File: lists.html

package info (click to toggle)
swi-prolog 7.2.3%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 84,180 kB
  • ctags: 45,684
  • sloc: ansic: 330,358; perl: 268,104; sh: 6,795; java: 4,904; makefile: 4,561; cpp: 4,153; ruby: 1,594; yacc: 843; xml: 82; sed: 12; sql: 6
file content (729 lines) | stat: -rw-r--r-- 21,269 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>SWI-Prolog 7.3.6 Reference Manual: Section A.14</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="iostream.html">
<link rel="next" href="nb_set.html">

<style type="text/css">

/* Style sheet for SWI-Prolog latex2html
*/

dd.defbody
{ margin-bottom: 1em;
}

dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}

dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }

.bib dd
{ margin-bottom: 1em;
}

.bib dt
{ float: left;
margin-right: 1.3ex;
}

pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}

div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}

div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}

div.author
{ text-align: center;
font-style: italic;
}

div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}

div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}

div.toc-h1
{ font-size: 200%;
font-weight: bold;
}

div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}

div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}

div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}

span.sec-nr
{
}

span.sec-title
{
}

span.pred-ext
{ font-weight: bold;
}

span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}

div.caption
{ width: 80%;
margin: auto;
text-align:center;
}

/* Footnotes */
.fn {
color: red;
font-size: 70%;
}

.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}

sup:hover span.fn-text
{ display: block;
}

/* Lists */

dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}

/* PlDoc Tags */

dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}

dl.tags dd
{ margin-left: 3ex;
}

td.param
{ font-style: italic;
font-weight: bold;
}

/* Index */

dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}

/* Tables */

table.center
{ margin: auto;
}

table.latex
{ border-collapse:collapse;
}

table.latex tr
{ vertical-align: text-top;
}

table.latex td,th
{ padding: 2px 1em;
}

table.latex tr.hline td,th
{ border-top: 1px solid black;
}

table.frame-box
{ border: 2px solid black;
}

</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="iostream.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="nb_set.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:lists"><a id="sec:A.14"><span class="sec-nr">A.14</span> <span class="sec-title">library(lists): 
List Manipulation</span></a></h2>

<p><a id="sec:lists"></a>

<dl class="tags">
<dt class="tag">Compatibility</dt>
<dd>
Virtually every Prolog system has <code>library(lists)</code>, but the 
set of provided predicates is diverse. There is a fair agreement on the 
semantics of most of these predicates, although error handling may vary.
</dd>
</dl>

<p>This library provides commonly accepted basic predicates for list 
manipulation in the Prolog community. Some additional list manipulations 
are built-in. See e.g., <a class="pred" href="builtinlist.html#memberchk/2">memberchk/2</a>, <a class="pred" href="builtinlist.html#length/2">length/2</a>.

<p>The implementation of this library is copied from many places. These 
include: "The Craft of Prolog", the DEC-10 Prolog library (LISTRO.PL) 
and the YAP lists library. Some predicates are reimplemented based on 
their specification by Quintus and SICStus.

<dl class="latex">
<dt class="pubdef"><a id="member/2"><strong>member</strong>(<var>?Elem, 
?List</var>)</a></dt>
<dd class="defbody">
True if <var>Elem</var> is a member of <var>List</var>. The SWI-Prolog 
definition differs from the classical one. Our definition avoids 
unpacking each list element twice and provides determinism on the last 
element. E.g. this is deterministic:

