2)).
void PPLL__ppuutt__nniill(_t_e_r_m___t _-_l)
Same as PL_put_atom_chars(_"_[_]_").
void PPLL__ppuutt__tteerrmm(_t_e_r_m___t _-_t_1_, _t_e_r_m___t _+_t_2)
Make _t_1 point to the same term as _t_2.
void PPLL__ccoonnss__ffuunnccttoorr(_t_e_r_m___t _-_h_, _f_u_n_c_t_o_r___t _f_, _._._.)
Create a term, whose arguments are filled from variable argument
list holding the same number of term_t objects as the arity of the
functor. To create the term animal(gnu, 50), use:
{ term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
term_t t = PL_new_term_ref();
functor_t animal2;
/* animal2 is a constant that may be bound to a global
variable and re-used
*/
animal2 = PL_new_functor(PL_new_atom("animal"), 2);
PL_put_atom_chars(a1, "gnu");
PL_put_integer(a2, 50);
PL_cons_functor(t, animal2, a1, a2);
}
After this sequence, the term-references _a_1 and _a_2 may be used for
other purposes.
void PPLL__ccoonnss__ffuunnccttoorr__vv(_t_e_r_m___t _-_h_, _f_u_n_c_t_o_r___t _f_, _t_e_r_m___t _a_0)
Creates a compound term like PL_cons_functor(), but _a_0 is an array
of term references as returned by PL_new_term_refs(). The length
of this array should match the number of arguments required by the
functor.
void PPLL__ccoonnss__lliisstt(_t_e_r_m___t _-_l_, _t_e_r_m___t _+_h_, _t_e_r_m___t _+_t)
Create a list (cons-) cell in _l from the head and tail. The code
below creates a list of atoms from a char **. The list is built
tail-to-head. The PL_unify_*() functions can be used to build a
list head-to-tail.
void
put_list(term_t l, int n, char **words)
{ term_t a = PL_new_term_ref();
PL_put_nil(l);
while( --n >= 0 )
{ PL_put_atom_chars(a, words[n]);
PL_cons_list(l, a, l);
}
}
Note that _l can be redefined within a PL_cons_list call as shown
here because operationally its old value is consumed before its new
value is set.
66..66..55 UUnniiffyyiinngg ddaattaa
The functions of this sections _u_n_i_f_y terms with other terms or
translated C-data structures. Except for PL_unify(), the functions of
this section are specific to SWI-Prolog. They have been introduced
to make translation of old code easier, but also because they provide
for a faster mechanism for returning data to Prolog that requires less
term-references. Consider the case where we want a foreign function to
return the host name of the machine Prolog is running on. Using the
PL_get_*() and PL_put_*() functions, the code becomes:
foreign_t
pl_hostname(term_t name)
{ char buf[100];
if ( gethostname(buf, sizeof(buf)) )
{ term_t tmp = PL_new_term_ref();
PL_put_atom_chars(tmp, buf);
return PL_unify(name, buf);
}
PL_fail;
}
Using PL_unify_atom_chars(), this becomes:
foreign_t
pl_hostname(term_t name)
{ char buf[100];
if ( gethostname(buf, sizeof(buf)) )
return PL_unify_atom_chars(name, buf);
PL_fail;
}
int PPLL__uunniiffyy(_t_e_r_m___t _?_t_1_, _t_e_r_m___t _?_t_2)
Unify two Prolog terms and return non-zero on success.
int PPLL__uunniiffyy__aattoomm(_t_e_r_m___t _?_t_, _a_t_o_m___t _a)
Unify _t with the atom _a and return non-zero on success.
int PPLL__uunniiffyy__aattoomm__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with an atom created from _c_h_a_r_s and return non-zero on
success.
int PPLL__uunniiffyy__lliisstt__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a list of ASCII characters constructed from _c_h_a_r_s.
void PPLL__uunniiffyy__ssttrriinngg__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a Prolog string object created from the zero-
terminated string _c_h_a_r_s. The data will be copied. See also
PL_unify_string_nchars().
void PPLL__uunniiffyy__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _?_t_, _u_n_s_i_g_n_e_d _i_n_t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a Prolog string object created from the
string created from the _l_e_n/_c_h_a_r_s pair. The data will be copied.
This interface can deal with 0-bytes in the string. See also
section 6.6.18.
int PPLL__uunniiffyy__iinntteeggeerr(_t_e_r_m___t _?_t_, _l_o_n_g _n)
Unify _t with a Prolog integer from _n.
int PPLL__uunniiffyy__ffllooaatt(_t_e_r_m___t _?_t_, _d_o_u_b_l_e _f)
Unify _t with a Prolog float from _f.
int PPLL__uunniiffyy__ppooiinntteerr(_t_e_r_m___t _?_t_, _v_o_i_d _*_p_t_r)
Unify _t with a Prolog integer describing the pointer. See also
PL_put_pointer() and PL_get_pointer().
int PPLL__uunniiffyy__ffuunnccttoorr(_t_e_r_m___t _?_t_, _f_u_n_c_t_o_r___t _f)
If _t is a compound term with the given functor, just succeed. If
it is unbound, create a term and bind the variable, else fails.
Not that this function does not create a term if the argument is
already instantiated.
int PPLL__uunniiffyy__lliisstt(_t_e_r_m___t _?_l_, _t_e_r_m___t _-_h_, _t_e_r_m___t _-_t)
Unify _l with a list-cell (./2). If successful, write a reference
to the head of the list to _h and a reference to the tail of the
list in _t. This reference may be used for subsequent calls to
this function. Suppose we want to return a list of atoms from
a char **. We could use the example described by PL_put_list(),
followed by a call to PL_unify(), or we can use the code below. If
the predicate argument is unbound, the difference is minimal (the
code based on PL_put_list() is probably slightly faster). If the
argument is bound, the code below may fail before reaching the end
of the word-list, but even if the unification succeeds, this code
avoids a duplicate (garbage) list and a deep unification.
foreign_t
pl_get_environ(term_t env)
{ term_t l = PL_copy_term_ref(env);
term_t a = PL_new_term_ref();
extern char **environ;
char **e;
for(e = environ; *e; e++)
{ if ( !PL_unify_list(l, a, l) ||
!PL_unify_atom_chars(a, *e) )
PL_fail;
}
return PL_unify_nil(l);
}
int PPLL__uunniiffyy__nniill(_t_e_r_m___t _?_l)
Unify _l with the atom [].
int PPLL__uunniiffyy__aarrgg(_i_n_t _i_n_d_e_x_, _t_e_r_m___t _?_t_, _t_e_r_m___t _?_a)
Unifies the _i_n_d_e_x_-_t_h argument (1-based) of _t with _a.
int PPLL__uunniiffyy__tteerrmm(_t_e_r_m___t _?_t_, _._._.)
Unify _t with a (normally) compound term. The remaining arguments
is a sequence of a type identifier, followed by the required
arguments. This predicate is an extension to the Quintus
and SICStus foreign interface from which the SWI-Prolog foreign
interface has been derived, but has proved to be a powerful and
comfortable way to create compound terms from C. Due to the vararg
packing/unpacking and the required type-switching this interface is
slightly slower than using the primitives. Please note that some
bad C-compilers have fairly low limits on the number of arguments
that may be passed to a function.
Special attention is required when passing numbers. C `promotes'
any integral smaller than int to int. I.e. the types char,
short and int are all passed as int. In addition, on most
32-bit platforms int and long are the same. Upto version 4.0.5,
only PL_INTEGER could be specified which was taken from the stack
as long. Such code fails when passing small integral types on
machines where int is smaller than long. It is advised to use
PL_SHORT, PL_INT or PL_LONG as appropriate. Similar, C compilers
promote float to double and therefore PL_FLOAT and PL_DOUBLE are
synonyms.
The type identifiers are:
PL_VARIABLE nnoonnee
No op. Used in arguments of PL_FUNCTOR.
PL_ATOM aattoomm__tt
Unify the argument with an atom, as in PL_unify_atom().
PL_SHORT sshhoorrtt
Unify the argument with an integer, as in PL_unify_integer().
As short is promoted to int, PL_SHORT is a synonym for PL_INT.
PL_INT iinntt
Unify the argument with an integer, as in PL_unify_integer().
PL_LONG lloonngg
Unify the argument with an integer, as in PL_unify_integer().
PL_INTEGER lloonngg
Unify the argument with an integer, as in PL_unify_integer().
PL_DOUBLE ddoouubbllee
Unify the argument with a float, as in PL_unify_float().
Note that, as the argument is passed using the C vararg
conventions, a float must be casted to a double explicitly.
PL_FLOAT ddoouubbllee
Unify the argument with a float, as in PL_unify_float().
PL_POINTER vvooiidd **
Unify the argument with a pointer, as in PL_unify_pointer().
PL_STRING ccoonnsstt cchhaarr **
Unify the argument with a string object, as in
PL_unify_string_chars().
PL_TERM tteerrmm__tt
Unify a subterm. Note this may the return value of a
PL_new_term_ref()call to get access to a variable.
PL_CHARS ccoonnsstt cchhaarr **
Unify the argument with an atom, constructed from the C char
*, as in PL_unify_atom_chars().
PL_FUNCTOR ffuunnccttoorr__tt,, ......
Unify the argument with a compound term. This specification
should be followed by exactly as many specifications as the
number of arguments of the compound term.
PL_FUNCTOR_CHARS ccoonnsstt cchhaarr **nnaammee,, iinntt aarriittyy,, ......
Create a functor from the given name and arity and then behave
as PL_FUNCTOR.
PL_LIST iinntt lleennggtthh,, ......
Create a list of the indicated length. The following
arguments contain the elements of the list.
For example, to unify an argument with the term language(dutch),
the following skeleton may be used:
static functor_t FUNCTOR_language1;
static void
init_constants()
{ FUNCTOR_language1 = PL_new_functor(PL_new_atom("language"), 1);
}
foreign_t
pl_get_lang(term_t r)
{ return PL_unify_term(r,
PL_FUNCTOR, FUNCTOR_language1,
PL_CHARS, "dutch");
}
install_t
install()
{ PL_register_foreign("get_lang", 1, pl_get_lang, 0);
init_constants();
}
int PPLL__cchhaarrss__ttoo__tteerrmm(_c_o_n_s_t _c_h_a_r _*_c_h_a_r_s_, _t_e_r_m___t _-_t)
Parse the string _c_h_a_r_s and put the resulting Prolog term into _t.
_c_h_a_r_s may or may not be closed using a Prolog full-stop (i.e., a
dot followed by a blank). Returns FALSE if a syntax error was
encountered and TRUE after successful completion. In addition to
returning FALSE, the exception-term is returned in _t on a syntax
error. See also term_to_atom/2.
The following example build a goal-term from a string and calls it.
int
call_chars(const char *goal)
{ fid_t fid = PL_open_foreign_frame();
term_t g = PL_new_term_ref();
BOOL rval;
if ( PL_string_to_term(goal, g) )
rval = PL_call(goal, NULL);
else
rval = FALSE;
PL_discard_foreign_frame(fid);
return rval;
}
...
call_chars("consult(load)");
...
char * PPLL__qquuoottee(_i_n_t _c_h_r_, _c_o_n_s_t _c_h_a_r _*_s_t_r_i_n_g)
Return a quoted version of _s_t_r_i_n_g. If _c_h_r is '\'', the result is a
quoted atom. If _c_h_r is '"', the result is a string. The result
string is stored in the same ring of buffers as described with the
BUF_RING argument of PL_get_chars();
In the current implementation, the string is surrounded by _c_h_r
and any occurence of _c_h_r is doubled. In the future the
behaviour will depend on the character_escape prolog-flag. See
current_prolog_flag/2.
66..66..66 CCaalllliinngg PPrroolloogg ffrroomm CC
The Prolog engine can be called from C. There are two interfaces
for this. For the first, a term is created that could be used
as an argument to call/1 and next PL_call() is used to call Prolog.
This system is simple, but does not allow to inspect the different
answers to a non-deterministic goal and is relatively slow as the
runtime system needs to find the predicate. The other interface
is based on PL_open_query(), PL_next_solution() and PL_cut_query() or
PL_close_query(). This mechanism is more powerful, but also more
complicated to use.
66..66..66..11 PPrreeddiiccaattee rreeffeerreenncceess
This section discusses the functions used to communicate about
predicates. Though a Prolog predicate may defined or not, redefined,
etc., a Prolog predicate has a handle that is not destroyed, nor moved.
This handle is known by the type predicate_t.
predicate_t PPLL__pprreedd(_f_u_n_c_t_o_r___t _f_, _m_o_d_u_l_e___t _m)
Return a handle to a predicate for the specified name/arity in the
given module. This function always succeeds, creating a handle for
an undefined predicate if no handle was available.
predicate_t PPLL__pprreeddiiccaattee(_c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _c_o_n_s_t _c_h_a_r_* _m_o_d_u_l_e)
Same a PL_pred(), but provides a more convenient inter-
face to the C-programmer.
void PPLL__pprreeddiiccaattee__iinnffoo(_p_r_e_d_i_c_a_t_e___t _p_, _a_t_o_m___t _*_n_, _i_n_t _*_a_, _m_o_d_u_l_e___t _*_m)
Return information on the predicate _p. The name is stored over
_n, the arity over _a, while _m receives the definition module.
Note that the latter need not be the same as specified with
PL_predicate(). If the predicate was imported into the module
given to PL_predicate(), this function will return the module where
the predicate was defined.
66..66..66..22 IInniittiiaattiinngg aa qquueerryy ffrroomm CC
This section discusses the functions for creating and manipulating
queries from C. Note that a foreign context can have at most one active
query. This implies it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc.,
but it is nnoott allowed to open multiple queries and start generating
solutions for each of them by calling PL_next_solution(). Be sure to
call PL_cut_query() or PL_close_query() on any query you opened before
opening the next or returning control back to Prolog.
qid_t PPLL__ooppeenn__qquueerryy(_m_o_d_u_l_e___t _c_t_x_, _i_n_t _f_l_a_g_s_, _p_r_e_d_i_c_a_t_e___t _p_, _t_e_r_m___t _+_t_0)
Opens a query and returns an identifier for it. This function
always succeeds, regardless whether the predicate is defined or
not. _c_t_x is the _c_o_n_t_e_x_t _m_o_d_u_l_e of the goal. When NULL, the
context module of the calling context will be used, or user if
there is no calling context (as may happen in embedded systems).
Note that the context module only matters for _m_o_d_u_l_e___t_r_a_n_s_p_a_r_e_n_t
predicates. See context_module/1 and module_transparent/1. The _p
argument specifies the predicate, and should be the result of a
call to PL_pred() or PL_predicate(). Note that it is allowed to
store this handle as global data and reuse it for future queries.
The term-reference _t_0 is the first of a vector of term-references
as returned by PL_new_term_refs(_n).
The _f_l_a_g_s arguments provides some additional options concerning
debugging and exception handling. It is a bitwise or of the
following values:
PL_Q_NORMAL
Normal operation. The debugger inherits its settings from
the environment. If an exception occurs that is not handled
in Prolog, a message is printed and the tracer is started to
debug the error.
PL_Q_NODEBUG
Switch off the debugger while executing the goal. This option
is used by many calls to hook-predicates to avoid tracing the
hooks. An example is print/1 calling portray/1 from foreign
code.
PL_Q_CATCH_EXCEPTION
If an exception is raised while executing the goal, do not
report it, but make it available for PL_exception().
PL_Q_PASS_EXCEPTION
As PL_Q_CATCH_EXCEPTION, but do not invalidate the exception-
term while calling PL_close_query(). This option is
experimental.
The example below opens a query to the predicate is_a/2 to find the
ancestor of for some name.
char *
ancestor(const char *me)
{ term_t a0 = PL_new_term_refs(2);
static predicate_t p;
if ( !p )
p = PL_predicate("is_a", 2, "database");
PL_put_atom_chars(a0, me);
PL_open_query(NULL, PL_Q_NORMAL, p, a0);
...
}
int PPLL__nneexxtt__ssoolluuttiioonn(_q_i_d___t _q_i_d)
Generate the first (next) solution for the given query. The return
value is TRUE if a solution was found, or FALSE to indicate the
query could not be proven. This function may be called repeatedly
until it fails to generate all solutions to the query.
void PPLL__ccuutt__qquueerryy(_q_i_d)
Discards the query, but does not delete any of the data created by
the query. It just invalidate _q_i_d, allowing for a new call to
PL_open_query() in this context.
void PPLL__cclloossee__qquueerryy(_q_i_d)
As PL_cut_query(), but all data and bindings created by the query
are destroyed.
int PPLL__ccaallll__pprreeddiiccaattee(_m_o_d_u_l_e___t _m_, _i_n_t _f_l_a_g_s_, _p_r_e_d_i_c_a_t_e___t _p_r_e_d_, _t_e_r_m___t _+_t_0)
Shorthand for PL_open_query(), PL_next_solution(), PL_cut_query(),
generating a single solution. The arguments are the same as for
PL_open_query(), the return value is the same as PL_next_solution().
int PPLL__ccaallll(_t_e_r_m___t_, _m_o_d_u_l_e___t)
Call term just like the Prolog predicate once/1. _T_e_r_m is called in
the specified module, or in the context module if module_t = NULL.
Returns TRUE if the call succeeds, FALSE otherwise. Figure 6.4
shows an example to obtain the number of defined atoms. All checks
are omitted to improve readability.
66..66..77 DDiissccaarrddiinngg DDaattaa
The Prolog data created and term-references needed to setup the call
and/or analyse the result can in most cases be discarded right after
the call. PL_close_query() allows for destructing the data, while
leaving the term-references. The calls below may be used to destroy
term-references and data. See figure 6.4 for an example.
fid_t PPLL__ooppeenn__ffoorreeiiggnn__ffrraammee()
Created a foreign frame, holding a mark that allows the system
to undo bindings and destroy data created after it as well as
providing the environment for creating term-references. This
function is called by the kernel before calling a foreign
predicate.
void PPLL__cclloossee__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Discard all term-references created after the frame was opened.
All other Prolog data is retained. This function is called by the
kernel whenever a foreign function returns control back to Prolog.
void PPLL__ddiissccaarrdd__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Same as PL_close_foreign_frame(), but also undo all bindings made
since the open and destroy all Prolog data.
void PPLL__rreewwiinndd__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Undo all bindings and discard all term-references created since the
frame was created, but does not pop the frame. I.e. the same frame
can be rewinded multiple times, and must eventually be closed or
discarded.
It is obligatory to call either of the two closing functions to discard
a foreign frame. Foreign frames may be nested.
int
count_atoms()
{ fid_t fid = PL_open_foreign_frame();
term_t goal = PL_new_term_ref();
term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
functor_t s2 = PL_new_functor(PL_new_atom("statistics"), 2);
int atoms;
PL_put_atom_chars(a1, "atoms");
PL_cons_functor(goal, s2, a1, a2);
PL_call(goal, NULL); /* call it in current module */
PL_get_integer(a2, &atoms);
PL_discard_foreign_frame(fid);
return atoms;
}
Figure 6.4: Calling Prolog
66..66..88 FFoorreeiiggnn CCooddee aanndd MMoodduulleess
Modules are identified via a unique handle. The following functions
are available to query and manipulate modules.
module_t PPLL__ccoonntteexxtt()
Return the module identifier of the context module of the currently
active foreign predicate.
int PPLL__ssttrriipp__mmoodduullee(_t_e_r_m___t _+_r_a_w_, _m_o_d_u_l_e___t _*_m_, _t_e_r_m___t _-_p_l_a_i_n)
Utility function. If _r_a_w is a term, possibly holding the module
construct <_m_o_d_u_l_e>:<_r_e_s_t>this function will make _p_l_a_i_n a reference
to <_r_e_s_t> and fill _m_o_d_u_l_e _* with <_m_o_d_u_l_e>. For further nested
module constructs the inner most module is returned via _m_o_d_u_l_e
_*. If _r_a_w is not a module construct _a_r_g will simply be put in
_p_l_a_i_n. If _m_o_d_u_l_e _* is NULL it will be set to the context module.
Otherwise it will be left untouched. The following example shows
how to obtain the plain term and module if the default module is
the user module:
{ module m = PL_new_module(PL_new_atom("user"));
term_t plain = PL_new_term_ref();
PL_strip_module(term, &m, plain);
...
atom_t PPLL__mmoodduullee__nnaammee(_m_o_d_u_l_e___t)
Return the name of _m_o_d_u_l_e as an atom.
module_t PPLL__nneeww__mmoodduullee(_a_t_o_m___t _n_a_m_e)
Find an existing or create a new module with name specified by the
atom _n_a_m_e.
66..66..99 PPrroolloogg eexxcceeppttiioonnss iinn ffoorreeiiggnn ccooddee
This section discusses PL_exception(), PL_throw() and
PL_raise_exception(), the interface functions to detect and generate
Prolog exceptions from C-code. PL_throw() and PL_raise_exception()
from the C-interface to raise an exception from foreign code.
PL_throw() exploits the C-function longjmp() to return immediately to
the innermost PL_next_solution(). PL_raise_exception() registers the
exception term and returns FALSE. If a foreign predicate returns FALSE,
while and exception-term is registered a Prolog exception will be
raised by the virtual machine.
Calling these functions outside the context of a function implementing
a foreign predicate results in undefined behaviour.
PL_exception() may be used after a call to PL_next_solution() fails,
and returns a term reference to an exception term if an exception was
raised, and 0 otherwise.
If a C-function, implementing a predicate calls Prolog and detects
an exception using PL_exception(), it can handle this exception, or
return with the exception. Some caution is required though. It
is nnoott allowed to call PL_close_query() or PL_discard_foreign_frame()
afterwards, as this will invalidate the exception term. Below
is the code that calls a Prolog defined arithmetic function (see
arithmethic_function/1).
If PL_next_solution() succeeds, the result is analysed and translated
to a number, after which the query is closed and all Prolog data
created after PL_open_foreign_frame() is destroyed. On the other
hand, if PL_next_solution() fails and if an exception was raised,
just pass it. Otherwise generate an exception (PL_error() is an
internal call for building the standard error terms and calling
PL_raise_exception()). After this, the Prolog environment should be
discarded using PL_cut_query() and PL_close_foreign_frame() to avoid
invalidating the exception term.
static int
prologFunction(ArithFunction f, term_t av, Number r)
{ int arity = f->proc->definition->functor->arity;
fid_t fid = PL_open_foreign_frame();
qid_t qid;
int rval;
qid = PL_open_query(NULL, PL_Q_NORMAL, f->proc, av);
if ( PL_next_solution(qid) )
{ rval = valueExpression(av+arity-1, r);
PL_close_query(qid);
PL_discard_foreign_frame(fid);
} else
{ term_t except;
if ( (except = PL_exception(qid)) )
{ rval = PL_throw(except); /* pass exception */
} else
{ char *name = stringAtom(f->proc->definition->functor->name);
/* generate exception */
rval = PL_error(name, arity-1, NULL, ERR_FAILED, f->proc);
}
PL_cut_query(qid); /* donot destroy data */
PL_close_foreign_frame(fid); /* same */
}
return rval;
}
int PPLL__rraaiissee__eexxcceeppttiioonn(_t_e_r_m___t _e_x_c_e_p_t_i_o_n)
Generate an exception (as throw/1) and return FALSE. Below is an
example returning an exception from foreign predicate:
foreign_t
pl_hello(term_t to)
{ char *s;
if ( PL_get_atom_chars(to, &s) )
{ Sprintf("Hello \"%s\"\n", s);
PL_succeed;
} else
{ term_t except = PL_new_term_ref();
PL_unify_term(except,
PL_FUNCTOR_CHARS, "type_error", 2,
PL_CHARS, "atom",
PL_TERM, to);
return PL_raise_exception(except);
}
}
int PPLL__tthhrrooww(_t_e_r_m___t _e_x_c_e_p_t_i_o_n)
Similar to PL_raise_exception(), but returns using the C longjmp()
function to the innermost PL_next_solution().
term_t PPLL__eexxcceeppttiioonn(_q_i_d___t _q_i_d)
If PL_next_solution() fails, this can be due to normal failure
of the Prolog call, or because an exception was raised using
throw/1. This function returns a handle to the exception term if
an exception was raised, or 0 if the Prolog goal simply failed..
66..66..1100 FFoorreeiiggnn ccooddee aanndd PPrroolloogg tthhrreeaaddss
If SWI-Prolog has been build to support multi-threading (see
section 4.39), all foreign-code linked to Prolog should be thread-safe
(_r_e_e_n_t_r_a_n_t) or guarded in Prolog using with_mutex/2 from simultaneous
access from multiple Prolog threads. On Unix systems, this generally
implies the code should be compiled with the -D_REENTRANT flag passed
to the compiler. Please note that on many Unix systems not all
systemcalls and library-functions are thread-safe. Consult your manual
for details.
If you are using SWI-Prolog as an embedded engine in a multi-threaded
application you can access the Prolog engine from multiple threads by
creating an _e_n_g_i_n_e in each thread from which you call Prolog. Without
creating an engine, a thread can only use functions that do not use the
term_t type (for example PL_new_atom()).
PPlleeaassee nnoottee tthhaatt tthhee iinntteerrffaaccee bbeellooww wwiillll oonnllyy wwoorrkk iiff tthhrreeaaddiinngg iinn
yyoouurr aapppplliiccaattiioonn iiss bbaasseedd oonn tthhee ssaammee tthhrreeaadd--lliibbrraarryy aass uusseedd ttoo ccoommppiillee
SSWWII--PPrroolloogg..
int PPLL__tthhrreeaadd__sseellff()
Returns the integer Prolog identifier of the engine or -1 if the
calling thread has no Prolog engine. This function is also
provided in the single-threaded version of SWI-Prolog, where it
returns -2.
int PPLL__tthhrreeaadd__aattttaacchh__eennggiinnee(_P_L___t_h_r_e_a_d___a_t_t_r___t _*_a_t_t_r)
Creates a new Prolog engine in the calling thread. If the calling
thread already has an engine the reference count of the engine is
incremented. The _a_t_t_r argument can be NULL to create a thread with
default attributes. Otherwise it is a pointer to a structure with
the definition below. For any field with value `0', the default is
used.
typedef struct
{ unsigned long local_size; /* Stack sizes (K-bytes) */
unsigned long global_size;
unsigned long trail_size;
unsigned long argument_size;
char * alias; /* alias name */
} PL_thread_attr_t;
The structure may be destroyed after PL_thread_attach_engine() has
returned. If an error occurs, -1 is returned. If this Prolog is
not compiled for multi-threading, -2 is returned.
int PPLL__tthhrreeaadd__ddeessttrrooyy__eennggiinnee()
Destroy the Prolog engine in the calling thread. Only takes
effect if PL_thread_destroy_engine() is called as many times as
PL_thread_attach_engine() in this thread. Returns TRUE on success
and FALSE if the calling thread has no engine or this Prolog does
not support threads.
Please note that construction and destruction of engines are
relatively expensive operations. Only destroy an engine if
performance is not critical and memory is a critical resource.
The engine is automatically destroyed if the thread finishes,
regardless how many times PL_thread_attach_engine() has been called.
66..66..1111 MMiisscceellllaanneeoouuss
66..66..1111..11 TTeerrmm CCoommppaarriissoonn
int PPLL__ccoommppaarree(_t_e_r_m___t _t_1_, _t_e_r_m___t _t_2)
Compares two terms using the standard order of terms and returns
-1, 0 or 1. See also compare/3.
int PPLL__ssaammee__ccoommppoouunndd(_t_e_r_m___t _t_1_, _t_e_r_m___t _t_2)
Yields TRUE if _t_1 and _t_2 refer to physically the same compound term
and FALSE otherwise.
66..66..1111..22 RReeccoorrddeedd ddaattaabbaassee
In some applications it is useful to store and retreive Prolog terms
from C-code. For example, the XPCE graphical environment does this for
storing arbitrary Prolog data as slot-data of XPCE objects.
Please note that the returned handles have no meaning at the Prolog
level and the recorded terms are not visible from Prolog. The
functions PL_recorded() and PL_erase() are the only functions that can
operate on the stored term.
Two groups of functions are provided.The first group (PL_record() and
friends) store Prolog terms on the Prolog heap for retrieval during the
same session. These functions are also used by recorda/3 and friends.
The recorded database may be used to communicate Prolog terms between
threads.
record_t PPLL__rreeccoorrdd(_t_e_r_m___t _+_t)
Record the term _t into the Prolog database as recorda/3 and return
an opaque handle to the term. The returned handle remains valid
until PL_erase() is called on it. PL_recorded() is used to copy
recorded terms back to the Prolog stack.
void PPLL__rreeccoorrddeedd(_r_e_c_o_r_d___t _r_e_c_o_r_d_, _t_e_r_m___t _-_t)
Copy a recorded term back to the Prolog stack. The same record may
be used to copy multiple instances at any time to the Prolog stack.
See also PL_record() and PL_erase().
void PPLL__eerraassee(_r_e_c_o_r_d___t _r_e_c_o_r_d)
Remove the recorded term from the Prolog database, reclaiming all
associated memory resources.
The second group (headed by PL_record_external()) provides the same
functionality, but the returned data has properties that enable storing
the data on an external device. It has been designed to make it
possible to store Prolog terms fast an compact in an external database.
Here are the main features:
o _I_n_d_e_p_e_n_d_e_n_t _o_f _s_e_s_s_i_o_n
Records can be communicated to another Prolog session and made
visible using PL_recorded_external().
o _B_i_n_a_r_y
The representation is binary for maximum performance. The returned
data may contain 0-bytes.
o _B_y_t_e_-_o_r_d_e_r _i_n_d_e_p_e_n_d_e_n_t
The representation can be transferred between machines with
different byte-order.
o _N_o _a_l_i_g_n_m_e_n_t _r_e_s_t_r_i_c_t_i_o_n_s
There are no memory alignment restrictions and copies of the record
can thus be moved freely. For example, it is possible to use
this representation to exchange terms using shared memory between
different Prolog processes.
o _C_o_m_p_a_c_t
It is assumed that a smaller memory footprint will eventually
outperform slightly faster representations.
o _S_t_a_b_l_e
The format is designed for future enhancements without breaking
compatibility with older records.
char * PPLL__rreeccoorrdd__eexxtteerrnnaall(_t_e_r_m___t _+_t_, _u_n_s_i_g_n_e_d _i_n_t _*_l_e_n)
Record the term _t into the Prolog database as recorda/3 and return
an opaque handle to the term. The returned handle remains valid
until PL_erase() is called on it.
It is allowed to copy the data and use PL_recorded_external() on
the copy. The user is responsible for the memory management of
the copy. After copying, the original may be discarded using
PL_erase_external().
PL_recorded_external() is used to copy such recorded terms back to
the Prolog stack.
int PPLL__rreeccoorrddeedd__eexxtteerrnnaall(_c_o_n_s_t _c_h_a_r _*_r_e_c_o_r_d_, _t_e_r_m___t _-_t)
Copy a recorded term back to the Prolog stack. The same record may
be used to copy multiple instances at any time to the Prolog stack.
See also PL_record_external() and PL_erase_external().
int PPLL__eerraassee__eexxtteerrnnaall(_c_h_a_r _*_r_e_c_o_r_d)
Remove the recorded term from the Prolog database, reclaiming all
associated memory resources.
66..66..1122 CCaattcchhiinngg SSiiggnnaallss ((SSooffttwwaarree IInntteerrrruuppttss))
SWI-Prolog offers both a C and Prolog interface to deal with software
interrupts (signals). The Prolog mapping is defined in section 4.10.
This subsection deals with handling signals from C.
If a signal is not used by Prolog and the handler does not call Prolog
in any way, the native signal interface routines may be used.
Some versions of SWI-Prolog, notably running on popular Unix platforms,
handle SIG_SEGV for guarding the Prolog stacks. If the application
whishes to handle this signal too, it should use PL_signal() to install
its handler after initialisating Prolog. SWI-Prolog will pass SIG_SEGV
to the user code if it detected the signal is not related to a Prolog
stack overflow.
Any handler that wishes to call one of the Prolog interface functions
should call PL_signal() for its installation.
void (*)() PPLL__ssiiggnnaall(_s_i_g_, _f_u_n_c)
This function is equivalent to the BSD-Unix signal() function,
regardless of the platform used. The signal handler is blocked
while the signal routine is active, and automatically reactivated
after the handler returns.
After a signal handler is registered using this function, the
native signal interface redirects the signal to a generic signal
handler inside SWI-Prolog. This generic handler validates the
environment, creates a suitable environment for calling the
interface functions described in this chapter and finally calls the
registered user-handler.
66..66..1133 EErrrroorrss aanndd wwaarrnniinnggss
PL_warning() prints a standard Prolog warning message to the standard
error (user_error) stream. Please note that new code should consider
using PL_raise_exception() to raise a Prolog exception. See also
section 4.9.
int PPLL__wwaarrnniinngg(_f_o_r_m_a_t_, _a_1_, _._._.)
Print an error message starting with `[WARNING: ', followed by
the output from _f_o_r_m_a_t, followed by a `]' and a newline. Then
start the tracer. _f_o_r_m_a_t and the arguments are the same as for
printf(2). Always returns FALSE.
66..66..1144 EEnnvviirroonnmmeenntt CCoonnttrrooll ffrroomm FFoorreeiiggnn CCooddee
int PPLL__aaccttiioonn(_i_n_t_, _._._.)
Perform some action on the Prolog system. _i_n_t describes the
action, Remaining arguments depend on the requested action. The
actions are listed in table 6.1.
___________________________________________________________________
| PL_ACTION_TRACE |Start Prolog tracer (trace/0). Requires|
| |no arguments. |
| PL_ACTION_DEBUG |Switch on Prolog debug mode (debug/0).|
| |Requires no arguments. |
| PL_ACTION_BACKTRACE |Print backtrace on current output|
| |stream. The argument (an int) is the|
| |number of frames printed. |
| PL_ACTION_HALT |Halt Prolog execution. This action|
| |should be called rather than Unix exit()|
| |to give Prolog the opportunity to clean|
| |up. This call does not return. The|
| |argument (an int) is the exit code. See|
| |halt/1. |
| PL_ACTION_ABORT |Generate a Prolog abort (abort/0). This|
| |call does not return. Requires no|
| |arguments. |
| PL_ACTION_BREAK |Create a standard Prolog break envi-|
| |ronment (break/0). Returns after the|
| |user types the end-of-file character.|
|| |Requires|no arguments. ||
| PL_ACTION_GUIAPP |Win32: Used to indicate the kernel that|
| |the application is a GUI application if|
| |the argument is not 0 and a console|
| |application if the argument is 0. If|
| |a fatal error occurs, the system uses|
| |a windows messagebox to report this on|
| |a GUI application and simply prints the|
| |error and exits otherwise. |
| PL_ACTION_WRITE |Write the argument, a char * to the|
| |current output stream. |
| PL_ACTION_FLUSH |Flush the current output stream. Re-|
|________________________|quires_no_arguments._____________________|
Table 6.1: PL_action() options
66..66..1155 QQuueerryyiinngg PPrroolloogg
C_type PPLL__qquueerryy(_i_n_t)
Obtain status information on the Prolog system. The actual
argument type depends on the information required. _i_n_t describes
what information is wanted. The options are given in table 6.2.
___________________________________________________________________
| PL_QUERY_ARGC |Return an integer holding the number of|
| |arguments given to Prolog from Unix. |
| PL_QUERY_ARGV |Return a char ** holding the argument|
| |vector given to Prolog from Unix. |
| PL_QUERY_SYMBOLFILE |Return a char * holding the current|
| |symbol file of the running process. |
| PL_MAX_INTEGER |Return a long, representing the maximal|
| |integer value represented by a Prolog|
| |integer. |
| PL_MIN_INTEGER |Return a long, representing the minimal|
| |integer value. |
| PL_QUERY_VERSION |Return a long, representing the version|
| |as 10; 000M* +100m* +p, where M is the |
| |major, m the minor version number and |
| |p the patch-level. For example, 20717|
|________________________|means_2.7.17.____________________________|
Table 6.2: PL_query() options
66..66..1166 RReeggiisstteerriinngg FFoorreeiiggnn PPrreeddiiccaatteess
int PPLL__rreeggiisstteerr__ffoorreeiiggnn(_c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _f_o_r_e_i_g_n___t _(_*_f_u_n_c_t_i_o_n_)_(_)_, _i_n_t _f_l_a_g_s)
Register a C-function to implement a Prolog predicate.
After this call returns successfully a predicate with name _n_a_m_e
(a char *) and arity _a_r_i_t_y (a C int) is created. As a special
case, _n_a_m_e may consist of a sequence of alpha-numerical characters
followed by the colon (:). In this case the name uptil the colon
is taken to be the destination module and the rest of the name the
predicate name.
When called in Prolog, Prolog will call _f_u_n_c_t_i_o_n. _f_l_a_g_s forms
bitwise or'ed list of options for the installation. These are:
___________________________________________________________________
| PL_FA_NOTRACE |Predicate cannot be seen in the tracer |
| PL_FA_TRANSPARENT |Predicate is module transparent |
| PL_FA_NONDETERMINISTIC |Predicate is non-deterministic. See|
| |also PL_retry(). |
|_PL_FA_VARARGS__________|Use_alternative_calling_convention.______|
void PPLL__llooaadd__eexxtteennssiioonnss(_P_L___e_x_t_e_n_s_i_o_n _*_e)
Register foreign predicates from a table of structures. This
is an alternative to multiple calls to PL_register_foreign() and
simplifies code that wishes to use PL_register_extensions()as an
alternative. The type PL_extension is defined as:
typedef struct _PL_extension
{ char *predicate_name; /* Name of the predicate */
short arity; /* Arity of the predicate */
pl_function_t function; /* Implementing functions */
short flags; /* Or of PL_FA_... */
} PL_extension;
void PPLL__rreeggiisstteerr__eexxtteennssiioonnss(_P_L___e_x_t_e_n_s_i_o_n _*_e)
The function PL_register_extensions() behaves as
PL_load_extensions(), but is the only PL_* function that may
be called bbeeffoorree PL_initialise(). The predicates are registered
iinnttoo tthhee mmoodduullee user after registration of the SWI-Prolog builtin
foreign predicates and before loading the initial saved state.
This implies that initialization/1 directives can refer to them.
Here is an example of its usage:
static PL_extension predicates[] = {
{ "foo", 1, pl_foo, 0 },
{ "bar", 2, pl_bar, PL_FA_NONDETERMINISTIC },
{ NULL, 0, NULL, 0 }
};
main(int argc, char **argv)
{ PL_register_extensions(predicates);
if ( !PL_initialise(argc, argv) )
PL_halt(1);
...
}
66..66..1177 FFoorreeiiggnn CCooddee HHooookkss
For various specific applications some hooks re provided.
PL_dispatch_hook_t PPLL__ddiissppaattcchh__hhooookk(_P_L___d_i_s_p_a_t_c_h___h_o_o_k___t)
If this hook is not NULL, this function is called when reading
from the terminal. It is supposed to dispatch events when
SWI-Prolog is connected to a window environment. It can return
two values: PL_DISPATCH_INPUT indicates Prolog input is available
on file descriptor 0 or PL_DISPATCH_TIMEOUT to indicate a timeout.
The old hook is returned. The type PL_dispatch_hook_t is defined
as:
typedef int (*PL_dispatch_hook_t)(void);
void PPLL__aabboorrtt__hhooookk(_P_L___a_b_o_r_t___h_o_o_k___t)
Install a hook when abort/0 is executed. SWI-Prolog abort/0 is
implemented using C setjmp()/longjmp() construct. The hooks are
executed in the reverse order of their registration after the
longjmp() took place and before the Prolog toplevel is reinvoked.
The type PL_abort_hook_t is defined as:
typedef void (*PL_abort_hook_t)(void);
int PPLL__aabboorrtt__uunnhhooookk(_P_L___a_b_o_r_t___h_o_o_k___t)
Remove a hook installed with PL_abort_hook(). Returns FALSE if no
such hook is found, TRUE otherwise.
void PPLL__oonn__hhaalltt(_v_o_i_d _(_*_f_)_(_i_n_t_, _v_o_i_d _*_)_, _v_o_i_d _*_c_l_o_s_u_r_e)
Register the function _f to be called if SWI-Prolog is halted. The
function is called with two arguments: the exit code of the
process (0 if this cannot be determined on your operating system)
and the _c_l_o_s_u_r_e argument passed to the PL_on_halt()call. See also
at_halt/1.
PL_agc_hook_t PPLL__aaggcc__hhooookk(_P_L___a_g_c___h_o_o_k___t _n_e_w)
Register a hook with the atom-garbage collector (see
garbage_collect_atoms/0 that is called on any atom that is
reclaimed. The old hook is returned. If no hook is currently
defined, NULL is returned. The argument of the called hook is the
atom that is to be garbage collected. The return value is an int.
If the return value is zero, the atom is nnoott reclaimed. The hook
may invoke any Prolog predicate.
The example below defines a foreign library for printing the
garbage collected atoms for debugging purposes.
#include <SWI-Stream.h>
#include <SWI-Prolog.h>
static int
atom_hook(atom_t a)
{ Sdprintf("AGC: deleting %s\n", PL_atom_chars(a));
return TRUE;
}
static PL_agc_hook_t old;
install_t
install()
{ old = PL_agc_hook(atom_hook);
}
install_t
uninstall()
{ PL_agc_hook(old);
}
66..66..1188 SSttoorriinngg ffoorreeiiggnn ddaattaa
This section provides some hints for handling foreign data in Prolog.
With foreign data, we refer to data that is used by foreign language
predicates and needs to be passed around in Prolog. Excluding
combinations, there are three principal options for storing such data
o _N_a_t_u_r_a_l _P_r_o_l_o_g _d_a_t_a
E.i. using the representation one would choose if there was no
foreign interface required.
o _O_p_a_q_u_e _p_a_c_k_e_d _P_r_o_l_o_g _d_a_t_a
Data can also be represetented in a foreign structure and stored on
the Prolog stacks using PL_put_string_nchars()and retrieved using
PL_get_string_chars(). It is generally good practice to wrap the
string in a compound term with arity 1, so Prolog can identify the
type. portray/1 rules may be used to streamline printing such
terms during development.
o _N_a_t_u_r_a_l _f_o_r_e_i_g_n _d_a_t_a_, _p_a_s_s_i_n_g _a _p_o_i_n_t_e_r
An alternative is to pass a pointer to the foreign data. Again,
this functor may be wrapped in a compound term.
The choice may be guided using the following distinctions
o _I_s _t_h_e _d_a_t_a _o_p_a_q_u_e _t_o _P_r_o_l_o_g
With `opaque' data, we refer to data handled in foreign functions,
passed around in Prolog, but of which Prolog never examines the
contents of the data itself. If the data is opaque to Prolog,
the choosen representation does not depend on simple analysis by
Prolog, and the selection will be driven solely by simplicity of
the interface and performance (both in time and space).
o _H_o_w _b_i_g _i_s _t_h_e _d_a_t_a
Is effient encoding required? For examine, a boolean aray may
be expressed as a compound term, holding integers each of which
contains a number of bits, or as a list of true and false.
o _W_h_a_t _i_s _t_h_e _n_a_t_u_r_e _o_f _t_h_e _d_a_t_a
For examples in C, constants are often expressed using `enum' or
#define'd integer values. If prolog needs to handle this data,
atoms are a more logical choice. Whether or not this mapping is
used depends on whether Prolog needs to interpret the data, how
important debugging is and how important performance is.
o _W_h_a_t _i_s _t_h_e _l_i_f_e_t_i_m_e _o_f _t_h_e _d_a_t_a
We can distinguish three cases.
1. The lifetime is dictated by the accesibility of the data on
the Prolog stacks. Their is no way by which the foreign code
when the data becomes `garbage', and the data thus needs to
be represented on the Prolog stacks using Prolog data-types.
(2),
2. The data lives on the `heap' and is explicitly allocated
and deallocated. In this case, representing the data using
native foreign representation and passing a pointer to it is a
sensible choice.
3. The data lives as during the lifetime of a foreign predicate.
If the predicate is deterministic, foreign automatic variables
are suitable. if the predicate is non-deterministic, the data
may be allocated using malloc() and a pointer may be passed.
See section 6.6.1.1.
66..66..1188..11 EExxaammpplleess ffoorr ssttoorriinngg ffoorreeiiggnn ddaattaa
In this section, we wull outline some examples, covering typical cases.
In the first example, we will deal with extending Prolog's data
representation with integer-sets, represented as bit-vectors. In the
second example, we look at handling a `netmask'. Finally, we discuss
the outline of the DDE interface.
IInntteeggeerr sseettss with not-to-far-apart upper- and lower-bounds can be
represented using bit-vectors. Common set operations, such as union,
intersection, etc. are reduced to simple and'ing and or'ing the
bitvectors. This can be done in Prolog, using a compound term
holding integer arguments. Especially if the integers are kept
below the maximum tagged integer value (see current_prolog_flag/2),
this representation is fairly space-efficient (wasting 1 word for the
functor and and 7 bits per integer for the tags). Arithmetic can all
be performed in Prolog too.