<pre class="code">
    member(X, [One]).
</pre>

<dl class="tags">
<dt class="tag">author</dt>
<dd>
Gertjan van Noord
</dd>
</dl>

</dd>
<dt class="pubdef"><a id="append/3"><strong>append</strong>(<var>?List1, 
?List2, ?List1AndList2</var>)</a></dt>
<dd class="defbody">
<var>List1AndList2</var> is the concatenation of <var>List1</var> and <var>List2</var></dd>
<dt class="pubdef"><a id="append/2"><strong>append</strong>(<var>+ListOfLists, 
?List</var>)</a></dt>
<dd class="defbody">
Concatenate a list of lists. Is true if <var>ListOfLists</var> is a list 
of lists, and <var>List</var> is the concatenation of these lists.
<table class="arglist">
<tr><td><var>ListOfLists</var> </td><td>must be a list of <i>possibly</i> 
partial lists </td></tr>
</table>
</dd>
<dt class="pubdef"><a id="prefix/2"><strong>prefix</strong>(<var>?Part, 
?Whole</var>)</a></dt>
<dd class="defbody">
True iff <var>Part</var> is a leading substring of <var>Whole</var>. 
This is the same as <code>append(Part, _, Whole)</code>.</dd>
<dt class="pubdef"><a id="select/3"><strong>select</strong>(<var>?Elem, 
?List1, ?List2</var>)</a></dt>
<dd class="defbody">
Is true when <var>List1</var>, with <var>Elem</var> removed, results in <var>List2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="selectchk/3"><strong>selectchk</strong>(<var>+Elem, 
+List, -Rest</var>)</a></dt>
<dd class="defbody">
Semi-deterministic removal of first element in <var>List</var> that 
unifies with <var>Elem</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[nondet]</span><a id="select/4"><strong>select</strong>(<var>?X, 
?XList, ?Y, ?YList</var>)</a></dt>
<dd class="defbody">
Select from two lists at the same positon. True if <var>XList</var> is 
unifiable with <var>YList</var> apart a single element at the same 
position that is unified with <var>X</var> in <var>XList</var> and with <var>Y</var> 
in <var>YList</var>. A typical use for this predicate is to <i>replace</i> 
an element, as shown in the example below. All possible substitutions 
are performed on backtracking.

<pre class="code">
?- select(b, [a,b,c,b], 2, X).
X = [a, 2, c, b] ;
X = [a, b, c, 2] ;
false.
</pre>

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="lists.html#selectchk/4">selectchk/4</a> provides a 
semidet version.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="selectchk/4"><strong>selectchk</strong>(<var>?X, 
?XList, ?Y, ?YList</var>)</a></dt>
<dd class="defbody">
Semi-deterministic version of <a class="pred" href="lists.html#select/4">select/4</a>.</dd>
<dt class="pubdef"><a id="nextto/3"><strong>nextto</strong>(<var>?X, ?Y, 
?List</var>)</a></dt>
<dd class="defbody">
True if <var>Y</var> follows <var>X</var> in <var>List</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="delete/3"><strong>delete</strong>(<var>+List1, 
@Elem, -List2</var>)</a></dt>
<dd class="defbody">
Delete matching elements from a list. True when <var>List2</var> is a 
list with all elements from <var>List1</var> except for those that unify 
with
<var>Elem</var>. Matching <var>Elem</var> with elements of <var>List1</var> 
is uses <code>\+ Elem \= H</code>, which implies that <var>Elem</var> is 
not changed.

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="lists.html#select/3">select/3</a>, <a class="pred" href="lists.html#subtract/3">subtract/3</a>.
</dd>
<dt class="tag">deprecated</dt>
<dd>
There are too many ways in which one might want to delete elements from 
a list to justify the name. Think of matching (= vs. <code>==</code>), 
delete first/all, be deterministic or not.
</dd>
</dl>

</dd>
<dt class="pubdef"><a id="nth0/3"><strong>nth0</strong>(<var>?Index, 
?List, ?Elem</var>)</a></dt>
<dd class="defbody">
True when <var>Elem</var> is the <var>Index</var>'th element of <var>List</var>. 
Counting starts at 0.

<dl class="tags">
<dt class="tag">Errors</dt>
<dd>
<code>type_error(integer, Index)</code> if <var>Index</var> is not an 
integer or unbound.
</dd>
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="lists.html#nth1/3">nth1/3</a>.
</dd>
</dl>

</dd>
<dt class="pubdef"><a id="nth1/3"><strong>nth1</strong>(<var>?Index, 
?List, ?Elem</var>)</a></dt>
<dd class="defbody">
Is true when <var>Elem</var> is the <var>Index</var>'th element of <var>List</var>. 
Counting starts at 1.