For really demanding applications, foreign representation will perform
better, especially time-wise. Bit-vectors are natrually expressed
using string objects. If the string is wrapped in bitvector/1,
lower-bound of the vector is 0, and the upperbound is not defined, an
implementation for getting and putting the setes as well as the union
predicate for it is below.
#include <SWI-Prolog.h>
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
static functor_t FUNCTOR_bitvector1;
static int
get_bitvector(term_t in, int *len, unsigned char **data)
{ if ( PL_is_functor(in, FUNCTOR_bitvector1) )
{ term_t a = PL_new_term_ref();
PL_get_arg(1, in, a);
return PL_get_string(a, (char **)data, len);
}
PL_fail;
}
static int
unify_bitvector(term_t out, int len, const unsigned char *data)
{ if ( PL_unify_functor(out, FUNCTOR_bitvector1) )
{ term_t a = PL_new_term_ref();
PL_get_arg(1, out, a);
return PL_unify_string_nchars(a, len, (const char *)data);
}
PL_fail;
}
static foreign_t
pl_bitvector_union(term_t t1, term_t t2, term_t u)
{ unsigned char *s1, *s2;
int l1, l2;
if ( get_bitvector(t1, &l1, &s1) &&
get_bitvector(t2, &l2, &s2) )
{ int l = max(l1, l2);
unsigned char *s3 = alloca(l);
if ( s3 )
{ int n;
int ml = min(l1, l2);
for(n=0; n<ml; n++)
s3[n] = s1[n] | s2[n];
for( ; n < l1; n++)
s3[n] = s1[n];
for( ; n < l2; n++)
s3[n] = s2[n];
return unify_bitvector(u, l, s3);
}
return PL_warning("Not enough memory");
}
PL_fail;
}
install_t
install()
{ PL_register_foreign("bitvector_union", 3, pl_bitvector_union, 0);
FUNCTOR_bitvector1 = PL_new_functor(PL_new_atom("bitvector"), 1);
}
NNeettmmaasskk''ss are used with TCP/IP configuration. Suppose we have an
application dealing with reasoning about a network configuration. Such
an application requires communicating netmask structures from the
operating system, reasoning about them and possibly communicate them
to the user. A netmask consists of 4 bitmasks between 0 and 255.
C-application normally see them as an 4-byte wide unsigned integer.
SWI-Prolog cannot do that, as integers are always signed.
We could use the string approach outlined above, but this makes it hard
to handle these terms in Prolog. A better choice is a compound term
netmask/4, holding the 4 submasks as integer arguments.
As the implementation is trivial, we will omit this here.
TThhee DDDDEE iinntteerrffaaccee (see section 4.46) represents another common usage
of the foreign interface: providing communication to new operating
system features. The DDE interface requires knowledge about active DDE
server and client channels. These channels contains various foreign
data-types. Such an interface is normally achieved using an open/close
protocol that creates and destroys a _h_a_n_d_l_e. The handle is a reference
to a foreign data-structure containing the relevant information.
There are a couple of possibilities for representing the handle. The
choice depends on responsibilities and debugging facilities. The
simplest aproach is to using PL_unify_pointer() and PL_get_pointer().
This approach is fast and easy, but has the drawbacks of (untyped)
pointers: there is no reliable way to detect the validity of the
pointer, not to verify it is pointing to a structure of the desired
type. The pointer may be wrapped into a compound term with arity 1
(i.e., dde_channel(<_P_o_i_n_t_e_r>)), making the type-problem less serious.
Alternatively (used in the DDE interface), the interface code can
maintain a (preferably variable length) array of pointers and return
the index in this array. This provides better protection. Especially
for debugging purposes, wrapping the handle in a compound is a good
suggestion.
66..66..1199 EEmmbbeeddddiinngg SSWWII--PPrroolloogg iinn aa CC--pprrooggrraamm
As of version 2.1.0, SWI-Prolog may be embedded in a C-program.
To reach at a compiled C-program with SWI-Prolog as an embedded
application is very similar to creating a statically linked SWI-Prolog
executable as described in section 6.4.1.
The file \ldots/pl/include/stub.c defines SWI-Prologs default main
program:
int
main(int argc, char **argv)
{ if ( !PL_initialise(argc, argv) )
PL_halt(1);
PL_install_readline(); /* delete if you don't want readline */
PL_halt(PL_toplevel() ? 0 : 1);
}
This may be replaced with your own main C-program. The interface
function PL_initialise() mmuusstt be called before any of the other
SWI-Prolog foreign language functions described in this chapter.
PL_initialise() interprets all the command-line arguments, except for
the -t toplevel flag that is interpreted by PL_toplevel().
int PPLL__iinniittiiaalliissee(_i_n_t _a_r_g_c_, _c_h_a_r _*_*_a_r_g_v)
Initialises the SWI-Prolog heap and stacks, restores the boot QLF
file, loads the system and personal initialisation files, runs the
at_initialization/1 hooks and finally runs the -g goal hook.
Special consideration is required for argv[0]. On UUnniixx, this
argument passes the part of the commandline that is used to locate
the executable. Prolog uses this to find the file holding the
running executable. The WWiinnddoowwss version uses this to find a _m_o_d_u_l_e
of the running executable. If the specified module cannot be
found, it tries the module libpl.dll, containing the Prolog runtime
kernel. In all these cases, the resulting file is used for two
purposes
o See whether a Prolog saved-state is appended to the file. If
this is the case, this state will be loaded instead of the
default boot.prc file from the SWI-Prolog home directory. See
also qsave_program/[1,2] and section 6.7.
o Find the Prolog home directory. This process is described in
detail in section 6.8.
PL_initialise() returns 1 if all initialisation succeeded and 0
otherwise.
In most cases, _a_r_g_c and _a_r_g_v will be passed from the main program.
It is allowed to create your own argument vector, provided argv[0]
is constructed according to the rules above. For example:
int
main(int argc, char **argv)
{ char *av[10];
int ac = 0;
av[ac++] = argv[0];
av[ac++] = "-x";
av[ac++] = "mystate";
av[ac] = NULL;
if ( !PL_initialise(ac, av) )
PL_halt(1);
...
}
Please note that the passed argument vector may be referred from
Prolog at any time and should therefore be valid as long as the
Prolog engine is used.
A good setup in Windows is to add SWI-Prolog's bin directory to
your PATH and either pass a module holding a saved-state, or
"libpl.dll" as argv[0].
int PPLL__iiss__iinniittiiaalliisseedd(_i_n_t _*_a_r_g_c_, _c_h_a_r _*_*_*_a_r_g_v)
Test whether the Prolog engine is already initialised. Returns
FALSE if Prolog is not initialised and TRUE otherwise. If the
engine is initialised and _a_r_g_c is not NULL, the argument count used
with PL_initialise() is stored in _a_r_g_c. Same for the argument
vector _a_r_g_v.
void PPLL__iinnssttaallll__rreeaaddlliinnee()
Installs the GNU-readline line-editor. Embedded applications that
do not use the Prolog toplevel should normally delete this line,
shrinking the Prolog kernel significantly.
int PPLL__ttoopplleevveell()
Runs the goal of the -t toplevel switch (default prolog/0) and
returns 1 if successful, 0 otherwise.
void PPLL__cclleeaannuupp(_i_n_t _s_t_a_t_u_s)
This function performs the reverse of PL_initialise(). It runs
the PL_on_halt()and at_halt/1 handlers, closes all streams (except
for the `standard I/O' streams which are flushed only), deallocates
all memory and restores all signal handlers. The _s_t_a_t_u_s argument
is passed to the various termination hooks and indicates the
_e_x_i_t_-_s_t_a_t_u_s.
This function allows deleting and restarting the Prolog system in
the same process. Use it with care, as PL_initialise() is a costly
function. Unix users should consider using exec() (available as
part of the clib package,).
void PPLL__hhaalltt(_i_n_t _s_t_a_t_u_s)
Cleanup the Prolog environment using PL_cleanup() and calls exit()
with the status argument.
66..77 LLiinnkkiinngg eemmbbeeddddeedd aapppplliiccaattiioonnss uussiinngg pplllldd
The utility program plld (Win32: plld.exe) may be used to link a
combination of C-files and Prolog files into a stand-alone executable.
plld automates most of what is described in the previous sections.
In the normal usage, a copy is made of the default embedding template
\ldots/pl/include/stub.c. The main() routine is modified to suit
your application. PL_initialise() mmuusstt be passed the program-name
(_a_r_g_v_[_0_]) (Win32: the executing program can be obtained using
GetModuleFileName()). The other elements of the command-line may be
modified. Next, plld is typically invoked as:
plld -o output stubfile.c [other-c-or-o-files] [plfiles]
plld will first split the options into various groups for both the
C-compiler and the Prolog compiler. Next, it will add various default
options to the C-compiler and call it to create an executable holding
the user's C-code and the Prolog kernel. Then, it will call the
SWI-Prolog compiler to create a saved state from the provided Prolog
files and finally, it will attach this saved state to the created
emulator to create the requested executable.
Below, it is described how the options are split and which additional
options are passed.
--hheellpp
Print brief synopsis.
--ppll _p_r_o_l_o_g
Select the prolog to use. This prolog is used for two purposes:
get the home-directory as well as the compiler/linker options and
create a saved state of the Prolog code.
--lldd _l_i_n_k_e_r
Linker used to link the raw executable. Default is to use the
C-compiler (Win32: link.exe).
--cccc _C_-_c_o_m_p_i_l_e_r
Compiler for .c files found on the commandline. Default is
the compiler used to build SWI-Prolog (see current_prolog_flag/2)
(Win32: cl.exe).
--cc++++ _C_+_+_-_c_o_m_p_i_l_e_r
Compiler for C++ sources (extensions .cpp, .cxx, .cc or .C) files
found on the commandline. Default is c++ or g++ if the C-compiler
is gcc) (Win32: cl.exe).
--nnoossttaattee
Just relink the kernel, do not add any Prolog code to the
new kernel. This is used to create a new kernel holding
additional foreign predicates on machines that do not support the
shared-library (DLL) interface, or if building the state cannot be
handled by the default procedure used by plld. In the latter case
the state is created seperately and appended to the kernel using
cat <_k_e_r_n_e_l> <_s_t_a_t_e> > <_o_u_t>(Win32: copy /b <_k_e_r_n_e_l>+<_s_t_a_t_e> <_o_u_t>)
--ppll--ooppttiioonnss _,_._._.
Additional options passed to Prolog when creating the saved state.
The first character immediately following pl-options is used as
separator and translated to spaces when the argument is built.
Example: -pl-options,-F,xpce passed -F xpce as additional flags to
Prolog.
--lldd--ooppttiioonnss _,_._._.
Passes options to the linker, similar to -pl-options.
--cccc--ooppttiioonnss _,_._._.
Passes options to the C/C++ compiler, similar to -pl-options.
--vv
Select verbose operation, showing the various programs and their
options.
--oo _o_u_t_f_i_l_e
Reserved to specify the final output file.
--ll_l_i_b_r_a_r_y
Specifies a library for the C-compiler. By default, -lpl (Win32:
libpl.lib) and the libraries needed by the Prolog kernel are given.
--LL_l_i_b_r_a_r_y_-_d_i_r_e_c_t_o_r_y
Specifies a library directory for the C-compiler. By default
the directory containing the Prolog C-library for the current
architecture is passed.
-g | -Iinclude-directory | -Ddefinition
These options are passed to the C-compiler. By default, the
include directory containing SWI-Prolog.h is passed. plld adds two
additional * -Ddef flags:
--DD____SWI_PROLOG__
Indicates the code is to be connected to SWI-Prolog.
--DD____SWI_EMBEDDED__
Indicates the creation of an embedded program.
_*_._o | _*_._c | _*_._C | _*_._c_x_x | _*_._c_p_p
Passed as input files to the C-compiler
_*_._p_l |_*_._q_l_f
Passed as input files to the Prolog compiler to create the
saved-state.
*
I.e. all other options. These are passed as linker options to the
C-compiler.
66..77..11 AA ssiimmppllee eexxaammppllee
The following is a very simple example going through all the steps
outlined above. It provides an arithmetic expression evaluator. We
will call the application calc and define it in the files calc.c and
calc.pl. The Prolog file is simple:
calc(Atom) :-
term_to_atom(Expr, Atom),
A is Expr,
write(A),
nl.
The C-part of the application parses the command-line options,
initialises the Prolog engine, locates the calc/1 predicate and calls
it. The coder is in figure 6.5.
#include <stdio.h>
#include <SWI-Prolog.h>
#define MAXLINE 1024
int
main(int argc, char **argv)
{ char expression[MAXLINE];
char *e = expression;
char *program = argv[0];
char *plav[2];
int n;
/* combine all the arguments in a single string */
for(n=1; n<argc; n++)
{ if ( n != 1 )
*e++ = ' ';
strcpy(e, argv[n]);
e += strlen(e);
}
/* make the argument vector for Prolog */
plav[0] = program;
plav[1] = NULL;
/* initialise Prolog */
if ( !PL_initialise(1, plav) )
PL_halt(1);
/* Lookup calc/1 and make the arguments and call */
{ predicate_t pred = PL_predicate("calc", 1, "user");
term_t h0 = PL_new_term_refs(1);
int rval;
PL_put_atom_chars(h0, expression);
rval = PL_call_predicate(NULL, PL_Q_NORMAL, pred, h0);
PL_halt(rval ? 0 : 1);
}
return 0;
}
Figure 6.5: C-source for the calc application
The application is now created using the following command-line:
% plld -o calc calc.c calc.pl
The following indicates the usage of the application:
% calc pi/2
1.5708
66..88 TThhee PPrroolloogg ``hhoommee'' ddiirreeccttoorryy
Executables embedding SWI-Prolog should be able to find the `home'
directory of the development environment unless a self-contained
saved-state has been added to the executable (see qsave_program/[1,2]
and section 6.7).
If Prolog starts up, it will try to locate the development environment.
To do so, it will try the following steps until one succeeds.
1. If the environment variable SWI_HOME_DIRis defined and points to
an existing directory, use this.
2. If the environment variable SWIPL is defined and points to an
existing directory, use this.
3. Locate the primary executable or (Windows only) a component
(_m_o_d_u_l_e) thereof and check whether the parent directory of the
directory holding this file contains the file swipl. If so, this
file contains the (relative) path to the home directory. If this
directory exists, use this. This is the normal mechanism used by
the binary distribution.
4. If the precompiled path exists, use it. This is only useful for a
source installation.
If all fails and there is no state attached to the executable or
provided Windows module (see PL_initialise()), SWI-Prolog gives up. If
a state is attached, the current working directory is used.
The file_search_path/2 alias swi is set to point to the home directory
located.
66..99 EExxaammppllee ooff UUssiinngg tthhee FFoorreeiiggnn IInntteerrffaaccee
Below is an example showing all stages of the declaration of a foreign
predicate that transforms atoms possibly holding uppercase letters into
an atom only holding lower case letters. Figure 6.6 shows the C-source
file, figure 6.7 illustrates compiling and loading of foreign code.
/* Include file depends on local installation */
#include <SWI-Prolog.h>
#include <stdlib.h>
#include <ctype.h>
foreign_t
pl_lowercase(term_t u, term_t l)
{ char *copy;
char *s, *q;
int rval;
if ( !PL_get_atom_chars(u, &s) )
return PL_warning("lowercase/2: instantiation fault");
copy = malloc(strlen(s)+1);
for( q=copy; *s; q++, s++)
*q = (isupper(*s) ? tolower(*s) : *s);
*q = '\0';
rval = PL_unify_atom_chars(l, copy);
free(copy);
return rval;
}
install_t
install()
{ PL_register_foreign("lowercase", 2, pl_lowercase, 0);
}
Figure 6.6: Lowercase source file
% gcc -I/usr/local/lib/pl-\plversion/include -fpic -c lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% pl
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.
For help, use ?- help(Topic). or ?- apropos(Word).
1 ?- load_foreign_library(lowercase).
Yes
2 ?- lowercase('Hello World!', L).
L = 'hello world!'
Yes
Figure 6.7: Compiling the C-source and loading the object file
66..1100 NNootteess oonn UUssiinngg FFoorreeiiggnn CCooddee
66..1100..11 MMeemmoorryy AAllllooccaattiioonn
SWI-Prolog's memory allocation is based on the malloc(3) library
routines. Foreign applications can safely use malloc(3), realloc(3)
and free(3). Memory allocation using brk(2) or sbrk(2) is not allowed
as these calls conflict with malloc(3).
66..1100..22 DDeebbuuggggiinngg FFoorreeiiggnn CCooddee
Statically linked foreign code or embedded systems can be debugged
normally. Most modern environments provide debugging tools for
dynamically loaded shared objects or dynamic load libraries. The
following example traces the code of lowercase using gdb(1) in a Unix
environment.
% gcc -I/usr/local/lib/pl-2.2.0/include -fpic -c -g lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% gdb pl
(gdb) r
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.
For help, use ?- help(Topic). or ?- apropos(Word).
?- load_foreign_library(lowercase).
<type Control-C>
(gdb) shared % loads symbols for shared objects
(gdb) break pl_lowercase
(gdb) continue
?- lowercase('HELLO', X).
66..1100..33 NNaammee CCoonnfflliiccttss iinn CC mmoodduulleess
In the current version of the system all public C functions of
SWI-Prolog are in the symbol table. This can lead to name clashes with
foreign code. Someday I should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now
I can only suggest to give your function another name. You can do this
using the C preprocessor. If---for example---your foreign package uses
a function warning(), which happens to exist in SWI-Prolog as well, the
following macro should fix the problem.
#define warning warning_
Note that shared libraries do not have this problem as the shared
library loader will only look for symbols in the main executable for
symbols that are not defined in the library itself.
66..1100..44 CCoommppaattiibbiilliittyy ooff tthhee FFoorreeiiggnn IInntteerrffaaccee
The term-reference mechanism was first used by Quintus Prolog version
3. SICStus Prolog version 3 is strongly based on the Quintus
interface. The described SWI-Prolog interface is similar to using the
Quintus or SICStus interfaces, defining all foreign-predicate arguments
of type +term. SWI-Prolog explicitly uses type functor_t, while
Quintus and SICStus uses <_n_a_m_e> and <_a_r_i_t_y>. As the names of the
functions differ from Prolog to Prolog, a simple macro layer dealing
with the names can also deal with this detail. For example:
#define QP_put_functor(t, n, a) PL_put_functor(t, PL_new_functor(n, a))
The PL_unify_*() functions are lacking from the Quintus and SICStus
interface. They can easily be emulated or the put/unify approach
should be used to write compatible code.
The PL_open_foreign_frame()/PL_close_foreign_frame() combination is lack-
ing from both other Prologs. SICStus has PL_new_term_refs(_0), followed
by PL_reset_term_refs()that allows for discarding term references.
The Prolog interface for the graphical user interface package XPCE
shares about 90% of the code using a simple macro layer to deal with
different naming and calling conventions of the interfaces.
CChhaapptteerr 77.. GGEENNEERRAATTIINNGG RRUUNNTTIIMMEE AAPPPPLLIICCAATTIIOONNSS
This chapter describes the features of SWI-Prolog for delivering
applications that can run without the development version of the system
installed.
A SWI-Prolog runtime executable is a file consisting of two parts. The
first part is the _e_m_u_l_a_t_o_r, which is machine dependent. The second
part is the _r_e_s_o_u_r_c_e _a_r_c_h_i_v_e, which contains the compiled program in a
machine-independent format, startup options and possibly user-defined
_r_e_s_o_u_r_c_e_s, see resource/3 and open_resource/3.
These two parts can be connected in various different ways. The most
common way for distributed runtime applications is to _c_o_n_c_a_t_e_n_a_t_e the
two parts. This can be achieved using external commands (Unix: cat,
Windows: copy), or using the stand_alone option to qsave_program/2.
The second option is to attach a startup script in front of the
resource that starts the emulator with the proper options. This is
the default under Unix. Finally, an emulator can be told to use a
specified resource file using the -x commandline switch.
qqssaavvee__pprrooggrraamm((_+_F_i_l_e_, _+_L_i_s_t_O_f_O_p_t_i_o_n_s))
Saves the current state of the program to the file _F_i_l_e.
The result is a resource archive containing a saved-state that
expresses all Prolog data from the running program and all
user-defined resources. Depending on the stand_alone option, the
resource is headed by the emulator, a Unix shell-script or nothing.
_L_i_s_t_O_f_O_p_t_i_o_n_s is a list of <_K_e_y>=<_V_a_l_u_e> or <_K_e_y>(<_V_a_l_u_e>) pairs.
The available keys are described in table 7.1.
_________________________________________________________________________
|__KKeeyy________________||OOppttiioonn__||________TTyyppee____________||DDeessccrriippttiioonn__________________________________________________||
|| local | --LL || K-bytes |Size (Limit) of local stack |
| global | --GG || K-bytes |Size (Limit) of global stack |
| trail | --TT || K-bytes |Size (Limit) of trail stack |
| argument | --AA || K-bytes |Size (Limit) of argument stack |
| goal | --gg || atom |Initialisation goal |
| toplevel | --tt || atom |Prolog toplevel goal |
|_init_file___|--ff___||_____atom______|Personal_initialisation_file________||||||
| class | | atom |If runtime, only read resources |
| | | |from the state (default). If |
| | | |kernel, lock all predicates as |
| | | |system predicates If development, |
| | | |save the predicates in their |
| | | |current state and keep reading |
| | | |resources from their source (if |
| | | |present). See also resource/3. |
| autoload | | bool |If true, run autoload/0 first |
| map | | file |File to write info on dump |
| op | | save/standard |Save operator declarations? |
| stand_alone | | bool |Include the emulator in the state |
| emulator | | file |Emulator attached to the (stand- |
| | | |alone) executable. Default is the |
|____________|______|_______________|running_emulator.___________________|
Table 7.1: <_K_e_y> = <_V_a_l_u_e> pairs for qsave_program/2
Before writing the data to file, qsave_program/2 will run
autoload/0 to all required autoloading the system can discover.
See autoload/0.
Provided the application does not require any of the Prolog
libraries to be loaded at runtime, the only file from the
SWI-Prolog development environment required is the emulator itself.
The emulator may be built in two flavours. The default is the
_d_e_v_e_l_o_p_m_e_n_t _e_m_u_l_a_t_o_r. The _r_u_n_t_i_m_e _e_m_u_l_a_t_o_r is similar, but lacks
the tracer.
If the option stand_alone(on)is present, the emulator is the first
part of the state. If the emulator is started it will test whether
a boot-file (state) is attached to the emulator itself and load
this state. Provided the application has all libraries loaded,
the resulting executable is completely independent of the runtime
environment or location where it was build.
See also section 2.10.2.4.
qqssaavvee__pprrooggrraamm((_+_F_i_l_e))
Equivalent to qsave_program(File, []).
aauuttoollooaadd
Check the current Prolog program for predicates that are referred
to, are undefined and have a definition in the Prolog library.
Load the appropriate libraries.
This predicate is used by qsave_program/[1,2] to ensure the saved
state will not depend on one of the libraries. The predicate
autoload/0 will find all ddiirreecctt references to predicates. It does
not find predicates referenced via meta-predicates. The predicate
log/2 is defined in the library(quintus) to provide a quintus
compatible means to compute the natural logarithm of a number. The
following program will behave correctly if its state is executed in
an environment where the library(quintus) is not available:
logtable(From, To) :-
From > To, !.
logtable(From, To) :-
log(From, Value),
format('~d~t~8|~2f~n', [From, Value]),
F is From + 1,
logtable(F, To).
However, the following implementation refers to log/2 through the
meta-predicate maplist/3. Autoload will not be able to find the
reference. This problem may be fixed either by loading the module
libtary(quintus) explicitly or use require/1 to tell the system
that the predicate log/2 is required by this module.
logtable(From, To) :-
findall(X, between(From, To, X), Xlist),
maplist(log, Xlist, SineList),
write_table(Xlist, SineList).
write_table([], []).
write_table([I|IT], [V|VT]) :-
format('~d~t~8|~2f~n', [I, V]),
write_table(IT, VT).
vvoollaattiillee _+_N_a_m_e_/_A_r_i_t_y_, _._._.
Declare that the clauses of specified predicates should nnoott be
saved to the program. The volatile declaration is normally used
to avoid that the clauses of dynamic predicates that represent data
for the current session is saved in the state file.
77..11 LLiimmiittaattiioonnss ooff qqssaavvee__pprrooggrraamm
There are three areas that require special attention when using
qsave_program/[1,2].
o If the program is an embedded Prolog application or uses the
foreign language interface, care has to be taken to restore the
appropriate foreign context. See section 7.2 for details.
o If the program uses directives (:- goal. lines) that perform other
actions then setting predicate attributes (dynamic, volatile, etc.)
or loading files (consult, etc.), the directive may need to be
prefixed with initialization/1.
o Database references as returned by clause/3, recorded/3, etc. are
not preserved and may thus not be part of the database when saved.
77..22 RRuunnttiimmeess aanndd FFoorreeiiggnn CCooddee
Some applications may need to use the foreign language interface.
Object code is by definition machine-dependent and thus cannot be part
of the saved program file.
To complicate the matter even further there are various ways of loading
foreign code:
o _U_s_i_n_g _t_h_e _l_i_b_r_a_r_y_(_s_h_l_i_b_) _p_r_e_d_i_c_a_t_e_s
This is the preferred way of dealing with foreign code. It loads
quickly and ensures an acceptable level of independence between the
versions of the emulator and the foreign code loaded. It works on
Unix machines supporting shared libraries and library functions to
load them. Most modern Unixes, as well as Win32 (Windows 95/NT)
satisfy this constraint.
o _S_t_a_t_i_c _l_i_n_k_i_n_g
This mechanism works on all machines, but generally requires the
same C-compiler and linker to be used for the external code as is
used to build SWI-Prolog itself.
To make a runtime executable that can run on multiple platforms one
must make runtime checks to find the correct way of linking. Suppose
we have a source-file myextension defining the installation function
install().
If this file is compiled into a shared library, load_foreign_library/1
will load this library and call the installation function to initialise
the foreign code. If it is loaded as a static extension, define
install() as the predicate install/0:
static foreign_t
pl_install()
{ install();
PL_succeed;
}
PL_extension PL_extensions [] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/
{ "install", 0, pl_install, 0 },
{ NULL, 0, NULL, 0 } /* terminating line */
};
Now, use the following Prolog code to load the foreign library:
load_foreign_extensions :-
current_predicate(install, install), !, % static loaded
install.
load_foreign_extensions :- % shared library
load_foreign_library(foreign(myextension)).
:- initialization load_foreign_extensions.
The path alias foreign is defined by file_search_path/2. By default
it searches the directories <_h_o_m_e>/lib/<_a_r_c_h> and <_h_o_m_e>/lib. The
application can specify additional rules for file_search_path/2.
77..33 UUssiinngg pprrooggrraamm rreessoouurrcceess
A _r_e_s_o_u_r_c_e is very similar to a file. Resources however can be
represented in two different formats: on files, as well as part of the
resource _a_r_c_h_i_v_e of a saved-state (see qsave_program/2).
A resource has a _n_a_m_e and a _c_l_a_s_s. The _s_o_u_r_c_e data of the resource is
a file. Resources are declared by declaring the predicate resource/3.
They are accessed using the predicate open_resource/3.
Before going into details, let us start with an example. Short
texts can easily be expressed in Prolog sourcecode, but long texts
are cumbersome. Assume our application defines a command `help' that
prints a helptext to the screen. We put the content of the helptext
into a file called help.txt. The following code implements our help
command such that help.txt is incorperated into the runtime executable.
resource(help, text, 'help.txt').
help :-
open_resource(help, text, In),
copy_stream(In, user_output),
close(In).
copy_stream(In, Out) :-
get0(In, C),
copy_stream(C, In, Out).
copy_stream(-1, _, _) :- !.
copy_stream(C, In, Out) :-
put(Out, C),
get0(In, C2),
copy_stream(C2, In, Out).
The predicate help/0 opens the resource as a Prolog stream. If we
are executing this from the development environment, this will actually
return a stream to the gelp.txt itself. When executed from the
saved-state, the stream will actually be a stream opened on the program
resource file, taking care of the offset and length of the resource.
77..33..11 PPrreeddiiccaatteess DDeeffiinniittiioonnss
rreessoouurrccee((_+_N_a_m_e_, _+_C_l_a_s_s_, _+_F_i_l_e_S_p_e_c))
This predicate is defined as a dynamic predicate in the module
user. Clauses for it may be defined in any module, including
the user module. _N_a_m_e is the name of the resource (an atom).
A resource name may contain any character, except for $ and :,
which are reserved for internal usage by the resource library.
_C_l_a_s_s describes the what kind of object is stored in the resource.
In the current implementation, it is just an atom. _F_i_l_e_S_p_e_c
is a file specification that may exploit file_search_path/2 (see
absolute_file_name/2).
Normally, resources are defined as unit clauses (facts), but the
definition of this predicate also allows for rules. For proper
generation of the saved state, it must be possible to enumerate
the available resources by calling this predicate with all its
arguments unbound.
Dynamic rules are useful to turn all files in a certain directory
into resources, without specifying a resources for each file. For
example, assume the file_search_path/2icons refers to the resource
directory containing icon-files. The following definition makes
all these images available as resources:
resource(Name, image, icons(XpmName)) :-
atom(Name), !,
file_name_extension(Name, xpm, XpmName).
resource(Name, image, XpmFile) :-
var(Name),
absolute_file_name(icons(.), [type(directory)], Dir)
concat(Dir, '/*.xpm', Pattern),
expand_file_name(Pattern, XpmFiles),
member(XpmFile, XpmFiles).
ooppeenn__rreessoouurrccee((_+_N_a_m_e_, _?_C_l_a_s_s_, _-_S_t_r_e_a_m))
Opens the resource specified by _N_a_m_e and _C_l_a_s_s. If the latter is
a variable, it will be unified to the class of the first resource
found that has the specified _N_a_m_e. If successful, _S_t_r_e_a_m becomes a
handle to a binary input stream, providing access to the content of
the resource.
The predicate open_resource/3 first checks resource/3. When
succesful it will open the returned resource source-file.
Otherwise it will look in the programs resource database. When
creating a saved-state, the system normally saves the resource
contents into the resource archive, but does not save the resource
clauses.
This way, the development environment uses the files (and
modifications to the resource/3 declarations and/or files
containing resource info thus immediately affect the running
environment, while the runtime system quickly accesses the system
resources.
77..33..22 TThhee plrc pprrooggrraamm
The utility program plrc can be used to examine and manipulate the
contents of a SWI-Prolog resource file. The options are inspired by
the Unix ar program. The basic command is:
% plrc option resource-file member ...
The options are described below.
ll
List contents of the archive.
xx
Extract named (or all) members of the archive into the current
directory.
aa
Add files to the archive. If the archive already contains a
member with the same name, the contents is replaced. Anywhere
in the sequence of members, the options --class=_c_l_a_s_s and
--encoding=_e_n_c_o_d_i_n_g may appear. They affect the class and encoding
of subsequent files. The initial class is data and encoding none.
dd
Delete named members from the archive.
This command is also described in the pl(1) Unix manual page.
77..44 FFiinnddiinngg AApppplliiccaattiioonn ffiilleess
If your application uses files that are not part of the saved program
such as database files, configuration files, etc., the runtime version
has to be able to locate these files. The file_search_path/2 mechanism
in combination with the -palias command-line argument is the preferred
way to locate runtime files. The first step is to define an alias
for the toplevel directory of your application. We will call this
directory gnatdir in our examples.
A good place for storing data associated with SWI-Prolog runtime
systems is below the emulator's home-directory. swi is a predefined
alias for this directory. The following is a useful default definition
for the search path.
user:file_search_path(gnatdir, swi(gnat)).
The application should locate all files using absolute_file_name.
Suppose gnatdir contains a file config.pl to define local
configuration. Then use the code below to load this file:
configure_gnat :-
( absolute_file_name(gnatdir('config.pl'), ConfigFile)
-> consult(ConfigFile)
; format(user_error, 'gnat: Cannot locate config.pl~n'),
halt(1)
).
77..44..11 PPaassssiinngg aa ppaatthh ttoo tthhee aapppplliiccaattiioonn
Suppose the system administrator has installed the SWI-Prolog
runtime environment in /usr/local/lib/rt-pl-3.2.0. A user wants
to install gnat, but gnat will look for its configuration in
/usr/local/lib/rt-pl-3.2.0/gnat where the user cannot write.
The user decides to install the gnat runtime files in /users/bob/lib/
gnat. For one-time usage, the user may decide to start gnat using the
command:
% gnat -p gnatdir=/users/bob/lib/gnat
77..55 TThhee RRuunnttiimmee EEnnvviirroonnmmeenntt
77..55..11 TThhee RRuunnttiimmee EEmmuullaattoorr
The sources may be used to built two versions of the emulator. By
default, the _d_e_v_e_l_o_p_m_e_n_t _e_m_u_l_a_t_o_r is built. This emulator contains
all features for interactive development of Prolog applications. If
the system is configured using --enable-runtime, make(1) will create a
_r_u_n_t_i_m_e _v_e_r_s_i_o_n of the emulator. This emulator is equivalent to the
development version, except for the following features:
o _N_o _i_n_p_u_t _e_d_i_t_i_n_g
The GNU library -lreadline that provides EMACS compatible editing
of input lines will not be linked to the system.
o _N_o _t_r_a_c_e_r
The tracer and all its options are removed, making the system a
little faster too.
o _N_o _p_r_o_f_i_l_e_r
profile/3 and friends are not supported. This saves some space and
provides better performance.
o _N_o _i_n_t_e_r_r_u_p_t
Keyboard interrupt (Control-C normally) is not rebound and will
normally terminate the application.
o _c_u_r_r_e_n_t___p_r_o_l_o_g___f_l_a_g_(_r_u_n_t_i_m_e_, _t_r_u_e_) _s_u_c_c_e_e_d_s
This may be used to verify your application is running in the
runtime environment rather than the development environment.
o clause/[2,3] _d_o _n_o_t _w_o_r_k _o_n _s_t_a_t_i_c _p_r_e_d_i_c_a_t_e_s
This prolog-flag inhibits listing your program. It is only a very
limited protection however.
The following fragment is an example for building the runtime
environment in \env{HOME}/lib/rt-pl-3.2.0. If possible, the shared-
library interface should be configured to ensure it can serve a large
number of applications.
% cd pl-3.2.0
% mkdir runtime
% cd runtime
% ../src/configure --enable-runtime --prefix=$HOME
% make
% make rt-install
The runtime directory contains the components listed below. This
directory may be tar'ed and shipped with your application.
__________________________________________________
|_README.RT____|Info_on_the_runtime_environment___|
|_bin/<_a_r_c_h>/pl|The_emulator_itself_______________|
|_man/pl.1_____|Manual_page_for_pl________________|
|_swipl________|pointer_to_the_home_directory_(.)_|
| lib/ |directory for shared libraries |
|_lib/<_a_r_c_h>/__|machine-specific_shared_libraries_|
CChhaapptteerr 88.. TTHHEE SSWWII--PPRROOLLOOGG LLIIBBRRAARRYY
This chapter documents the SWI-Prolog library. As SWI-Prolog provides
auto-loading, there is little difference between library predicates
and built-in predicates. Part of the library is therefore documented
in the rest of the manual. Library predicates differ from built-in
predicates in the following ways.
o User-definition of a built-in leads to a permission-error, while
using the name of a library predicate is allowed.
o If autoloading is disabled explicitely or because trapping unknown
predicates is disabled (see unknown/2 and current_prolog_flag/2),
library predicates must be loaded explicitely.
o Using libraries reduced the footprint of applications that don't
need them.
_T_h_e _d_o_c_u_m_e_n_t_a_t_i_o_n _o_f _t_h_e _l_i_b_r_a_r_y _i_s _j_u_s_t _s_t_a_r_t_e_d_. _M_a_t_e_r_i_a_l
_f_r_o_m _t_h_e _s_t_a_n_d_a_r_d _p_a_c_k_a_g_e_s _s_h_o_u_l_d _b_e _m_o_v_e_d _h_e_r_e_, _s_o_m_e _m_a_t_e_r_i_a_l
_f_r_o_m _o_t_h_e_r _p_a_r_t_s _o_f _t_h_e _m_a_n_u_a_l _s_h_o_u_l_d _b_e _m_o_v_e_d _t_o_o _a_n_d _v_a_r_i_o_u_s
_l_i_b_r_a_r_i_e_s _a_r_e _n_o_t _d_o_c_u_m_e_n_t_e_d _a_t _a_l_l_.
88..11 lliibbrraarryy((check)):: EElleemmeennttaarryy ccoommpplleetteenneessss cchheecckkss
This library defines the predicate check/0 and a few friends that allow
for a quick-and-dirty cross-referencing.
cchheecckk
Performs the three checking passes implemented by list_undefined/0,
list_autoload/0 and list_redefined/0. Please check the definition
of these predicates for details.
The typical usage of this predicate is right after loading your
program to get a quick overview on the completeness and possible
conflicts in your program.
lliisstt__uunnddeeffiinneedd
Scans the database for predicates that have no definition. A
predicate is considered defined if it has clauses, is declared
using dynamic/1 or multifile/1. As a program is compiled calls
are translated to predicates. If the called predicate is not yet
defined it is created as a predicate without definition. The same
happens with runtime generated calls. This predicate lists all
such undefined predicates that are not defined in the library. See
also list_autoload/0.
Note: undefined predicates are never removed from the database.
For proper results it is therefore adviced to run check/0 right
after loading your program.
lliisstt__aauuttoollooaadd
Lists all undefined (see list_undefined/0) predicates that have a
definition in the library along with the file from which they will
be autoloaded when accessed. See also autoload/0.
lliisstt__rreeddeeffiinneedd
Lists predicates that are defined in the global module user as
well as in a normal module. I.e. predicates for which the local
definition overrules the global default definition.
88..22 lliibbrraarryy((readutil)):: RReeaaddiinngg lliinneess,, ssttrreeaammss aanndd ffiilleess
This library contains primitives to read lines, files, multiple terms,
etc.
rreeaadd__lliinnee__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s))
Read the next line of input from _S_t_r_e_a_m and unify the result
with _C_o_d_e_s _a_f_t_e_r the line has been read. A line is ended by a
newline character or end-of-file. Unlike read_line_to_codes/3, this
predicate removes trailing newline character.
rreeaadd__lliinnee__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
Diference-list version to read an input line to a list of character
codes. Reading stops at the newline or end-of-file character, but
unlike read_line_to_codes/2, the newline is retained in the output.
This predicate is especially useful for readine a block of lines
upto some delimiter. The following example reads an HTTP header
ended by a blank line:
read_header_data(Stream, Header) :-
read_line_to_codes(Stream, Header, Tail),
read_header_data(Header, Stream, Tail).
read_header_data("\r\n", _, _) :- !.
read_header_data("\n", _, _) :- !.
read_header_data("", _, _) :- !.
read_header_data(_, Stream, Tail) :-
read_line_to_codes(Stream, Tail, NewTail),
read_header_data(Tail, Stream, NewTail).
rreeaadd__ssttrreeaamm__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s))
Read all input until end-of-file and unify the result to _C_o_d_e_s.
rreeaadd__ssttrreeaamm__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
Difference-list version of read_stream_to_codes/2.
rreeaadd__ffiillee__ttoo__ccooddeess((_+_S_p_e_c_, _-_C_o_d_e_s_, _+_O_p_t_i_o_n_s))
Read a file to a list of character codes. _S_p_e_c is a file-
specification for absolute_file_name/3. _C_o_d_e_s is the resulting
code-list. _O_p_t_i_o_n_s is a list of options for absolute_file_name/3
and open/4. In addition, the option tail(_T_a_i_l) is defined, forming
a difference-list.
rreeaadd__ffiillee__ttoo__tteerrmmss((_+_S_p_e_c_, _-_T_e_r_m_s_, _+_O_p_t_i_o_n_s))
Read a file to a list of character codes. _S_p_e_c is
a file-specification for absolute_file_name/3. _T_e_r_m_s is the
resulting list of Prolog terms. _O_p_t_i_o_n_s is a list of options
for absolute_file_name/3 and open/4. In addition, the option
tail(_T_a_i_l) is defined, forming a difference-list.
88..33 lliibbrraarryy((netscape)):: AAccttiivvaattiinngg yyoouurr WWeebb--bbrroowwsseerr
This library deals with the very system dependent task of opening a
web-browser. See also library(url).
wwwwww__ooppeenn__uurrll((_+_U_R_L))
Open _U_R_L in an external web-browser. The reason to place this
in the library is to centralise the maintenance on this highly
platform and browser specific task. It distinguishes between the
following cases:
o _M_S_-_W_i_n_d_o_w_s
If it detects MS-Windows it uses win_shell/2 to open the _U_R_L.
The behaviour and browser started depends on the Window and
Windows-shell configuration, but in general it should be the
behaviour expected by the user.
o _O_t_h_e_r _p_l_a_t_f_o_r_m_s
On other platforms it assumes the browser is netscape. It
first tries to tell a running netscape to open the page and
only after this fails it starts a new browser.
88..44 lliibbrraarryy((registry)):: MMaanniippuullaattiinngg tthhee WWiinnddoowwss rreeggiissttrryy
The library(registry) is only available on the MS-Windows version
of SWI-Prolog. It loads the foreign extension plregtry.dll,
providing the predicates described below. This library only
makes the most common operations on the registry available through
the Prolog user. The underlying DLL provides a more complete
coverage of the Windows registry API. Please consult the sources in
pl/src/win32/foreign/plregtry.c for further details.
In all these predicates, _P_a_t_h refers to a `/' separated path into
the registry. This is _n_o_t an atom containing `/'-characters as used
for filenames, but a term using the functor //2. Windows defines
the following roots for the registry: classes_root, current_user,
local_machine and users
rreeggiissttrryy__ggeett__kkeeyy((_+_P_a_t_h_, _-_V_a_l_u_e))
Get the principal (default) value associated to this key. Fails
silently of the key does not exist.
rreeggiissttrryy__ggeett__kkeeyy((_+_P_a_t_h_, _+_N_a_m_e_, _-_V_a_l_u_e))
Get a named value associated to this key.
rreeggiissttrryy__sseett__kkeeyy((_+_P_a_t_h_, _+_V_a_l_u_e))
Set the principal (default) value of this key. Creates (a path to)
the key if this does not already exist.
rreeggiissttrryy__sseett__kkeeyy((_+_P_a_t_h_, _+_N_a_m_e_, _+_V_a_l_u_e))
Associated a named value to this key. Creates (a path to) the key
if this does not already exist.
rreeggiissttrryy__ddeelleettee__kkeeyy((_+_P_a_t_h))
Delete the indicated key.
sshheellll__rreeggiisstteerr__ffiillee__ttyyppee((_+_E_x_t_, _+_T_y_p_e_, _+_N_a_m_e_, _+_O_p_e_n_A_c_t_i_o_n))
Register a file-type. _E_x_t is the extension to associate. _T_y_p_e
is the type name, often something link prolog.type. _N_a_m_e is the
name visible in the Windows file-type browser. Finally, _O_p_e_n_A_c_t_i_o_n
defines the action to execute when a file with this extension is
opened in the Windows explorer.
sshheellll__rreeggiisstteerr__ddddee((_+_T_y_p_e_, _+_A_c_t_i_o_n_, _+_S_e_r_v_i_c_e_, _+_T_o_p_i_c_, _+_C_o_m_m_a_n_d_, _+_I_f_N_o_t_R_u_n_n_i_n_g))
Associate DDE actions to a type. _T_y_p_e is the same
type as used for the 2nd argument of shell_register_file_type/4,
_A_c_t_i_o_n is the a action to perform, _S_e_r_v_i_c_e and _T_o_p_i_c specify the
DDE topic to address and _C_o_m_m_a_n_d is the command to execute on this
topic. Finally, _I_f_N_o_t_R_u_n_n_i_n_g defines the command to execute if the
required DDE server is not present.
sshheellll__rreeggiisstteerr__pprroolloogg((_+_E_x_t))
Default registration of SWI-Prolog, which is invoked as part of
the initialisation process on Windows systems. As the source also
explains the above predicates, it is given as an example:
shell_register_prolog(Ext) :-
current_prolog_flag(argv, [Me|_]),
concat_atom(['"', Me, '" "%1"'], OpenCommand),
shell_register_file_type(Ext, 'prolog.type', 'Pro-
log Source',
OpenCommand),
shell_register_dde('prolog.type', consult,
prolog, control, 'consult(''%1'')', Me),
shell_register_dde('prolog.type', edit,
prolog, control, 'edit(''%1'')', Me).
88..55 lliibbrraarryy((url)):: AAnnaallyyssiinngg aanndd ccoonnssttrruuccttiinngg UURRLL
This library deals with the analysis and construction of a URL,
UUniversal RResource LLocator. URL is the basis for communicating
locations of resources (data) on the web. A URL consists of a protocol
identifier (e.g. HTTP, FTP), and a protocol-specific syntax further
defining the location. URLs are standardized in RFC-1738.
The implementation in this library covers only a small portion of the
defined protocols. Though the initial implementation followed RFC-1738
strictly, the current is more relaxed to deal with frequent violations
of the standard encountered in practical use.