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="lists.html#nth0/3">nth0/3</a>.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="nth0/4"><strong>nth0</strong>(<var>?N, 
?List, ?Elem, ?Rest</var>)</a></dt>
<dd class="defbody">
Select/insert element at index. True when <var>Elem</var> is the <var>N</var>'th 
(0-based) element of <var>List</var> and <var>Rest</var> is the 
remainder (as in by
<a class="pred" href="lists.html#select/3">select/3</a>) of <var>List</var>. 
For example:

<pre class="code">
?- nth0(I, [a,b,c], E, R).
I = 0, E = a, R = [b, c] ;
I = 1, E = b, R = [a, c] ;
I = 2, E = c, R = [a, b] ;
false.
</pre>

<pre class="code">
?- nth0(1, L, a1, [a,b]).
L = [a, a1, b].
</pre>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="nth1/4"><strong>nth1</strong>(<var>?N, 
?List, ?Elem, ?Rest</var>)</a></dt>
<dd class="defbody">
As <a class="pred" href="lists.html#nth0/4">nth0/4</a>, but counting 
starts at 1.</dd>
<dt class="pubdef"><a id="last/2"><strong>last</strong>(<var>?List, 
?Last</var>)</a></dt>
<dd class="defbody">
Succeeds when <var>Last</var> is the last element of <var>List</var>. 
This predicate is <code>semidet</code> if <var>List</var> is a list and <code>multi</code> 
if <var>List</var> is a partial list.

<dl class="tags">
<dt class="tag">Compatibility</dt>
<dd>
There is no de-facto standard for the argument order of
<a class="pred" href="lists.html#last/2">last/2</a>. Be careful when 
porting code or use
<code>append(_, [Last], List)</code> as a portable alternative.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="proper_length/2"><strong>proper_length</strong>(<var>@List, 
-Length</var>)</a></dt>
<dd class="defbody">
True when <var>Length</var> is the number of elements in the proper list
<var>List</var>. This is equivalent to

<pre class="code">
proper_length(List, Length) :-
      is_list(List),
      length(List, Length).
</pre>

</dd>
<dt class="pubdef"><a id="same_length/2"><strong>same_length</strong>(<var>?List1, 
?List2</var>)</a></dt>
<dd class="defbody">
Is true when <var>List1</var> and <var>List2</var> are lists with the 
same number of elements. The predicate is deterministic if at least one 
of the arguments is a proper list. It is non-deterministic if both 
arguments are partial lists.

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="builtinlist.html#length/2">length/2</a>
</dd>
</dl>

</dd>
<dt class="pubdef"><a id="reverse/2"><strong>reverse</strong>(<var>?List1, 
?List2</var>)</a></dt>
<dd class="defbody">
Is true when the elements of <var>List2</var> are in reverse order 
compared to
<var>List1</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[nondet]</span><a id="permutation/2"><strong>permutation</strong>(<var>?Xs, 
?Ys</var>)</a></dt>
<dd class="defbody">
True when <var>Xs</var> is a permutation of <var>Ys</var>. This can 
solve for <var>Ys</var> given
<var>Xs</var> or <var>Xs</var> given <var>Ys</var>, or even enumerate <var>Xs</var> 
and <var>Ys</var> together. The predicate <a class="pred" href="lists.html#permutation/2">permutation/2</a> 
is primarily intended to generate permutations. Note that a list of 
length N has N! permutations, and unbounded permutation generation 
becomes prohibitively expensive, even for rather short lists (10! = 
3,628,800).