This library contains code by Jan Wielemaker who wrote the initial
version and Lukas Faulstich who added various extensions.
ppaarrssee__uurrll((_?_U_R_L_, _?_P_a_r_t_s))
Construct or analyse a _U_R_L. _U_R_L is an atom holding a URL or a
variable. _P_a_r_t_s is a list of components. Each component is of the
format Name(_V_a_l_u_e). Defined components are:
pprroottooccooll((_P_r_o_t_o_c_o_l))
The used protocol. This is, after the optional url:, an
identifier separated from the remainder of the URL using
:. parse_url/2 assumes the http protocol if no protocol is
specified and the URL can be parsed as a valid HTTP url.
In addition to the RFC-1738 specified protocols, the file:
protocol is supported as well.
hhoosstt((_H_o_s_t))
Host-name or IP-address on which the resource is located.
Supported by all network-based protocols.
ppoorrtt((_P_o_r_t))
Integer port-number to access on the _H_o_s_t. This only appears
if the port is explicitly specified in the URL. Implicit
default ports (e.g. 80 for HTTP) do _n_o_t appear in the
part-list.
ppaatthh((_P_a_t_h))
(File-) path addressed by the URL. This is supported for the
ftp, http and file protocols. If no path appears, the library
generates the path /.
sseeaarrcchh((_L_i_s_t_O_f_N_a_m_e_V_a_l_u_e))
Search-specification of HTTP URL. This is the part after the
?, normally used to transfer data from HTML forms that use the
`GET' protocol. In the URL it consists of a www-form-encoded
list of _N_a_m_e=_V_a_l_u_e pairs. This is mapped to a list of Prolog
_N_a_m_e=_V_a_l_u_e terms with decoded names and values.
ffrraaggmmeenntt((_F_r_a_g_m_e_n_t))
Fragment specification of HTTP URL. This is the part after the
# character.
The example below illustrates the all this for an HTTP UTL.
?- parse_url('http://swi.psy.uva.nl/message.cgi?msg=Hello+World%21#x',
P).
P = [ protocol(http),
host('swi.psy.uva.nl'),
fragment(x),
search([ msg = 'Hello World!'
]),
path('/message.cgi')
].
By instantiating the parts-list this predicate can be used to
create a URL.
ppaarrssee__uurrll((_?_U_R_L_, _+_B_a_s_e_U_R_L_, _?_P_a_r_t_s))
Same as parse_url/2, but dealing a url that is relative to the
given _B_a_s_e_U_R_L. This is used to analyse or construct a URI found in
the document behind _B_a_s_e_U_R_L.
gglloobbaall__uurrll((_+_U_R_L_, _+_B_a_s_e_U_R_L_, _-_A_b_s_o_l_u_t_e_U_r_l))
Transform a (possibly) relative URL into a global one.
hhttttpp__llooccaattiioonn((_?_P_a_r_t_s_, _?_L_o_c_a_t_i_o_n))
Similar to parse_url/2, but only deals with the location part of an
HTTP URL. That is, the path, search and fragment specifiers. In
the HTTP protocol, the first line of a message is
_A_c_t_i_o_n _L_o_c_a_t_i_o_n [HTTP/_H_t_t_p_V_e_r_s_i_o_n]
_L_o_c_a_t_i_o_n is either an atom or a code-list.
wwwwww__ffoorrmm__eennccooddee((_?_V_a_l_u_e_, _?_W_w_w_F_o_r_m_E_n_c_o_d_e_d))
Translate between a string-literal and the x-www-form-encoded
representation used in path and search specifications of the HTTP
protocol.
Encoding implies mapping space to +, preserving alpha-numercial
characters, map newlines to %0D%0A and anything else to %XX. When
decoding, newlines appear as a single newline (10) character.
CChhaapptteerr 99.. HHAACCKKEERRSS CCOORRNNEERR
This appendix describes a number of predicates which enable the
Prolog user to inspect the Prolog environment and manipulate (or
even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described
here should be handled with some care as it is easy to corrupt the
consistency of the Prolog system by misusing them.
99..11 EExxaammiinniinngg tthhee EEnnvviirroonnmmeenntt SSttaacckk
pprroolloogg__ccuurrrreenntt__ffrraammee((_-_F_r_a_m_e))
Unify _F_r_a_m_e with an integer providing a reference to the
parent of the current local stack frame. A pointer to the
current local frame cannot be provided as the predicate succeeds
deterministically and therefore its frame is destroyed immediately
after succeeding.
pprroolloogg__ffrraammee__aattttrriibbuuttee((_+_F_r_a_m_e_, _+_K_e_y_, _-_V_a_l_u_e))
Obtain information about the local stack frame _F_r_a_m_e. _F_r_a_m_e
is a frame reference as obtained through prolog_current_frame/1,
prolog_trace_interception/4 or this predicate. The key values are
described below.
aalltteerrnnaattiivvee
_V_a_l_u_e is unified with an integer reference to the local stack
frame in which execution is resumed if the goal associated
with _F_r_a_m_e fails. Fails if the frame has no alternative
frame.
hhaass__aalltteerrnnaattiivveess
_V_a_l_u_e is unified with true if _F_r_a_m_e still is a candidate for
backtracking. false otherwise.
ggooaall
_V_a_l_u_e is unified with the goal associated with _F_r_a_m_e. If the
definition module of the active predicate is not user the goal
is represented as <_m_o_d_u_l_e>:<_g_o_a_l>. Do not instantiate variables
in this goal unless you kknnooww what you are doing!
ccllaauussee
_V_a_l_u_e is unified with a reference to the currently running
clause. Fails if the current goal is associated with a
foreign (C) defined predicate. See also nth_clause/3 and
clause_property/2.
lleevveell
_V_a_l_u_e is unified with the recursion level of _F_r_a_m_e. The top
level frame is at level `0'.
ppaarreenntt
_V_a_l_u_e is unified with an integer reference to the parent local
stack frame of _F_r_a_m_e. Fails if _F_r_a_m_e is the top frame.
ccoonntteexxtt__mmoodduullee
_V_a_l_u_e is unified with the name of the context module of the
environment.
ttoopp
_V_a_l_u_e is unified with true if _F_r_a_m_e is the top Prolog goal
from a recursive call back from the foreign language. false
otherwise.
hhiiddddeenn
_V_a_l_u_e is unified with true if the frame is hidden from the
user, either because a parent has the hide-childs attribute
(all system predicates), or the system has no trace-me
attribute.
ppcc
_V_a_l_u_e is unified with the program-pointer saved on behalve of
the parent-goal if the parent-goal is not owned by a foreign
predicate.
aarrgguummeenntt((_N))
_V_a_l_u_e is unified with the _N-th slot of the frame. Argument
1 is the first argument of the goal. Arguments above the
arity refer to local variables. Fails silently if _N is out of
range.
ddeetteerrmmiinniissttiicc
Succeeds if there are no choicepoints that are more recent than the
parent frame.
99..22 IInntteerrcceeppttiinngg tthhee TTrraacceerr
pprroolloogg__ttrraaccee__iinntteerrcceeppttiioonn((_+_P_o_r_t_, _+_F_r_a_m_e_, _+_P_C_, _-_A_c_t_i_o_n))
Dynamic predicate, normally not defined. This predicate is called
from the SWI-Prolog debugger just before it would show a port. If
this predicate succeeds the debugger assumes the trace action has
been taken care of and continues execution as described by _A_c_t_i_o_n.
Otherwise the normal Prolog debugger actions are performed.
_P_o_r_t is one of call, redo, exit, fail or unify. _F_r_a_m_e is an
integer reference to the current local stack frame. _P_C is the
current value of the program-counter, relative to the start of
the current clause, or 0 if it is invalid, for example because
the current frame runs a foreign predicate, or no clause has been
selected yet. _A_c_t_i_o_n should be unified with one of the atoms
continue (just continue execution), retry (retry the current goal)
or fail (force the current goal to fail). Leaving it a variable is
identical to continue.
Together with the predicates described in section 4.42 and the
other predicates of this chapter this predicate enables the Prolog
user to define a complete new debugger in Prolog. Besides this it
enables the Prolog programmer monitor the execution of a program.
The example below records all goals trapped by the tracer in the
database.
prolog_trace_interception(Port, Frame, _PC, continue) :-
prolog_frame_attribute(Frame, goal, Goal),
prolog_frame_attribute(Frame, level, Level),
recordz(trace, trace(Port, Level, Goal)).
To trace the execution of `go' this way the following query should
be given:
?- trace, go, notrace.
pprroolloogg__sskkiipp__lleevveell((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with the old value of `skip level' and than set this
level according to _N_e_w. New is an integer, or the special atom
very_deep (meaning don't skip). The `skip level' is a global
variable of the Prolog system that disables the debugger on all
recursion levels deeper than the level of the variable. Used to
implement the trace options `skip' (sets skip level to the level
of the frame) and `up' (sets skip level to the level of the parent
frame (i.e., the level of this frame minus 1).
99..33 HHooookkss uussiinngg tthhee exception/3 pprreeddiiccaattee
This section describes the predicate exception/3, which may be defined
by the user in the module user as a multifile predicate. Unlike the
name suggests, this is actually a _h_o_o_k predicate. Exceptions are
handled by the ISO predicates catch/3 and throw/1. They all frames
created after the matching catch/3 to be discarded immediately.
The predicate exception/3 is called by the kernel on a couple of
events, allowing the user to alter the behaviour on some predefined
events.
eexxcceeppttiioonn((_+_E_x_c_e_p_t_i_o_n_, _+_C_o_n_t_e_x_t_, _-_A_c_t_i_o_n))
Dynamic predicate, normally not defined. Called by the Prolog
system on run-time exceptions. Currently exception/3 is only used
for trapping undefined predicates. Future versions might handle
signal handling, floating exceptions and other runtime errors via
this mechanism. The values for _E_x_c_e_p_t_i_o_n are described below.
uunnddeeffiinneedd__pprreeddiiccaattee
If _E_x_c_e_p_t_i_o_n is undefined_predicate _C_o_n_t_e_x_t is instantiated to
a term _N_a_m_e/_A_r_i_t_y. _N_a_m_e refers to the name and _A_r_i_t_y to
the arity of the undefined predicate. If the definition
module of the predicate is not _u_s_e_r, _C_o_n_t_e_x_t will be of the
form <_M_o_d_u_l_e>:<_N_a_m_e>/<_A_r_i_t_y>. If the predicate fails Prolog
will generate an esistence_error exception. If the predicate
succeeds it should instantiate the last argument either to the
atom fail to tell Prolog to fail the predicate, the atom retry
to tell Prolog to retry the predicate or error to make the
system generate an exception. The action retry only makes
sense if the exception handler has defined the predicate.
99..44 HHooookkss ffoorr iinntteeggrraattiinngg lliibbrraarriieess
Some libraries realise an entirely new programming paradigm on top of
Prolog. An example is XPCE which adds an object-system to Prolog as
well as an extensive set of graphical primitives. SWI-Prolog provides
several hooks to improve the integration of such libraries. See also
section 4.4 for editing hooks and section 4.9.3 for hooking into the
message system.
pprroolloogg__lliisstt__ggooaall((_:_G_o_a_l))
Hook, normally not defined. This hook is called by the 'L' command
of the tracer in the module user to list the currently called
predicate. This hook may be defined to list only relevant clauses
of the indicated _G_o_a_l and/or show the actual source-code in an
editor. See also portray/1 and multifile/1.
pprroolloogg::ddeebbuugg__ccoonnttrrooll__hhooookk((_:_A_c_t_i_o_n))
Hook for the debugger-control predicates that allows the creator of
more high-level programming languages to use the common front-end
predicates to control de debugger. For example, XPCE uses these
hooks to allow for spying methods rather then predicates. _A_c_t_i_o_n
is one of:
ssppyy((_S_p_e_c))
Hook in spy/1. If the hook succeeds spy/1 takes no further
action.
nnoossppyy((_S_p_e_c))
Hook in nospy/1. If the hook succeeds spy/1 takes no further
action. If spy/1 is hooked, it is advised to place a
complementary hook for nospy/1.
nnoossppyyaallll
Hook in nospyall/0. Should remove all spy-points. This hook
is called in a failure-driven loop.
ddeebbuuggggiinngg
Hook in debugging/0. It can be used in two ways. It can
report the status of the additional debug-points controlled by
the above hooks and fail to let the system report the others
or it succeed, overruling the entire behaviour of debugging/0.
pprroolloogg::hheellpp__hhooookk((_+_A_c_t_i_o_n))
Hook into help/0 and help/1. If the hook succeeds, the built-in
actions are not executed. For example, ?- help(picture). is caught
by the XPCE help-hook to give help on the class _p_i_c_t_u_r_e. Defined
actions are:
hheellpp
User entered plain help/0 to give default help. The default
performs help(help/1), giving help on help.
hheellpp((_W_h_a_t))
Hook in help/1 on the topic _W_h_a_t.
aapprrooppooss((_W_h_a_t))
Hook in apropos/1 on the topic _W_h_a_t.
99..55 RReeaaddlliinnee IInntteerraaccttiioonn
The following predicates are available if
current_prolog_flag(readline, true) succeeds. They allow for di-
rect interaction with the GNU readline library. See also
readline(3)
rrll__rreeaadd__iinniitt__ffiillee((_+_F_i_l_e))
Read a readline initialisation file. Readline by default reads
~/.inputrc. This predicate may be used to read alternative
readline initialisation files.
rrll__aadddd__hhiissttoorryy((_+_L_i_n_e))
Add a line to the Control-P/Control-N history system of the
readline library.
CChhaapptteerr 1100.. GGLLOOSSSSAARRYY OOFF TTEERRMMSS
aannoonnyymmoouuss [[vvaarriiaabbllee]]
The variable _ is called the _a_n_o_n_y_m_o_u_s variable. Multiple
occurrences of _ in a single _t_e_r_m are not _s_h_a_r_e_d.
aarrgguummeennttss
Arguments are _t_e_r_m_s that appear in a _c_o_m_p_o_u_n_d _t_e_r_m. _A_1 and _a_2 are
the first and second argument of the term myterm(_A_1_, _a_2).
aarriittyy
Argument count (is number of arguments) of a _c_o_m_p_o_u_n_d _t_e_r_m.
aasssseerrtt
Add a _c_l_a_u_s_e to a _p_r_e_d_i_c_a_t_e. Clauses can be added at either end of
the clause-list of a _p_r_e_d_i_c_a_t_e. See assert/1 and assertz/1.
aattoomm
Textual constant. Used as name for _c_o_m_p_o_u_n_d terms, to represent
constants or text.
bbaacckkttrraacckkiinngg
Searching process used by Prolog. If a predicate offers multiple
_c_l_a_u_s_e_s to solve a _g_o_a_l, they are tried one-by-one until one
_s_u_c_c_e_e_d_s. If a subsequent part of the prove is not satisfied
with the resulting _v_a_r_i_a_b_l_e _b_i_n_d_i_n_g, it may ask for an alternative
_s_o_l_u_t_i_o_n (= _b_i_n_d_i_n_g of the _v_a_r_i_a_b_l_e_s), causing Prolog to reject the
previously chosen _c_l_a_u_s_e and try the next one.
bbiinnddiinngg [[ooff aa vvaarriiaabbllee]]
Current value of the _v_a_r_i_a_b_l_e. See also _b_a_c_k_t_r_a_c_k_i_n_g and _q_u_e_r_y.
bbuuiilltt--iinn [[pprreeddiiccaattee]]
Predicate that is part of the Prolog system. Built in predicates
cannot be redefined by the user, unless this is overruled using
redefine_system_predicate/1.
bbooddyy
Part of a _c_l_a_u_s_e behind the _n_e_c_k operator (:-).
ccllaauussee
`Sentence' of a Prolog program. A _c_l_a_u_s_e consists of a _h_e_a_d and
_b_o_d_y separated by the _n_e_c_k operator (:-) or it is a _f_a_c_t. For
example:
parent(X) :-
father(X, _).
Expressed ``X is a parent if X is a father of someone''. See also
_v_a_r_i_a_b_l_e and _p_r_e_d_i_c_a_t_e.
ccoommppiillee
Process where a Prolog _p_r_o_g_r_a_m is translated to a sequence of
instructions. See also _i_n_t_e_r_p_r_e_t_e_d. SWI-Prolog always compiles
your program before executing it.
ccoommppoouunndd [[tteerrmm]]
Also called _s_t_r_u_c_t_u_r_e. It consists of a name followed by _N
_a_r_g_u_m_e_n_t_s, each of which are _t_e_r_m_s. _N is called the _a_r_i_t_y of the
term.
ccoonntteexxtt mmoodduullee
If a _t_e_r_m is referring to a _p_r_e_d_i_c_a_t_e in a _m_o_d_u_l_e, the _c_o_n_t_e_x_t
_m_o_d_u_l_e is used to find the target module. The context module of a
_g_o_a_l is the module in which the _p_r_e_d_i_c_a_t_e is defined, unless this
_p_r_e_d_i_c_a_t_e is _m_o_d_u_l_e _t_r_a_n_s_p_a_r_e_n_t, in which case the _c_o_n_t_e_x_t _m_o_d_u_l_e
is inherited from the parent _g_o_a_l. See also module_transparent/1.
ddyynnaammiicc [[pprreeddiiccaattee]]
A _d_y_n_a_m_i_c predicate is a predicate to which _c_l_a_u_s_e_s may be _a_s_s_e_r_ted
and from which _c_l_a_u_s_e_s may be _r_e_t_r_a_c_ted while the program is
running. See also _u_p_d_a_t_e _v_i_e_w.
eexxppoorrtteedd [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e is said to be _e_x_p_o_r_t_e_d from a _m_o_d_u_l_e if it appears
in the _p_u_b_l_i_c _l_i_s_t. This implies that the predicate can be
_i_m_p_o_r_t_e_d into another module to make it visible there. See also
use_module/[1,2].
ffaacctt
_C_l_a_u_s_e without a _b_o_d_y. This is called a fact because interpreted
as logic, there is no condition to be satisfied. The example below
states john is a person.
person(john).
ffaaiill
A _g_o_a_l is said to haved failed if it could not be _p_r_o_v_e_n.
ffllooaatt
Computers cripled representation of a real number. Represented as
`IEEE double'.
ffoorreeiiggnn
Computer code expressed in other languages than Prolog. SWI-Prolog
can only cooperate directly with the C and C++ computer languages.
ffuunnccttoorr
Combination of name and _a_r_i_t_y of a _c_o_m_p_o_u_n_d term. The term foo(_a_,
_b_, _c) is said to be a term belonging to the functor foo/3. foo/0
is used to refer to the _a_t_o_m foo.
ggooaall
Question stated to the Prolog engine. A _g_o_a_l is either an _a_t_o_m or
a _c_o_m_p_o_u_n_d term. A _g_o_a_l succeeds, in which case the _v_a_r_i_a_b_l_e_s in
the _c_o_m_p_o_u_n_d terms have a _b_i_n_d_i_n_g or _f_a_i_l_s if Prolog fails to prove
the _g_o_a_l.
hhaasshhiinngg
_I_n_d_e_x_i_n_g technique used for quick lookup.
hheeaadd
Part of a _c_l_a_u_s_e before the _n_e_c_k instruction. This is an atom or
_c_o_m_p_o_u_n_d term.
iimmppoorrtteedd [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e is said to be _i_m_p_o_r_t_e_d into a _m_o_d_u_l_e if it is defined
in another _m_o_d_u_l_e and made available in this _m_o_d_u_l_e. See also
chapter 5.
iinnddeexxiinngg
Indexing is a technique used to quickly select candidate _c_l_a_u_s_e_s
of a _p_r_e_d_i_c_a_t_e for a specific _g_o_a_l. In most Prolog systems,
including SWI-Prolog, indexing is done on the first _a_r_g_u_m_e_n_t of
the _h_e_a_d. If this argument is instantiated to an _a_t_o_m, _i_n_t_e_g_e_r,
_f_l_o_a_t or _c_o_m_p_o_u_n_d term with _f_u_n_c_t_o_r, _h_a_s_h_i_n_g is used quickly select
all _c_l_a_u_s_e_s of which the first argument may _u_n_i_f_y with the first
argument of the _g_o_a_l.
iinntteeggeerr
Whole number. On most current machines, SWI-Prolog integers are
represented as `32-bit signed values', ranging from -2147483648 to
2147483647. See also current_prolog_flag/2.
iinntteerrpprreetteedd
As opposed to _c_o_m_p_i_l_e_d, interpreted means the Prolog system
attempts to prove a _g_o_a_l by directly reading the _c_l_a_u_s_e_s rather
than executing instructions from an (abstract) instruction set that
is not or only indirectly related to Prolog.
mmeettaa pprreeddiiccaattee
A _p_r_e_d_i_c_a_t_e that reasons about other _p_r_e_d_i_c_a_t_e_s, either by calling
them, (re)defining them or querying _p_r_o_p_e_r_t_i_e_s.
mmoodduullee
Collection of predicates. Each module defines a name-space for
predicates. _b_u_i_l_t_-_i_n predicates are accessible from all modules.
Predicates can be published (_e_x_p_o_r_t_e_d) and _i_m_p_o_r_t_e_d to make their
definition available to other modules.
mmoodduullee ttrraannssppaarreenntt [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e that does not change the _c_o_n_t_e_x_t _m_o_d_u_l_e. Sometimes
also called a _m_e_t_a _p_r_e_d_i_c_a_t_e.
mmuullttiiffiillee [[pprreeddiiccaattee]]
Predicate for which the definition is distributed over multiple
source-files. See multi_file/1.
nneecckk
Operator (:-) separating _h_e_a_d from _b_o_d_y in a _c_l_a_u_s_e.
ooppeerraattoorr
Symbol (_a_t_o_m) that may be placed before its _o_p_e_r_a_n_t (prefix), after
its _o_p_e_r_a_n_t (postfix) or between its two _o_p_e_r_a_n_t_s (infix).