<p>If both <var>Xs</var> and <var>Ys</var> are provided and both lists 
have equal length the order is <code>|</code><var>Xs</var><code>|</code><code>^</code>2. 
Simply testing whether <var>Xs</var> is a permutation of <var>Ys</var> 
can be achieved in order log(<code>|</code><var>Xs</var><code>|</code>) 
using <a class="pred" href="builtinlist.html#msort/2">msort/2</a> as 
illustrated below with the <code>semidet</code> predicate <span class="pred-ext">is_permutation/2</span>:

<pre class="code">
is_permutation(Xs, Ys) :-
  msort(Xs, Sorted),
  msort(Ys, Sorted).
</pre>

<p>The example below illustrates that <var>Xs</var> and <var>Ys</var> 
being proper lists is not a sufficient condition to use the above 
replacement.

<pre class="code">
?- permutation([1,2], [X,Y]).
X = 1, Y = 2 ;
X = 2, Y = 1 ;
false.
</pre>

<dl class="tags">
<dt class="tag">Errors</dt>
<dd>
<code>type_error(list, Arg)</code> if either argument is not a proper or 
partial list.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="flatten/2"><strong>flatten</strong>(<var>+NestedList, 
-FlatList</var>)</a></dt>
<dd class="defbody">
Is true if <var>FlatList</var> is a non-nested version of <var>NestedList</var>. 
Note that empty lists are removed. In standard Prolog, this implies that 
the atom '[]' is removed too. In SWI7, <code>[]</code> is distinct from 
'[]'.

<p>Ending up needing <span class="pred-ext">flatten/3</span> often 
indicates, like <a class="pred" href="lists.html#append/3">append/3</a> 
for appending two lists, a bad design. Efficient code that generates 
lists from generated small lists must use difference lists, often 
possible through grammar rules for optimal readability.

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="lists.html#append/2">append/2</a>
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="max_member/2"><strong>max_member</strong>(<var>-Max, 
+List</var>)</a></dt>
<dd class="defbody">
True when <var>Max</var> is the largest member in the standard order of 
terms. Fails if <var>List</var> is empty.

<dl class="tags">
<dt class="mtag">See also</dt>
<dd>
- <a class="pred" href="compare.html#compare/3">compare/3</a> <br>
- <a class="pred" href="lists.html#max_list/2">max_list/2</a> for the 
maximum of a list of numbers.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="min_member/2"><strong>min_member</strong>(<var>-Min, 
+List</var>)</a></dt>
<dd class="defbody">
True when <var>Min</var> is the smallest member in the standard order of 
terms. Fails if <var>List</var> is empty.

<dl class="tags">
<dt class="mtag">See also</dt>
<dd>
- <a class="pred" href="compare.html#compare/3">compare/3</a> <br>
- <a class="pred" href="lists.html#min_list/2">min_list/2</a> for the 
minimum of a list of numbers.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="sum_list/2"><strong>sum_list</strong>(<var>+List, 
-Sum</var>)</a></dt>
<dd class="defbody">
<var>Sum</var> is the result of adding all numbers in <var>List</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="max_list/2"><strong>max_list</strong>(<var>+List:list(number), 
-Max:number</var>)</a></dt>
<dd class="defbody">
True if <var>Max</var> is the largest number in <var>List</var>. Fails 
if <var>List</var> is empty.

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="lists.html#max_member/2">max_member/2</a>.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="min_list/2"><strong>min_list</strong>(<var>+List:list(number), 
-Min:number</var>)</a></dt>
<dd class="defbody">
True if <var>Min</var> is the smallest number in <var>List</var>. Fails 
if <var>List</var> is empty.

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="lists.html#min_member/2">min_member/2</a>.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="numlist/3"><strong>numlist</strong>(<var>+Low, 
+High, -List</var>)</a></dt>
<dd class="defbody">
<var>List</var> is a list [<var>Low</var>, <var>Low</var>+1, ... <var>High</var>]. 
Fails if <var>High</var> <var>&lt;</var> <var>Low</var>.