In Prolog, the expression a+b is exactly the same as the canonical
term +(a,b).
ooppeerraanntt
_A_r_g_u_m_e_n_t of an _o_p_e_r_a_t_o_r.
pprreecceeddeennccee
The _p_r_i_o_r_i_t_y of an _o_p_e_r_a_t_o_r. Operator precedence is used to
interpret a+b*c as +(a, *(b,c)).
pprreeddiiccaattee
Collection of _c_l_a_u_s_e_s with the same _f_u_n_c_t_o_r (name/_a_r_i_t_y). If a
_g_o_a_l is proved, the system looks for a _p_r_e_d_i_c_a_t_e with the same
functor, then used _i_n_d_e_x_i_n_g to select candidate _c_l_a_u_s_e_s and then
tries these _c_l_a_u_s_e_s one-by-one. See also _b_a_c_k_t_r_a_c_k_i_n_g.
pprriioorriittyy
In the context of _o_p_e_r_a_t_o_r_s a synonym for _p_r_e_c_e_d_e_n_c_e.
pprrooggrraamm
Collection of _p_r_e_d_i_c_a_t_e_s.
pprrooppeerrttyy
Attribute of an object. SWI-Prolog defines various _*___p_r_o_p_e_r_t_y
predicates to query the status of predicates, clauses. etc.
pprroovvee
Process where Prolog attempts to prove a _q_u_e_r_y using the available
_p_r_e_d_i_c_a_t_e_s.
ppuubblliicc lliisstt
List of _p_r_e_d_i_c_a_t_e_s exported from a _m_o_d_u_l_e.
qquueerryy
See _g_o_a_l.
rreettrraacctt
Remove a _c_l_a_u_s_e from a _p_r_e_d_i_c_a_t_e. See also _d_y_n_a_m_i_c, _u_p_d_a_t_e _v_i_e_w
and _a_s_s_e_r_t.
sshhaarreedd
Two _v_a_r_i_a_b_l_e_s are called _s_h_a_r_e_d after they are _u_n_i_f_i_e_d. This
implies if either of them is _b_o_u_n_d, the other is bound to the same
value:
?- A = B, A = a.
A = a,
B = a
ssiinngglleettoonn [[vvaarriiaabbllee]]
_V_a_r_i_a_b_l_e appearing only one time in a _c_l_a_u_s_e. SWI-Prolog normally
warns for this to avoid you making spelling mistakes. If a
variable appears on purpose only once in a clause, write it as _
(see _a_n_o_n_y_m_o_u_s) or make sure the first character is a _. See also
the style_check/1 option singletons.
ssoolluuttiioonn
_B_i_n_d_i_n_g_s resulting from a successfully _p_r_o_v_en _g_o_a_l.
ssttrruuccttuurree
Synonym for _c_o_m_p_o_u_n_d term.
ssttrriinngg
Used for the following representations of text: a packed array
(see section 4.23, SWI-Prolog specific), a list of character codes
or a list of one-character _a_t_o_m_s.
ssuucccceeeedd
A _g_o_a_l is said to have _s_u_c_c_e_e_d_e_d if it has been _p_r_o_v_e_n.
tteerrmm
Value in Prolog. A _t_e_r_m is either a _v_a_r_i_a_b_l_e, _a_t_o_m, integer, float
or _c_o_m_p_o_u_n_d term. In addition, SWI-Prolog also defines the type
_s_t_r_i_n_g
ttrraannssppaarreenntt
See _m_o_d_u_l_e _t_r_a_n_s_p_a_r_e_n_t.
uunniiffyy
Prolog process to make two terms equal by assigning variables in
one term to values at the corresponding location of the other term.
For example:
?- foo(a, B) = foo(A, b).
A = a,
B = b
Unlike assignment (which does not exist in Prolog), unification is
not directed.
uuppddaattee vviieeww
How Prolog behaves when a _d_y_n_a_m_i_c _p_r_e_d_i_c_a_t_e is changed while it is
running. There are two models. In most older Prolog systems the
change becomes immediately visible to the _g_o_a_l, in modern systems
including SWI-Prolog, the running _g_o_a_l is not affected. Only new
_g_o_a_l_s `see' the new definition.
vvaarriiaabbllee
A Prolog variable is a value that `is not yet bound'. After
_b_i_n_d_i_n_g a variable, it cannot be modified. _B_a_c_k_t_r_a_c_k_i_n_g to a point
in the execution before the variable was bound will turn it back
into a variable:
?- A = b, A = c.
No
?- (A = b; true; A = c).
A = b ;
A = _G283 ;
A = c ;
No
See also _u_n_i_f_y.
CChhaapptteerr 1111.. SSWWII--PPRROOLLOOGG LLIICCEENNSSEE CCOONNDDIITTIIOONNSS AANNDD TTOOOOLLSS
SWI-Prolog licensing aims at a large audience, combining ideas from the
Free Software Foundation and the less principal Open Source Initiative.
The license aims at:
o Make SWI-Prolog itself and its libraries are `As free as possible'.
o Allow for easy integration of contributions. See section 11.2.
o Free software can build on SWI-Prolog without limitations.
o Non-free (open or proprietary) software can be produced using
SWI-Prolog, although contributed pure GPL-ed components cannot be
used.
To achieve this, different parts of the system have different licenses.
SWI-Prolog programs consists of a mixture of `native' code (source
compiled to machine instructions) and `virtual machine' code (Prolog
source compiled to SWI-Prolog virtual machine instructions, covering
both compiled SWI-Prolog libraries and your compiled application).
For maximal coherence between free licenses, we start with the two
prime licenses from the Free Software Foundation, the GNU General
Public License (GPL) and the Lesser GNU General Public License (LGPL),
after which we add a proven (used by the GNU-C compiler runtime library
as well as the GNU _C_l_a_s_s_P_a_t_h project) exception to deal with the
specific nature of compiled virtual machine code in a saved state.
1111..11 TThhee SSWWII--PPrroolloogg kkeerrnneell aanndd ffoorreeiiggnn lliibbrraarriieess
The SWI-Prolog kernel and our foreign libraries are distributed under
the LLGGPPLL. A Prolog executable consists of the combination of these
`native' code components and Prolog virtual machine code. The
SWI-Prolog plrc utility allows for disassembling and re-assembling
these parts, a process satisfying article 66bb of the LGPL.
Under the LGPL SWI-Prolog can be linked to code distributed under
arbitrary licenses, provided a number of requirements are fullfilled.
The most important requirement is that, if an application replies on
a _m_o_d_i_f_i_e_d version of SWI-Prolog, the modified sources must be made
available.
1111..11..11 TThhee SSWWII--PPrroolloogg PPrroolloogg lliibbrraarriieess
Lacking a satisfactory technical solution to handle article 66 of the
LGPL, this license cannot be used for the Prolog source code that is
part of the SWI-Prolog system (both libraries and kernel code). This
situation is comparable to libgcc, the runtime library used with the
GNU C-compiler. Therefore, we use the same proven license terms as
this library. The libgcc license is the with a special exception.
Below we rephrased this exception adjusted to our needs:
_A_s _a _s_p_e_c_i_a_l _e_x_c_e_p_t_i_o_n_, _i_f _y_o_u _l_i_n_k _t_h_i_s _l_i_b_r_a_r_y _w_i_t_h _o_t_h_e_r
_f_i_l_e_s_, _c_o_m_p_i_l_e_d _w_i_t_h _a _F_r_e_e _S_o_f_t_w_a_r_e _c_o_m_p_i_l_e_r_, _t_o _p_r_o_d_u_c_e
_a_n _e_x_e_c_u_t_a_b_l_e_, _t_h_i_s _l_i_b_r_a_r_y _d_o_e_s _n_o_t _b_y _i_t_s_e_l_f _c_a_u_s_e _t_h_e
_r_e_s_u_l_t_i_n_g _e_x_e_c_u_t_a_b_l_e _t_o _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U _G_e_n_e_r_a_l _P_u_b_l_i_c
_L_i_c_e_n_s_e_. _T_h_i_s _e_x_c_e_p_t_i_o_n _d_o_e_s _n_o_t _h_o_w_e_v_e_r _i_n_v_a_l_i_d_a_t_e _a_n_y _o_t_h_e_r
_r_e_a_s_o_n_s _w_h_y _t_h_e _e_x_e_c_u_t_a_b_l_e _f_i_l_e _m_i_g_h_t _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U
_G_e_n_e_r_a_l _P_u_b_l_i_c _L_i_c_e_n_s_e_.
1111..22 CCoonnttrriibbuuttiinngg ttoo tthhee SSWWII--PPrroolloogg pprroojjeecctt
To achieve maximal coherence using SWI-Prolog for Free and Non-Free
software we advice the use of the LGPL for contributed foreign code
and the use of the GPL with SWI-Prolog exception for Prolog code for
contributed modules.
As a rule of thumb it is advised to use the above licenses whenever
possible and only use a strict GPL compliant license only if the module
contains other code under strict GPL compliant licenses.
1111..33 SSooffttwwaarree ssuuppppoorrtt ttoo kkeeeepp ttrraacckk ooff lliicceennssee ccoonnddiittiioonnss
Given the above, it is possible that SWI-Prolog packages and extensions
will rely on the GPL. The predicates below allow for registering
license requirements for Prolog files and foreign modules. The
predicate eval_license/0 reports which components from the currenly
configured system are distributed under copy-left and open source
enforcing licenses (the GPL) and therefore must be replaced before
distributing linked applications under non-free license conditions.
eevvaall__lliicceennssee
Evaluate the license conditions of all loaded components. If the
system contains one or more components that are licenced under
GPL-like restrictions the system indicates this program may only
be distributed under the GPL license as well as which components
prohibit the use of other license conditions.
lliicceennssee((_+_L_i_c_e_n_s_e_I_d_, _+_C_o_m_p_o_n_e_n_t))
Register the fact that _C_o_m_p_o_n_e_n_t is distributed under a license
identified by _L_i_c_e_n_s_e_I_d. The most important _L_i_c_e_n_s_e_I_d's are:
sswwiippll
Indicates this module is distributed under the GNU General
Public License (GPL) with the SWI-Prolog exception:
_A_s _a _s_p_e_c_i_a_l _e_x_c_e_p_t_i_o_n_, _i_f _y_o_u _l_i_n_k _t_h_i_s _l_i_b_r_a_r_y _w_i_t_h
_o_t_h_e_r _f_i_l_e_s_, _c_o_m_p_i_l_e_d _w_i_t_h _S_W_I_-_P_r_o_l_o_g_, _t_o _p_r_o_d_u_c_e _a_n
_e_x_e_c_u_t_a_b_l_e_, _t_h_i_s _l_i_b_r_a_r_y _d_o_e_s _n_o_t _b_y _i_t_s_e_l_f _c_a_u_s_e _t_h_e
_r_e_s_u_l_t_i_n_g _e_x_e_c_u_t_a_b_l_e _t_o _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U _G_e_n_e_r_a_l
_P_u_b_l_i_c _L_i_c_e_n_s_e_. _T_h_i_s _e_x_c_e_p_t_i_o_n _d_o_e_s _n_o_t _h_o_w_e_v_e_r
_i_n_v_a_l_i_d_a_t_e _a_n_y _o_t_h_e_r _r_e_a_s_o_n_s _w_h_y _t_h_e _e_x_e_c_u_t_a_b_l_e _f_i_l_e
_m_i_g_h_t _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U _G_e_n_e_r_a_l _P_u_b_l_i_c _L_i_c_e_n_s_e_.
This should be the default for software contributed to the
SWI-Prolog project as it allows the community to prosper
both in the free and non-free world. Still, people using
SWI-Prolog to create non-free applications must contribute
sources to improvements they make to the community.
llggppll
This is the default license for foreign-libraries linked with
SWI-Prolog. Use PL_license() to register the condition from
foreign code.
ggppll
Indicates this module is strictly Free Software, which
implies it cannot be used together with any module that is
incompatible to the GPL. Please only use these conditions when
forced by other code used in the component.
lliicceennssee((_+_L_i_c_e_n_s_e_I_d))
Intented as a directive in Prolog source files. It takes the
current filename and calls license/2.
void PPLL__lliicceennssee(_c_o_n_s_t _c_h_a_r _*_L_i_c_e_n_s_e_I_d_, _c_o_n_s_t _c_h_a_r _*_C_o_m_p_o_n_e_n_t)
Intended for the install() procedure of foreign libraries. This
call can be made _b_e_f_o_r_e PL_initialise().
CChhaapptteerr 1122.. SSUUMMMMAARRYY
1122..11 PPrreeddiiccaatteess
The predicate summary is used by the Prolog predicate apropos/1 to
suggest predicates from a keyword.
!/0 Cut (discard choicepoints)
!/1 Cut block. See block/3
,/2 Conjunction of goals
->/2 If-then-else
*->/2 Soft-cut
./2 Consult. Also list constructor
;/2 Disjunction of goals. Same as |/2
</2 Arithmetic smaller
=/2 Unification
=../2 ``Univ.'' Term to list conversion
=:=/2 Arithmetic equal
=</2 Arithmetic smaller or equal
==/2 Identical
=@=/2 Structural identical
=\=/2 Arithmetic not equal
>/2 Arithmetic larger
>=/2 Arithmetic larger or equal
@</2 Standard order smaller
@=</2 Standard order smaller or equal
@>/2 Standard order larger
@>=/2 Standard order larger or equal
\+/1 Negation by failure. Same as not/1
\=/2 Not unifyable
\==/2 Not identical
\=@=/2 Not structural identical
^/2 Existential quantification (bagof/3, setof/3)
|/2 Disjunction of goals. Same as ;/2
abolish/1 Remove predicate definition from the database
abolish/2 Remove predicate definition from the database
abort/0 Abort execution, return to top level
absolute_file_name/2 Get absolute path name
absolute_file_name/3 Get absolute path name with options
access_file/2 Check access permissions of a file
append/1 Append to a file
append/3 Concatenate lists
apply/2 Call goal with additional arguments
apropos/1 library(online_help) Search manual
arg/3 Access argument of a term
arithmetic_function/1 Register an evaluable function
assert/1 Add a clause to the database
assert/2 Add a clause to the database, give reference
asserta/1 Add a clause to the database (first)
asserta/2 Add a clause to the database (first)
assertz/1 Add a clause to the database (last)
assertz/2 Add a clause to the database (last)
attach_console/0 Attach I/O console to thread
at_end_of_stream/0 Test for end of file on input
at_end_of_stream/1 Test for end of file on stream
at_halt/1 Register goal to run at halt/1
at_initialization/1 Register goal to run at start-up
atom/1 Type check for an atom
atom_chars/2 Convert between atom and list of characters
atom_codes/2 Convert between atom and list of ASCII values
atom_length/2 Determine length of an atom
atom_prefix/2 Test for start of atom
atom_to_term/3 Convert between atom and term
atomic/1 Type check for primitive
autoload/0 Autoload all predicates now
bagof/3 Find all solutions to a goal
between/3 Integer range checking/generating
block/3 Start a block (`catch'/`throw')
break/0 Start interactive toplevel
call/1 Call a goal
call/[2..] Call with additional arguments
call_cleanup/3 Guard a goal with a cleaup-handler
call_cleanup/2 Guard a goal with a cleaup-handler
call_shared_object_function/2 UNIX: Call C-function in shared (.so) file
call_with_depth_limit/3 Prove goal with bounded depth
callable/1 Test for atom or compound term
catch/3 Call goal, watching for exceptions
char_code/2 Convert between atom and ASCII value
char_conversion/2 Provide mapping of input characters
char_type/2 Classify characters
character_count/2 Get character index on a stream
chdir/1 Compatibility: change working directory
checklist/2 Invoke goal on all members of a list
clause/2 Get clauses of a predicate
clause/3 Get clauses of a predicate
clause_property/2 Get properties of a clause
close/1 Close stream
close/2 Close stream (forced)
close_dde_conversation/1 Win32: Close DDE channel
close_shared_object/1 UNIX: Close shared library (.so file)
compare/3 Compare, using a predicate to determine the order
compiling/0 Is this a compilation run?
compound/1 Test for compound term
atom_concat/3 Append two atoms
code_type/2 Classify a character-code
concat_atom/2 Append a list of atoms
concat_atom/3 Append a list of atoms with separator
consult/1 Read (compile) a Prolog source file
context_module/1 Get context module of current goal
convert_time/8 Break time stamp into fields
convert_time/2 Convert time stamp to string
copy_stream_data/2 Copy all data from stream to stream
copy_stream_data/3 Copy n bytes from stream to stream
copy_term/2 Make a copy of a term
current_arithmetic_function/1 Examine evaluable functions
current_atom/1 Examine existing atoms
current_char_conversion/2 Query input character mapping
current_flag/1 Examine existing flags
current_foreign_library/2 library(shlib) Examine loaded shared libraries (.so files)
current_format_predicate/2 Enumerate user-defined format codes
current_functor/2 Examine existing name/arity pairs
current_input/1 Get current input stream
current_key/1 Examine existing database keys
current_module/1 Examine existing modules
current_module/2 Examine existing modules
current_mutex/3 Examine existing mutexes
current_op/3 Examine current operator declarations
current_output/1 Get the current output stream
current_predicate/1 Examine existing predicates (ISO)
current_predicate/2 Examine existing predicates
current_signal/3 Current software signal mapping
current_stream/3 Examine open streams
current_thread/2 Examine Prolog threads
dde_current_connection/2 Win32: Examine open DDE connections
dde_current_service/2 Win32: Examine DDE services provided
dde_execute/2 Win32: Execute command on DDE server
dde_register_service/2 Win32: Become a DDE server
dde_request/3 Win32: Make a DDE request
dde_poke/3 Win32: POKE operation on DDE server
dde_unregister_service/1 Win32: Terminate a DDE service
debug/0 Test for debugging mode
debug_control_hook/1 (hook) Extend spy/1, etc.
debugging/0 Show debugger status
default_module/2 Get the default modules of a module
delete/3 Delete all matching members from a list
delete_directory/1 Remove a folder from the file system
delete_file/1 Remove a file from the file system
discontiguous/1 Indicate distributed definition of a predicate
deterministic/0 Test deterministicy of current goal
dwim_match/2 Atoms match in ``Do What I Mean'' sense
dwim_match/3 Atoms match in ``Do What I Mean'' sense
dwim_predicate/2 Find predicate in ``Do What I Mean'' sense
dynamic/1 Indicate predicate definition may change
edit/1 Edit a file
ensure_loaded/1 Consult a file if that has not yet been done
erase/1 Erase a database record or clause
eval_license/0 Evaluate licenses of loaded modules
exception/3 (hook) Handle runtime exceptions
exists_directory/1 Check existence of directory
exists_file/1 Check existence of file
exit/2 Exit from named block. See block/3
expand_answer/2 Expand answer of query
expand_file_name/2 Wildcard expansion of file names
expand_file_search_path/2 Wildcard expansion of file paths
expand_goal/2 Compiler: expand goal in clause-body
expand_query/4 Expanded entered query
expand_term/2 Compiler: expand read term into clause(s)
explain/1 library(explain) Explain argument
explain/2 library(explain) 2nd argument is explanation of first
export/1 Export a predicate from a module
export_list/2 List of public predicates of a module
fail/0 Always false
fail/1 Immediately fail named block. See block/3
current_prolog_flag/2 Get system configuration parameters
file_base_name/2 Get file part of path
file_directory_name/2 Get directory part of path
file_name_extension/3 Add, remove or test file extensions
file_search_path/2 Define path-aliases for locating files
fileerrors/2 Do/Don't warn on file errors
findall/3 Find all solutions to a goal
flag/3 Simple global variable system
flatten/2 Transform nested list into flat list
float/1 Type check for a floating point number
flush_output/0 Output pending characters on current stream
flush_output/1 Output pending characters on specified stream
forall/2 Prove goal for all solutions of another goal
format/1 Formatted output
format/2 Formatted output with arguments
format/3 Formatted output on a stream
format_predicate/2 Program format/[1,2]
free_variables/2 Find unbound variables in a term
functor/3 Get name and arity of a term or construct a term
garbage_collect/0 Invoke the garbage collector
garbage_collect_atoms/0 Invoke the atom garbage collector
gensym/2 Generate unique atoms from a base
get/1 Read first non-blank character
get/2 Read first non-blank character from a stream
get0/1 Read next character
get0/2 Read next character from a stream
get_byte/1 Read next byte (ISO)
get_byte/2 Read next byte from a stream (ISO)
get_char/1 Read next character as an atom (ISO)
get_char/2 Read next character from a stream (ISO)
get_code/1 Read next character (ISO)
get_code/2 Read next character from a stream (ISO)
get_single_char/1 Read next character from the terminal
get_time/1 Get current time
getenv/2 Get shell environment variable
goal_expansion/2 Hook for macro-expanding goals
ground/1 Verify term holds no unbound variables
guitracer/0 Install hooks for the graphical debugger
halt/0 Exit from Prolog
halt/1 Exit from Prolog with status
hash_term/2 Hash-value of ground term
help/0 Give help on help
help/1 Give help on predicates and show parts of manual
help_hook/1 (hook) User-hook in the help-system
ignore/1 Call the argument, but always succeed
import/1 Import a predicate from a module
include/1 Include a file with declarations
index/1 Change clause indexing
initialization/1 Initialization directive
int_to_atom/2 Convert from integer to atom
int_to_atom/3 Convert from integer to atom (non-decimal)
integer/1 Type check for integer
interactor/0 Start new thread with console and toplevel
intersection/3 Set intersection
is/2 Evaluate arithmetic expression
is_absolute_file_name/1 True if arg defines an absolute path
is_list/1 Type check for a list
is_set/1 Type check for a set
keysort/2 Sort, using a key
last/2 Last element of a list
leash/1 Change ports visited by the tracer
length/2 Length of a list
library_directory/1 (hook) Directories holding Prolog libraries
license/1 Define license for current file
license/2 Define license for named module
limit_stack/2 Limit stack expansion
line_count/2 Line number on stream
line_position/2 Character position in line on stream
list_to_set/2 Remove duplicates
listing/0 List program in current module
listing/1 List predicate
load_files/2 Load source files with options
load_foreign_library/1 library(shlib) Load shared library (.so file)
load_foreign_library/2 library(shlib) Load shared library (.so file)
make/0 Reconsult all changed source files
make_directory/1 Create a folder on the file system
make_fat_filemap/1 Win32: Create file containing non-FAT filenames
make_library_index/1 Create autoload file INDEX.pl
make_library_index/2 Create selective autoload file INDEX.pl
maplist/3 Transform all elements of a list
member/2 Element is member of a list
memberchk/2 Deterministic member/2
merge/3 Merge two sorted lists
merge_set/3 Merge two sorted sets
message_hook/3 Intercept print_message/2
message_to_string/2 Translate message-term to string
meta_predicate/1 Quintus compatibility
module/1 Query/set current type-in module
module/2 Declare a module
module_transparent/1 Indicate module based meta predicate
msort/2 Sort, do not remove duplicates
multifile/1 Indicate distributed definition of predicate
mutex_create/1 Create a thread-synchronisation device
mutex_destroy/1 Destroy a mutex
mutex_lock/1 Become owner of a mutex
mutex_trylock/1 Become owner of a mutex (non-blocking)
mutex_unlock/1 Release ownership of mutex
mutex_unlock_all/0 Release ownership of all mutexes
name/2 Convert between atom and list of ASCII characters
nl/0 Generate a newline
nl/1 Generate a newline on a stream
nodebug/0 Disable debugging
noguitracer/0 Disable the graphical debugger
nonvar/1 Type check for bound term
noprotocol/0 Disable logging of user interaction
nospy/1 Remove spy point
nospyall/0 Remove all spy points
not/1 Negation by failure (argument not provable). Same as \+/1
notrace/0 Stop tracing
notrace/1 Do not debug argument goal
nth0/3 N-th element of a list (0-based)
nth1/3 N-th element of a list (1-based)
nth_clause/3 N-th clause of a predicate
number/1 Type check for integer or float
number_chars/2 Convert between number and one-char atoms
number_codes/2 Convert between number and ASCII values
numbervars/4 Enumerate unbound variables of a term using a given base
on_signal/3 Handle a software signal
once/1 Call a goal deterministically
op/3 Declare an operator
open/3 Open a file (creating a stream)
open/4 Open a file (creating a stream)
open_dde_conversation/3 Win32: Open DDE channel
open_null_stream/1 Open a stream to discard output
open_resource/3 Open a program resource as a stream
open_shared_object/2 UNIX: Open shared library (.so file)
open_shared_object/3 UNIX: Open shared library (.so file)
peek_byte/1 Read byte without removing
peek_byte/2 Read byte without removing
peek_char/1 Read character without removing
peek_char/2 Read character without removing
peek_code/1 Read character-code without removing
peek_code/2 Read character-code without removing
phrase/2 Activate grammar-rule set
phrase/3 Activate grammar-rule set (returning rest)
please/3 Query/change environment parameters
plus/3 Logical integer addition
portray/1 (hook) Modify behaviour of print/1
portray_clause/1 Pretty print a clause
predicate_property/2 Query predicate attributes
predsort/3 Sort, using a predicate to determine the order
preprocessor/2 Install a preprocessor before the compiler
print/1 Print a term
print/2 Print a term on a stream
print_message/2 Print message from (exception) term
print_message_lines/3 Print message to stream
profile/3 Obtain execution statistics
profile_count/3 Obtain profile results on a predicate
profiler/2 Obtain/change status of the profiler
prolog/0 Run interactive toplevel
prolog_current_frame/1 Reference to goal's environment stack
prolog_edit:locate/2 Locate targets for edit/1
prolog_edit:locate/3 Locate targets for edit/1
prolog_edit:edit_source/1 Call editor for edit/1
prolog_edit:edit_command/2 Specify editor activation
prolog_edit:load/0 Load edit/1 extensions
prolog_file_type/2 Define meaning of file extension
prolog_frame_attribute/3 Obtain information on a goal environment
prolog_list_goal/1 Hook. Intercept tracer 'L' command
prolog_load_context/2 Context information for directives
prolog_navigator/1 Graphical overview of project
prolog_skip_level/2 Indicate deepest recursion to trace
prolog_to_os_filename/2 Convert between Prolog and OS filenames
prolog_trace_interception/4 library(user) Intercept the Prolog tracer
prompt1/1 Change prompt for 1 line
prompt/2 Change the prompt used by read/1
proper_list/1 Type check for list
protocol/1 Make a log of the user interaction
protocola/1 Append log of the user interaction to file
protocolling/1 On what file is user interaction logged
put/1 Write a character
put/2 Write a character on a stream
put_byte/1 Write a byte
put_byte/2 Write a byte on a stream
put_char/1 Write a character
put_char/2 Write a character on a stream
put_code/1 Write a character-code
put_code/2 Write a character-code on a stream
qcompile/1 Compile source to Quick Load File
qsave_program/1 Create runtime application
qsave_program/2 Create runtime application
read/1 Read Prolog term
read/2 Read Prolog term from stream
read_clause/1 Read clause
read_clause/2 Read clause from stream
read_history/6 Read using history substitution
read_link/3 Read a symbolic link
read_term/2 Read term with options
read_term/3 Read term with options from stream
recorda/2 Record term in the database (first)
recorda/3 Record term in the database (first)
recorded/2 Obtain term from the database
recorded/3 Obtain term from the database
recordz/2 Record term in the database (last)
recordz/3 Record term in the database (last)
redefine_system_predicate/1 Abolish system definition
rename_file/2 Change name of file
repeat/0 Succeed, leaving infinite backtrack points
require/1 This file requires these predicates
reset_profiler/0 Clear statistics obtained by the profiler
resource/3 Declare a program resource
retract/1 Remove clause from the database
retractall/1 Remove unifying clauses from the database
reverse/2 Inverse the order of the elements in a list
same_file/2 Succeeds if arguments refer to same file
see/1 Change the current input stream
seeing/1 Query the current input stream
seek/4 Modify the current position in a stream
seen/0 Close the current input stream
select/3 Select element of a list
set_input/1 Set current input stream from a stream
set_output/1 Set current output stream from a stream
set_prolog_flag/2 Define a system feature
set_stream/2 Set stream attribute
set_stream_position/2 Seek stream to position
set_tty/2 Set `tty' stream
setarg/3 Destructive assignment on term
setenv/2 Set shell environment variable
setof/3 Find all unique solutions to a goal
sformat/2 Format on a string
sformat/3 Format on a string
shell/0 Execute interactive subshell
shell/1 Execute OS command
shell/2 Execute OS command
show_profile/1 Show results of the profiler
size_file/2 Get size of a file in characters
skip/1 Skip to character in current input
skip/2 Skip to character on stream
rl_add_history/1 Add line to readline(3) history
rl_read_init_file/1 Read readline(3) init file
sleep/1 Suspend execution for specified time
sort/2 Sort elements in a list
source_file/1 Examine currently loaded source files
source_file/2 Obtain source file of predicate
source_location/2 Location of last read term
spy/1 Force tracer on specified predicate
stack_parameter/4 Some systems: Query/Set runtime stack parameter
statistics/0 Show execution statistics
statistics/2 Obtain collected statistics
stream_property/2 Get stream properties
string/1 Type check for string
string_concat/3 atom_concat/3for strings
string_length/2 Determine length of a string
string_to_atom/2 Conversion between string and atom
string_to_list/2 Conversion between string and list of ASCII
style_check/1 Change level of warnings
sub_atom/5 Take a substring from an atom
sublist/3 Determine elements that meet condition
subset/2 Check subset relation for unordered sets
sub_string/5 Take a substring from a string
subtract/3 Delete elements that do not meet condition
succ/2 Logical integer successor relation
swritef/2 Formatted write on a string
swritef/3 Formatted write on a string
tab/1 Output number of spaces
tab/2 Output number of spaces on a stream
tell/1 Change current output stream
telling/1 Query current output stream
term_expansion/2 (hook) Convert term before compilation
term_to_atom/2 Convert between term and atom
thread_at_exit/1 Register goal to be called at exit
thread_create/3 Create a new Prolog task
thread_exit/1 Terminate Prolog task with value
thread_get_message/1 Wait for message
thread_join/2 Wait for Prolog task-completion
thread_peek_message/1 Test for message in queue
thread_self/1 Get identifier of current thread
thread_send_message/2 Send message to another thread
thread_signal/2 Execute goal in another thread
threads/0 List running threads
throw/1 Raise an exception (see catch/3)
time/1 Determine time needed to execute goal
time_file/2 Get last modification time of file
tmp_file/2 Create a temporary filename
told/0 Close current output
trace/0 Start the tracer
trace/1 Set trace-point on predicate
trace/2 Set/Clear trace-point on ports
tracing/0 Query status of the tracer
trim_stacks/0 Release unused memory resources
true/0 Succeed
tty_get_capability/3 Get terminal parameter
tty_goto/2 Goto position on screen
tty_put/2 Write control string to terminal
tty_size/2 Get row/column size of the terminal
ttyflush/0 Flush output on terminal
union/3 Union of two sets
unify_with_occurs_check/2 Logically sound unification
unix/1 OS interaction
unknown/2 Trap undefined predicates
unload_foreign_library/1 library(shlib) Detach shared library (.so file)
unsetenv/1 Delete shell environment variable
use_module/1 Import a module
use_module/2 Import predicates from a module
var/1 Type check for unbound variable
visible/1 Ports that are visible in the tracer
volatile/1 Predicates that are not saved
wait_for_input/3 Wait for input with optional timeout
wildcard_match/2 Csh(1) style wildcard match
win_exec/2 Win32: spawn Windows task
win_insert_menu/2 plwin.exe: add menu
win_insert_menu_item/4 plwin.exe: add item to menu
win_shell/2 Win32: open document through Shell
win_registry_get_value/3 Win32: get registry value
with_mutex/2 Run goal while holding mutex
working_directory/2 Query/change CWD
write/1 Write term
write/2 Write term to stream
writeln/1 Write term, followed by a newline
write_canonical/1 Write a term with quotes, ignore operators
write_canonical/2 Write a term with quotes, ignore operators on a stream
write_term/2 Write term with options
write_term/3 Write term with options to stream
writef/1 Formatted write
writef/2 Formatted write on stream
writeq/1 Write term, insert quotes
writeq/2 Write term, insert quotes on stream
1122..22 LLiibbrraarryy pprreeddiiccaatteess
1122..22..11 lliibbrraarryy((check))
check/0 Program completeness and consistency
list_undefined/0 List undefined predicates
list_autoload/0 List predicates that require autoload
list_redefined/0 List locally redefined predicates
1122..22..22 lliibbrraarryy((readutil))
read_line_to_codes/2 Read line from a stream
read_line_to_codes/3 Read line from a stream
read_stream_to_codes/2Read contents of stream
read_stream_to_codes/3Read contents of stream
read_file_to_codes/3 Read contents of file
read_file_to_terms/3 Read contents of file to Prolog terms
1122..22..33 lliibbrraarryy((netscape))
www_open_url/1 Open a web-page in a browser
1122..22..44 lliibbrraarryy((registry))
registry_get_key/2 Get principal value of key
registry_get_key/3 Get associated value of key
registry_set_key/2 Set principal value of key
registry_set_key/3 Set associated value of key
registry_delete_key/1 Remove a key
shell_register_file_type/4Register a file-type
shell_register_dde/6 Register DDE action
shell_register_prolog/1 Register Prolog
1122..22..55 lliibbrraarryy((url))
parse_url/2 Analyse or construct a URL
parse_url/3 Analyse or construct a relative URL
global_url/3 Make relative URL global
http_location/2 Analyse or construct location
www_form_encode/2 Encode or decode form-data
1122..33 AArriitthhmmeettiicc FFuunnccttiioonnss
*/2 Multiplication
**/2 Power function
+/2 Addition
-/1 Unary minus
-/2 Subtraction
//2 Division
///2 Integer division
/\/2 Bitwise and
<</2 Bitwise left shift
>>/2 Bitwise right shift
./2 List of one character: character code
\/1 Bitwise negation
\//2 Bitwise or
^/2 Power function
abs/1 Absolute value
acos/1 Inverse (arc) cosine
asin/1 Inverse (arc) sine
atan/1 Inverse (arc) tangent
atan/2 Rectangular to polar conversion
ceil/1 Smallest integer larger than arg
ceiling/1 Smallest integer larger than arg
cos/1 Cosine
cputime/0 Get CPU time
e/0 Mathematical constant
exp/1 Exponent (base e)
float/1 Explicitly convert to float
float_fractional_part/1 Fractional part of a float
float_integer_part/1 Integer part of a float
floor/1 Largest integer below argument
integer/1 Round to nearest integer
log/1 Natural logarithm
log10/1 10 base logarithm
max/2 Maximum of two numbers
min/2 Minimum of two numbers
mod/2 Remainder of division
random/1 Generate random number
rem/2 Remainder of division
round/1 Round to nearest integer
truncate/1 Truncate float to integer
pi/0 Mathematical constant
sign/1 Extract sign of value
sin/1 Sine
sqrt/1 Square root
tan/1 Tangent
xor/2 Bitwise exclusive or
1122..44 OOppeerraattoorrss
$ 1 fx Bind toplevel variable
^ 200 xfy Predicate
^ 200 xfy Arithmetic function
mod 300 xfx Arithmetic function
* 400 yfx Arithmetic function
/ 400 yfx Arithmetic function
// 400 yfx Arithmetic function
<< 400 yfx Arithmetic function
>> 400 yfx Arithmetic function
xor 400 yfx Arithmetic function
+ 500 fx Arithmetic function
- 500 fx Arithmetic function
? 500 fx XPCE: obtainer
\ 500 fx Arithmetic function
+ 500 yfx Arithmetic function
- 500 yfx Arithmetic function
/\ 500 yfx Arithmetic function
\/ 500 yfx Arithmetic function
: 600 xfy module:term separator
< 700 xfx Predicate
= 700 xfx Predicate
=.. 700 xfx Predicate
=:= 700 xfx Predicate
< 700 xfx Predicate
== 700 xfx Predicate
=@= 700 xfx Predicate
=\= 700 xfx Predicate
> 700 xfx Predicate
>= 700 xfx Predicate
@< 700 xfx Predicate
@=< 700 xfx Predicate
@> 700 xfx Predicate
@>= 700 xfx Predicate
is 700 xfx Predicate
\= 700 xfx Predicate
\== 700 xfx Predicate
=@= 700 xfx Predicate
not 900 fy Predicate
\+ 900 fy Predicate
, 1000 xfy Predicate
-> 1050 xfy Predicate
*-> 1050 xfy Predicate
; 1100 xfy Predicate
| 1100 xfy Predicate
discontiguous 1150 fx Predicate
dynamic 1150 fx Predicate
module_transparent 1150 fx Predicate
multifile 1150 fx Predicate
volatile 1150 fx Predicate
initialization 1150 fx Predicate
:- 1200 fx Introduces a directive
?- 1200 fx Introduces a directive
--> 1200 xfx DCGrammar: rewrite
:- 1200 xfx head :- body. separator
Bibliography
[Anjewierden & Wielemaker, 1989] A. Anjewierden and J. Wielemaker.
Extensible objects. ESPRIT Project
1098 Technical Report UvA-C1-TR-006a,
University of Amsterdam, March 1989.
[BIM, 1989] _B_I_M _P_r_o_l_o_g _r_e_l_e_a_s_e _2_._4. Everberg,
Belgium, 1989.
[Bowen & Byrd, 1983] D. L. Bowen and L. M. Byrd. A portable
Prolog compiler. In L. M. Pereira,
editor, _P_r_o_c_e_e_d_i_n_g_s _o_f _t_h_e _L_o_g_i_n
_P_r_o_g_r_a_m_m_i_n_g _W_o_r_k_s_h_o_p _1_9_8_3, Lisabon,
Portugal, 1983. Universidade nova de
Lisboa.
[Bratko, 1986] I. Bratko. _P_r_o_l_o_g _P_r_o_g_r_a_m_m_i_n_g _f_o_r _A_r_-
_t_i_f_i_c_i_a_l _I_n_t_e_l_l_i_g_e_n_c_e. Addison-Wesley,
Reading, Massachusetts, 1986.
[Clocksin & Melish, 1987] W. F. Clocksin and C. S. Melish.
_P_r_o_g_r_a_m_m_i_n_g _i_n _P_r_o_l_o_g. Springer-
Verlag, New York, Third, Revised and
Extended edition, 1987.
[Deransart _e_t _a_l_., 1996] P. Deransart, A. Ed-Dbali, and
L. Cervoni. _P_r_o_l_o_g_: _T_h_e _S_t_a_n_d_a_r_d.
Springer-Verlag, New York, 1996.
[Kernighan & Ritchie, 1978] B. W. Kernighan and D. M. Ritchie. _T_h_e
_C _P_r_o_g_r_a_m_m_i_n_g _L_a_n_g_u_a_g_e. Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.
[OKeefe, 1990] R. A. OKeefe. _T_h_e _C_r_a_f_t _o_f _P_r_o_l_o_g.
MIT Press, Massachussetts, 1990.
[Pereira, 1986] F. Pereira. _C_-_P_r_o_l_o_g _U_s_e_r_'_s _M_a_n_u_a_l,
1986.
[Qui, 1997] _Q_u_i_n_t_u_s _P_r_o_l_o_g_, _U_s_e_r _G_u_i_d_e _a_n_d
_R_e_f_e_r_e_n_c_e _M_a_n_u_a_l. Berkhamsted, UK,
1997.
[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro. _T_h_e
_A_r_t _o_f _P_r_o_l_o_g. MIT Press, Cambridge,
Massachusetts, 1986.
[Warren, 1983] D. H. D. Warren. The runtime
environment for a prolog compiler
using a copy algorithm. Technical
Report 83/052, SUNY and Stone Brook,
New York, 1983. Major revision March
1984.