<dl class="tags">
<dt class="mtag">Errors</dt>
<dd>
- <code>type_error(integer, Low)</code> <br>
- <code>type_error(integer, High)</code>
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="is_set/1"><strong>is_set</strong>(<var>@Set</var>)</a></dt>
<dd class="defbody">
True if <var>Set</var> is a proper list without duplicates. Equivalence 
is based on <a class="pred" href="compare.html#==/2">==/2</a>. The 
implementation uses <a class="pred" href="builtinlist.html#sort/2">sort/2</a>, 
which implies that the complexity is N*<code>log(N)</code> and the 
predicate may cause a resource-error. There are no other error 
conditions.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="list_to_set/2"><strong>list_to_set</strong>(<var>+List, 
?Set</var>)</a></dt>
<dd class="defbody">
True when <var>Set</var> has the same elements as <var>List</var> in the 
same order. The left-most copy of duplicate elements is retained. <var>List</var> 
may contain variables. Elements <i>E1</i> and <i>E2</i> are considered 
duplicates iff <i>E1</i> <code>==</code> <i>E2</i> holds. The complexity 
of the implementation is N*<code>log(N)</code>.

<dl class="tags">
<dt class="tag">Errors</dt>
<dd>
<var>List</var> is type-checked.
</dd>
<dt class="tag">author</dt>
<dd>
Ulrich Neumerkel
</dd>
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="builtinlist.html#sort/2">sort/2</a> can be used to 
create an ordered set. Many set operations on ordered sets are order N 
rather than order N<code>**</code>2. The <a class="pred" href="lists.html#list_to_set/2">list_to_set/2</a> 
predicate is more expensive than <a class="pred" href="builtinlist.html#sort/2">sort/2</a> 
because it involves, in addition to a sort, three linear scans of the 
list.
</dd>
<dt class="tag">Compatibility</dt>
<dd>
Up to version 6.3.11, <a class="pred" href="lists.html#list_to_set/2">list_to_set/2</a> 
had complexity N<code>**</code>2 and equality was tested using <a class="pred" href="compare.html#=/2">=/2</a>.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="intersection/3"><strong>intersection</strong>(<var>+Set1, 
+Set2, -Set3</var>)</a></dt>
<dd class="defbody">
True if <var>Set3</var> unifies with the intersection of <var>Set1</var> 
and <var>Set2</var>. The complexity of this predicate is <code>|</code><var>Set1</var><code>|</code>*<code>|</code><var>Set2</var><code>|</code>

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="ordsets.html#ord_intersection/3">ord_intersection/3</a>.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="union/3"><strong>union</strong>(<var>+Set1, 
+Set2, -Set3</var>)</a></dt>
<dd class="defbody">
True if <var>Set3</var> unifies with the union of <var>Set1</var> and <var>Set2</var>. 
The complexity of this predicate is <code>|</code><var>Set1</var><code>|</code>*<code>|</code><var>Set2</var><code>|</code>

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="ordsets.html#ord_union/3">ord_union/3</a>.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="subset/2"><strong>subset</strong>(<var>+SubSet, 
+Set</var>)</a></dt>
<dd class="defbody">
True if all elements of <var>SubSet</var> belong to <var>Set</var> as 
well. Membership test is based on <a class="pred" href="builtinlist.html#memberchk/2">memberchk/2</a>. 
The complexity is <code>|</code><var>SubSet</var><code>|</code>*<code>|</code><var>Set</var><code>|</code>.

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="ordsets.html#ord_subset/2">ord_subset/2</a>.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="subtract/3"><strong>subtract</strong>(<var>+Set, 
+Delete, -Result</var>)</a></dt>
<dd class="defbody">
<var>Delete</var> all elements in <var>Delete</var> from <var>Set</var>. 
Deletion is based on unification using <a class="pred" href="builtinlist.html#memberchk/2">memberchk/2</a>. 
The complexity is <code>|</code><var>Delete</var><code>|</code>*<code>|</code><var>Set</var><code>|</code>.

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="ordsets.html#ord_subtract/3">ord_subtract/3</a>.
</dd>
</dl>

</dd>
</dl>

<p></body></html>