940
Index
'MANUAL' _l_i_b_r_a_r_y, 35 PL_foreign_control(), 686
-lpl _l_i_b_r_a_r_y, 848 PL_functor_arity(), 694
-lreadline _l_i_b_r_a_r_y, 872 PL_functor_name(), 693
.pl, 72 PL_get_arg(), 724
.pro, 72 PL_get_atom(), 712
=:=/2, 383 PL_get_atom_chars(), 713
/\/2, 412 PL_get_atom_nchars(), 727
=\=/2, 382 PL_get_chars(), 715
|/2, 166 PL_get_float(), 720
,/2, 164 PL_get_functor(), 721
!/0, 163 PL_get_head(), 742
!/1, 198 PL_get_integer(), 717
/, 73 PL_get_list(), 741
//2, 390 PL_get_list_chars(), 716
./2, 398 PL_get_list_nchars(), 728
=/2, 149 PL_get_long(), 718
==/2, 147 PL_get_module(), 723
>=/2, 381 PL_get_name_arity(), 722
>/2, 378 PL_get_nchars(), 729
^/2, 427 PL_get_nil(), 744
///2, 393 PL_get_pointer(), 719
->/2, 167 PL_get_string_chars(), 714
=</2, 380 PL_get_tail(), 743
<</2, 410 PL_halt(), 847
</2, 379 PL_initialise(), 842
-/1, 386 PL_install_readline(), 844
-/2, 388 PL_is_atom(), 702
\=/2, 151 PL_is_atomic(), 709
\/1, 414 PL_is_compound(), 706
\==/2, 148 PL_is_float(), 705
\+/1, 169 PL_is_functor(), 707
\//2, 411 PL_is_initialised(), 843
+/2, 387 PL_is_integer(), 704
**/2, 426 PL_is_list(), 708
>>/2, 409 PL_is_number(), 710
;/2, 165 PL_is_string(), 703
*->/2, 168 PL_is_variable(), 701
=@=/2, 152 PL_license(), 929
\=@=/2, 153 PL_load_extensions(), 831
@>=/2, 157 PL_module_name(), 800
@>/2, 156 PL_new_atom(), 690
*/2, 389 PL_new_atom_nchars(), 738
@=</2, 155 PL_new_functor(), 692
@</2, 154 PL_new_module(), 801
=../2, 338 PL_new_term_ref(), 673
_PL_get_arg(), 725 PL_new_term_refs(), 674
\, 73 PL_next_solution(), 787
abolish/1, 17, 203, 204 PL_on_halt(),P837L_open_foreign_frame(), 793
abolish/2, 204, 668 PL_open_query(), 786
abolish/[1 PL_pred(), 782
2], 53 PL_predicate(), 783
abort/0, 33, 44, 53, 253, 262, PL_predicate_info(), 784
553, 563, 826, 835 PL_put_atom(), 748
abs/1, 394 PL_put_atom_chars(), 749
absolute_file_name/2, 523 PL_put_atom_nchars(), 730
absolute_file_name/3, 524 PL_put_float(), 755
absolute_file_name/2, 24, 98, 109, PL_put_functor(), 756
525, 533, 866 PL_put_integer(), 753
absolute_file_name/3, 53, 55, 97, PL_put_list(), 757
106, 523, 524, 666, 884, PL_put_list_chars(), 752
885 PL_put_list_nchars(), 733
absolute_file_name/[2 PL_put_list_ncodes(), 732
3], 53, 105 PL_put_nil(), 758
access_file/2, 513 PL_put_pointer(), 754
access_file/2, 53, 524 PL_put_string_chars(), 750
acos/1, 420 PL_put_string_nchars(), 731, 751
address/2, 547 PL_put_term(), 759
Alpha PL_put_variable(), 747
DEC, 16 PL_query(), 828
append/1, 244, 246, 247 PL_quote(), 779
append/3, 353, 437 PL_raise_exception(), 803
apply/2, 173 PL_record(), 815
apropos/1, 37, 38, 55, 916, 931 PL_record_external(), 818
arg/3, 336 PL_recorded(), 816
arithmethic_function/1, 802 PL_recorded_external(), 819
arithmetic_function/1, 432 PL_register_atom(), 696
arithmetic_function/1, 431 PL_register_extensions(), 832
asin/1, 419 PL_register_foreign(), 830
assert/1, 97, 104, 202, 208--211, PL_reset_term_refs(), 676
222, 226, 638, 653, 920 PL_retry(), 684
assert/2, 211--213, 220, 240 PL_retry_address(), 685
asserta/1, 33, 104, 209 PL_rewind_foreign_frame(), 796
asserta/2, 212, 220 PL_same_compound(), 813
assertz/1, 210, 920 PL_signal(), 822
assertz/2, 213, 220 PL_strip_module(), 799
at_end_of_stream/0, 309 PL_succeed(), 681
at_end_of_stream/1, 310 PL_term_type(), 700
at_halt/1, 117 PL_thread_attach_engine(), 808
at_initialization/1, 116 PL_thread_destroy_engine(), 809
at_end_of_stream/[0 PL_thread_self(), 807
1], 258 PL_throw(), 804
at_halt/1, 116, 541, 564, 837, PL_toplevel(), 845
846 PL_unify(), 764
at_initialization/1, 118, 842 PL_unify_arg(), 776
atan/1, 421 PL_unify_atom(), 765
atan/2, 422 PL_unify_atom_chars(), 766
atom/1, 139, 698 PL_unify_atom_nchars(), 734
atom_chars/2, 21, 344 PL_unify_float(), 771
atom_codes/2, 343 PL_unify_functor(), 773
atom_concat/3, 353, 931 PL_unify_integer(), 770
atom_length/2, 356 PL_unify_list(), 774
atom_prefix/2, 357 PL_unify_list_chars(), 767
atom_to_term/3, 352 PL_unify_list_nchars(), 737
atom_chars/2, 53, 96, 294, 342, PL_unify_list_ncodes(), 736
346, 361 PL_unify_nil(), 775
atom_codes/2, 21, 53, 96, 342, PL_unify_pointer(), 772
344, 361 PL_unify_string_chars(), 768
atom_concat/3, 354, 366 PL_unify_string_nchars(), 735, 769
atom_length/2, 53, 365 PL_unify_term(), 777
atom_to_term/3, 313 PL_unregister_atom(), 697
atomic/1, 141 PL_warning(), 824
attach_console/0, 559 plus/3, 172, 377
attach_console/0, 558 portray/1, 44, 53, 55, 75, 313,
autoload/0, 102, 858, 860, 877 314, 322, 324, 786, 839,
backcomp _l_i_b_r_a_r_y, 17, 21 portra914y_clause/1, 132
bagof/3, 463--465, 931 portray_clause/1, 130
between/3, 375 predicate_property/2, 237
block/3, 194, 195, 931 predicate_property/2, 650
break/0, 33, 44, 562, 826 predsort/3, 461
call/1, 21, 114, 143, 171, 173, preprocessor/2,p120rint/1, 53, 314, 322, 324, 476,
181, 582, 780 481, 786, 931
call/2, 172 print/2, 323
call/[2-6], 172 print/[1
call_cleanup/2, 179 2], 313
call_cleanup/3, 178 print_message/2, 186, 931
call_shared_object_function/2, 664 print_message_lines/3, 187
call_with_depth_limit/3, 177 print_message/2, 20, 53, 55, 98,
call_cleanup/2, 178 185--188, 329
call_cleanup/3, 178 print_message_lines/3, 20, 186,
call_with_depth_limit/3, 177 188
callable/1, 143 profile file, 31
catch/3, 17, 19, 180--183, 194, profile/3, 598, 872
329, 538, 911, 931 profile_count/3, 602
ceil/1, 408 profiler/2, 598, 600
ceiling/1, 407, 408 prolog/0, 33, 53, 562, 566, 567,
char_code/2, 345 652, 845
char_conversion/2, 372 prolog:debug_control_hook/1, 55,
char_type/2, 360 915
char_code/2, 96 prolog:help_hook/1, 55, 916
char_conversion/2, 53, 373 prolog_current_frame/1, 905
char_type/2, 361 prolog_edit:edit_command/2, 55,
character_count/2, 270 128
chdir/1, 533, 534 prolog_edit:edit_source/1, 55, 127
check _l_i_b_r_a_r_y, 874, 933 prolog_edit:load/0, 129
check/0, 102, 874--876 prolog_edit:locate/2, 126
check_old_select/0, 22 prolog_edit:locate/3, 55, 125
checklist/2, 467 prolog_file_type/2, 107
checkselect _l_i_b_r_a_r_y, 22 prolog_frame_attribute/3, 906
clause/2, 239, 240 prolog_list_goal/1, 55, 914
clause/3, 211, 220, 240, 242, 862 prolog_load_context/2, 110
clause/[2 prolog_navigator/1, 92
3], 53, 872 prolog_skip_level/2, 910
clause_property/2, 242 prolog_to_os_filename/2, 528
clause_property/2, 109, 906 prolog_trace_interception/4, 55,
clib 909
package, 846 prolog_current_frame/1, 906
close/1, 256 prolog_edit:edit_command/2, 127
close/2, 257 prolog_edit:edit_source/1, 77, 93,
close_dde_conversation/1, 612 124
close_shared_object/1, 663 prolog_edit:locate/3, 123, 124,
code_type/2, 361 126, 127
code_type/2, 359 prolog_file_type/2, 97, 107
commandline prolog_frame_attribute/3, 242
arguments, 33 prolog_load_context/2, 111
compare/3, 158, 461, 812 prolog_navigator/1, 91
compiling/0, 119 prolog_to_os_filename/2, 73, 525
completion prolog_trace_interception/4, 87,
TAB, 78 578, 906
compound/1, 142 prompt/2, 331--333
concat_atom/2, 354 prompt1/1, 333
concat_atom/3, 355 proper_list/1, 436
concat_atom/2, 355 proper_list/1, 450
consult/1, 28, 31, 46, 86, 97, protocol/1, 570, 571, 573
99, 100, 121, 122, 227, protocola/1, 571, 573
327, 592 protocolling/1, 573
context_module/1, 648 prove/3, 79
context_module/1, 648, 786 put/1, 277, 279, 283
convert_time/2, 508 put/2, 278, 280, 282, 284
convert_time/8, 507 put_byte/1, 279
convert_time/2, 507 put_byte/2, 280
convert_time/8, 508 put_char/1, 281
convert_time/[2 put_code/1, 283
8], 522 put_code/2, 284
copy_stream_data/2, 312 put_byte/[1
copy_stream_data/3, 311 2], 96
copy_term/2, 341 put_char/1, 281
copy_term/2, 341 put_char/[1
cos/1, 417 2], 96
cputime/0, 430 put_code/[1
ctype _l_i_b_r_a_r_y, 359 2], 96
current_arithmetic_function/1, 433
current_atom/1, 231 qcompile/1, 121, 122
current_char_conversion/2, 373 qsave_program/1, 859
current_flag/1, 233 qsave_program/2, 858
current_foreign_library/2, 669 qsave_program/2, 14, 51, 53, 75,
current_format_predicate/2, 487 857, 858, 864
current_functor/2, 232 qsave_program/[1
current_input/1, 266 2], 13, 18, 33, 50, 53, 118,
current_key/1, 234 659, 842, 850, 860, 862
current_module/1, 646 quiet, 33, 186
current_module/2, 647 quintus _l_i_b_r_a_r_y, 21, 645, 654
current_mutex/3, 554
current_op/3, 370 random/1, 399
current_output/1, 267 read/1, 53, 67, 253, 287, 320,
current_predicate/1, 236 325, 327, 329, 332, 592,
current_predicate/2, 235 931
current_prolog_flag/2, 53 read/2, 326
current_signal/3, 192 read_clause/1, 327
current_stream/3, 21, 259 read_clause/2, 328
current_thread/2, 538 read_file_to_codes/3, 884
current_atom/1, 231 read_file_to_terms/3, 885
current_char_conversion/2, 372 read_history/6, 331
current_input/1, 110 read_line_to_codes/2, 880
current_predicate/1, 236 read_line_to_codes/3, 881
current_predicate/2, 236, 602 read_link/3, 529
current_prolog_flag/2, 21, 33, 52, read_stream_to_codes/2, 882
53, 56, 59, 62, 96, 98, read_stream_to_codes/3, 883
146, 183, 186, 313, 318, read_term/2, 329
329, 566, 592, 617, 658, read_term/3, 330
670, 779, 840, 848, 873, read_clause/1, 328, 592
920 read_history/6, 331
current_signal/3, 191 read_line_to_codes/2, 881
current_stream/3, 259 read_line_to_codes/3, 880
current_thread/2, 538, 539, 541 read_stream_to_codes/2, 883
DCG, 97, 199 read_term/2,3342,1,53,35327,2 330,
dde_current_connection/2, 620 read_term/3, 329, 372, 567
dde_current_service/2, 619 read_term/[2
dde_execute/2, 614 3], 329
dde_poke/4, 615 readutil _l_i_b_r_a_r_y, 76, 879, 934
dde_register_service/2, 617 reconsult/1, 97
dde_request/3, 613 recorda/2, 215
dde_unregister_service/1, 618 recorda/3, 214, 216, 220, 234,
debug/0, 44, 183, 581, 583, 584, 814, 815, 818
826 recorded/2, 219
debugging recorded/3, 218, 220, 862
exceptions, 183 recordz/2, 217
debugging/0, 55, 581, 585, 915 recordz/3, 216
DEC redefine_system_predicate/1, 205
Alpha, 16 redefine_system_predicate/1, 11,
default_module/2, 651 920
delete/3, 440 registry, 65
delete_directory/1, 532 registry _l_i_b_r_a_r_y, 888, 936
delete_file/1, 519 registry_delete_key/1, 893
deterministic/0, 907 registry_get_key/2, 889
Development environment, 69 registry_get_key/3, 890
discontiguous/1, 225, 228 registry_set_key/2, 891
display/1, 476, 745 registry_set_key/3, 892
display/[1 rem/2, 392
2], 17 rename_file/2, 520
displayq/1, 481 repeat/0, 162, 177
displayq/[1 require/1, 102, 860
2], 17 reset_profiler/0, 601
dup/2, 21 reset_profiler/0, 598
dup_stream/2, 21 resource/3, 18, 55, 857, 858,
dup_stream/2, 21 864, 866, 867
dwim_match/2, 622 retract/1, 97, 104, 202, 203,
dwim_match/3, 623 206, 222, 226, 653
dwim_predicate/2, 238 retractall/1, 202, 203, 207
dwim_match/2, 238, 623 reverse/2, 445, 630
dynamic/1, 53, 202, 225, 226, RFC-1738, 897
237, 644, 876 rl_add_history/1, 919
e/0, 429 rl_read_init_file/1,r918ound/1, 400, 401
edit/1, 23, 55, 78, 81, 86, 93,
103, 123--125, 127, 931 same_file/2, 517
edit_source/1, 128 see/1, 20, 244, 245, 253
editor _c_l_a_s_s, 77, 82 seeing/1, 244, 248
Emacs, 34 seek/4, 258, 260, 261
emacs/prolog_colour _l_i_b_r_a_r_y, 85 seen/0, 250
emacs/swi_prolog _l_i_b_r_a_r_y, 23, 81, select/3, 22, 441
93 set_feature/2, 21
ensure_loaded/1, 100 set_input/1, 264
ensure_loaded/1, 46, 97, 100, 632 set_output/1, 265
erase/1, 211, 214, 220, 240 set_prolog_flag/2, 54
eval_license/0, 926 set_stream/2, 262
eval_license/0, 925 set_stream_position/2, 260
exception/3, 55, 911, 912 set_tty/2, 492
exceptions set_feature/2, 21
debugging, 183 set_input/1, 262
exists_directory/1, 518 set_prolog_flag/2, 21, 41, 52, 374
exists_file/1, 514 set_stream/2, 253
exists_file/1, 53 setarg/3, 337
exit/2, 195, 196 setenv/2, 127, 502
exp/1, 385, 425 setof/3, 465, 931
expand_answer/2, 568 sformat/2, 484
expand_file_name/2, 527 sformat/3, 313, 483
expand_file_search_path/2, 106 shell/0, 497, 504
expand_goal/2, 115 shell/1, 73, 128, 496, 504
expand_query/4, 567 shell/2, 495
expand_term/2, 113 shell/[0-2], 502
expand_answer/2, 567 shell/[1
expand_file_name/2, 53, 502, 504, 2], 495
523 shell_register_dde/6, 895
expand_goal/2, 53, 112, 114 shell_register_file_type/4, 894
expand_term/2, 112, 114, 119, 199 shell_register_prolog/1, 896
explain _l_i_b_r_a_r_y, 931 shell_register_file_type/4, 895
explain/1, 39 shlib _l_i_b_r_a_r_y, 931
explain/2, 40 show_profile/1, 599
export/1, 641, 649 show_profile/1, 598, 599
export_list/2, 650 sign/1, 395
fail/0, 160 silent,s186in/1, 385, 416
fail/1, 197 size_file/2, 521
feature/2, 21 skip/1, 306, 307
file_base_name/2, 516 skip/2, 307
file_directory_name/2, 515 sleep/1, 626
file_name_extension/3, 526 socket _l_i_b_r_a_r_y, 269
file_search_path/2, 55, 105 sort/2, 451, 458, 459, 461, 465
file_search_path/2, 31, 33, 53, source_file/1, 108
56, 74, 99, 105, 107, 666, source_file/2, 109
850, 863, 866, 869 source_location/2, 111
fileerrors/2, 53, 273 source_file/2, 122, 237
findall/3, 463, 653 source_file/[1
flag/3, 53, 221, 233 2], 647
flatten/2, 446 source_location/2, 110
float/1, 137, 384, 402 spy/1, 44, 53, 55, 88, 89, 93,
float_fractional_part/1, 403 586, 915, 931
float_integer_part/1, 404 sqrt/1, 415
float_integer_part/1, 405 stack
floor/1, 406 memory management, 66
flush_output/0, 287 stack_parameter/4, 608
flush_output/1, 288 startup file, 31
flush_output/0, 287 statistics/0, 595
flush_output/1, 187 statistics/2, 430, 594
flush_output/[0 stream_property/2, 258
1], 253, 289 stream_position/3, 253, 261, 329
foo/0, 920 stream_property/2, 260, 262
foo/3, 920 string/1, 140, 481
forall/2, 114, 471 string_concat/3, 366
format/1, 187, 480 string_length/2, 365
format/2, 481--483 string_to_atom/2, 363
format/3, 187, 482 string_to_list/2, 364
format/[1 string_concat/3, 353
2], 53, 313, 472, 931 style_check/1, 592
format/[2 style_check/1, 67, 68, 228, 920
3], 62 sub_atom/5, 358
format_predicate/2, 486 sub_string/5, 367
free_variables/2, 340 sub_atom/5, 367
free_variables/2, 329 sublist/3, 469
FTP, 897 subset/2, 455
functor/3, 6, 142, 143, 335 subtract/3, 453
garbage_collect/0, 604 succ/2,s376wi_edit _l_i_b_r_a_r_y, 129
garbage_collect_atoms/0, 605 swi_help _l_i_b_r_a_r_y, 35
garbage_collect_atoms/0, 838 swritef/2, 478
gensym/2, 625 swritef/3, 477
get/1, 298
get/2, 299 TAB
get0/1, 253, 296, 306, 308 completion, 78
get0/2, 297 tab/1, 285
get_byte/1, 290 tab/2, 286
get_byte/2, 291 tan/1, 418
get_char/1, 294 tell/1, 20, 244, 246, 247, 253
get_char/2, 295 telling/1, 244, 249
get_code/1, 292 term_expansion/2, 55, 112
get_code/2, 293 term_to_atom/2, 351
get_single_char/1, 308 term_expansion/2, 55, 97, 112--
get_time/1, 506 114, 122, 567
get_byte/1, 296, 300 term_position/3, 258
get_byte/2, 295, 297, 301 term_to_atom/2, 313, 778
get_byte/[1 thread_at_exit/1, 541
2], 96 thread_create/3, 536
get_char/1, 292, 304 thread_exit/1, 540
get_char/2, 295, 305 thread_get_message/1, 544
get_char/[1 thread_join/2, 539
2], 96 thread_peek_message/1, 545
get_code/1, 302 thread_self/1, 537
get_code/2, 295, 303 thread_send_message/2, 543
get_code/[1 thread_signal/2, 546
2], 96 thread_exit/1, 538, 539
get_single_char/1, 33, 53 thread_join/2, 536, 538, 539
get_time/1, 507, 508, 522 thread_peek_message/1, 544
getenv/2, 501, 502 thread_self/1, 543
global_url/3, 900 thread_signal/2, 546, 553
GNU-Emacs, 34 threads/0, 557
go/0, 32 throw/1, 17, 44, 180--182, 194,
goal_expansion/2, 55, 114 538, 546, 563, 803, 805,
goal_expansion/2, 112, 114, 115 911
Graphics, 8 time/1, 430, 596, 598
ground/1, 144, 224 time_file/2, 522
GUI, 8 time_file/2, 505, 507
guitracer/0, 23, 88--90, 93, 574, tmp_file/2, 530
578 told/0, 251
halt/0, 44, 564, 565 trace/0,544,7588,, 89,5893,1,546,826
halt/1, 565, 826, 931 trace/1, 53, 580
halt/[0 trace/2, 581
1], 117 tracing/0, 576
hash_term/2, 224 trim_stacks/0, 607
hash_term/2, 223 trim_stacks/0, 53, 603, 604
help/0, 36, 55, 864, 916 true/0, 53, 161, 177
help/1, 35--37, 55, 916 truncate/1, 405
helpidx _l_i_b_r_a_r_y, 35 tty_get_capability/3, 489
hooks, 55 tty_goto/2, 490
HTTP, 897 tty_put/2, 491
http_location/2, 901 tty_size/2, 493
IDE, 69 tty_get_capability/2, 493
ignore/1, 176 tty_get_capability/3, 491
immediate tty_goto/2, 492
update view, 222 tty_put/2, 492
import/1, 631, 634, 641 tty_size/2, 493
include/1, 97, 101 ttyflush/0, 289, 476
index/1, 223, 229, 237 unify_with_occurs_check/2, 150
initialization/1, 118, 659, 832, union/3, 454
862 unix, 53
install/0, 863 unix/1, 21, 504
int_to_atom/2, 350 unknown/2, 56, 226, 591, 641, 873
int_to_atom/3, 349 unload_foreign_library/1, 668
integer/1, 136, 401 unsetenv/1, 503
interactor/0, 262, 558 update view, 222
intersection/3, 452 URL, 499
is/2, 53, 384, 402, 432 url _l_i_b_r_a_r_y, 886, 897, 937
is_absolute_file_name/1, 525 use_module/1, 632
is_list/1, 435 use_module/2, 633
is_set/1, 450 use_module/1, 74
is_list/1, 436 use_module/2, 56
keysort/2, 460, 461 use_module/[12], 46, 86, 97, 98, 100, 631,
last/2, 444 634, 636, 649, 920
leash/1, 44, 589, 590 user _l_i_b_r_a_r_y, 931
length/2, 447 user profile file, 31
library_directory/1, 55, 104 utf-8, 96
library_directory/1, 56, 99
license/1, 928 var/1, 12, 134, 698
license/2, 927, 928 verbose, 33
likes/2, 28 visible/1, 590
limit_stack/2, 606 volatile/1, 861
limit_stack/2, 603 wait_for_input/3, 269
line_count/2, 271 wait_for_input/3, 269
line_position/2, 272 wildcard_match/2, 624
line_count/2, 490 win_exec/2, 498
line_position/2, 490 win_insert_menu/2, 510
list_autoload/0, 877 win_insert_menu_item/4, 511
list_redefined/0, 878 win_registry_get_value/3, 500
list_to_set/2, 451 win_shell/2, 499
list_undefined/0, 876 win_exec/2, 495
list_autoload/0, 875, 876 win_insert_menu/2, 511
list_redefined/0, 875 win_shell/2, 495, 887
list_undefined/0, 875, 877 Window interface, 8
listing/0, 131 windows, 53
listing/1, 44, 130, 131 with_mutex/2, 555
load_files/2, 98 with_mutex/2, 550, 806
load_foreign_library/1, 667 working_directory/2, 533
load_foreign_library/2, 666 working_directory/2, 504, 534
load_files/1, 55 write/1, 53, 318, 322, 351, 356,
load_files/2, 98 476, 481, 715, 745
load_foreign_library/1, 863 write/2, 319
load_foreign_library/2, 667 write_canonical/1, 316
load_foreign_library/[1 write_canonical/2, 317
2], 105, 661 write_term/2, 314
log/1, 423 write_term/3, 315
log10/1, 424 write_canonical/[1
logical 2], 17
update view, 222 write_term/2, 44, 53, 150, 314--
main/0, 51 316, 476, 481
make/0, 7, 56, 79, 86, 93, 103 write_term/3, 55
make_directory/1, 531 write_term/[2
make_library_index/1, 57 3], 17
make_library_index/2, 58 writef/1, 475
make_library_index/1, 56 writef/2, 24, 62, 313, 476, 477
make_library_index/2, 56 writef/[1
manpce/0, 65 2], 472
maplist/3, 468, 639, 860 writeln/1, 474
max/2, 396 writeq/1, 320, 476, 481
member/2, 44, 178, 241, 438, 439, writeq/2, 321
441, 931 www_form_encode/2, 902
memberchk/2, 439 www_open_url/1, 887
memory X11, 8
layout, 66 xor/2, 413
merge/3, 448 XPCE, 8
merge_set/3, 456
message_hook/3, 55, 188
message_to_string/2, 189
message_hook/3, 20, 185--187
message_to_string/2, 186, 188
meta_predicate/1, 645, 654
meta_predicate/1, 653, 654
min/2, 397
mod/2, 391
module/1, 652
module/2, 112, 630, 643, 649
module_transparent/1, 644
module_transparent/1, 237, 653,
786, 920
msort/2, 459, 460
multi_file/1, 920
multifile/1, 123, 225, 227, 237,
876, 914
mutex_create/1, 548
mutex_destroy/1, 549
mutex_lock/1, 550
mutex_trylock/1, 551
mutex_unlock/1, 552
mutex_unlock_all/0, 553
mutex_create/1, 550
mutex_create/2, 555
mutex_lock/1, 551
name/2, 342, 348
netmask/4, 840
netscape _l_i_b_r_a_r_y, 886, 935
nl/0, 275
nl/1, 276
nl/[0
1], 476
nodebug/0, 584
noguitracer/0, 88, 90, 93, 579
nonvar/1, 135
noprotocol/0, 572
nospy/1, 44, 55, 587, 915
nospyall/0, 55, 588, 915
not/1, 114, 174, 931
notrace/0, 577
notrace/1, 582
nth0/3, 442
nth1/3, 443
nth_clause/3, 241
nth_clause/3, 242, 906
number/1, 138
number_chars/2, 21, 346
number_codes/2, 347
number_chars/2, 21, 96, 347
number_codes/2, 21, 96, 342
numbervars/4, 339
on_signal/3, 191
on_signal/3, 19, 191, 192
once/1, 175, 176, 178, 555, 582,
596, 791
online_help _l_i_b_r_a_r_y, 931
op/3, 21, 95, 225, 314, 369, 370
open/3, 53, 252, 254
open/4, 13, 96, 253, 254, 258,
262, 310, 884, 885
open_dde_conversation/3, 611
open_null_stream/1, 255
open_resource/3, 867
open_shared_object/2, 661
open_shared_object/3, 662
open_resource/3, 18, 857, 864,
867
open_shared_object/2, 53, 658, 662
operator
and modules, 368
package
clib, 846
parse_url/2, 898
parse_url/3, 899
parse_url/2, 898, 899, 901
peek_byte/1, 300
peek_byte/2, 301
peek_char/1, 304
peek_char/2, 305
peek_code/1, 302
peek_code/2, 303
peek_byte/[1
2], 96
peek_char/[1
2], 96
peek_code/[1
2], 96
phrase/2, 199, 200
phrase/3, 199, 201
pi/0, 428
PL_abort_hook(), 835
PL_abort_unhook(), 836
PL_action(), 826
PL_agc_hook(), 838
PL_atom_chars(), 691
PL_atom_nchars(), 739
PL_call(), 791
PL_call_predicate(), 790
PL_chars_to_term(), 778
PL_cleanup(), 846
PL_close_foreign_frame(), 794
PL_close_query(), 789
PL_compare(), 812
PL_cons_functor(), 760
PL_cons_functor_v(), 761
PL_cons_list(), 762
PL_context(), 798
PL_copy_term_ref(), 675
PL_cut_query(), 788
PL_discard_foreign_frame(), 795
PL_dispatch_hook(), 834
PL_erase(), 817
PL_erase_external(), 820
PL_exception(), 805
PL_fail(), 682
PL_foreign_context(), 687
PL_foreign_context_address(), 688
941
|