1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>SWI-Prolog 7.3.6 Reference Manual: Section A.19</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="optparse.html">
<link rel="next" href="pairs.html">
<style type="text/css">
/* Style sheet for SWI-Prolog latex2html
*/
dd.defbody
{ margin-bottom: 1em;
}
dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}
dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }
.bib dd
{ margin-bottom: 1em;
}
.bib dt
{ float: left;
margin-right: 1.3ex;
}
pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}
div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}
div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}
div.author
{ text-align: center;
font-style: italic;
}
div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}
div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}
div.toc-h1
{ font-size: 200%;
font-weight: bold;
}
div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}
div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}
div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}
span.sec-nr
{
}
span.sec-title
{
}
span.pred-ext
{ font-weight: bold;
}
span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}
div.caption
{ width: 80%;
margin: auto;
text-align:center;
}
/* Footnotes */
.fn {
color: red;
font-size: 70%;
}
.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}
sup:hover span.fn-text
{ display: block;
}
/* Lists */
dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}
dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}
/* PlDoc Tags */
dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}
dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}
dl.tags dd
{ margin-left: 3ex;
}
td.param
{ font-style: italic;
font-weight: bold;
}
/* Index */
dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}
/* Tables */
table.center
{ margin: auto;
}
table.latex
{ border-collapse:collapse;
}
table.latex tr
{ vertical-align: text-top;
}
table.latex td,th
{ padding: 2px 1em;
}
table.latex tr.hline td,th
{ border-top: 1px solid black;
}
table.frame-box
{ border: 2px solid black;
}
</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="optparse.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="pairs.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:ordsets"><a id="sec:A.19"><span class="sec-nr">A.19</span> <span class="sec-title">library(ordsets):
Ordered set manipulation</span></a></h2>
<p><a id="sec:ordsets"></a>
<p>Ordered sets are lists with unique elements sorted to the standard
order of terms (see <a class="pred" href="builtinlist.html#sort/2">sort/2</a>).
Exploiting ordering, many of the set operations can be expressed in
order N rather than N<code>^</code>2 when dealing with unordered sets
that may contain duplicates. The <code>library(ordsets)</code> is
available in a number of Prolog implementations. Our predicates are
designed to be compatible with common practice in the Prolog community.
The implementation is incomplete and relies partly on <code>library(oset)</code>,
an older ordered set library distributed with SWI-Prolog. New
applications are advised to use <code>library(ordsets)</code>.
<p>Some of these predicates match directly to corresponding list
operations. It is advised to use the versions from this library to make
clear you are operating on ordered sets. An exception is <a class="pred" href="lists.html#member/2">member/2</a>.
See
<a class="pred" href="ordsets.html#ord_memberchk/2">ord_memberchk/2</a>.
<p>The ordsets library is based on the standard order of terms. This
implies it can handle all Prolog terms, including variables. Note
however, that the ordering is not stable if a term inside the set is
further instantiated. Also note that variable ordering changes if
variables in the set are unified with each other or a variable in the
set is unified with a variable that is `older' than the newest variable
in the set. In practice, this implies that it is allowed to use
<code>member(X, OrdSet)</code> on an ordered set that holds variables
only if X is a fresh variable. In other cases one should cease using it
as an ordset because the order it relies on may have been changed.
<dl class="latex">
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="is_ordset/1"><strong>is_ordset</strong>(<var>@Term</var>)</a></dt>
<dd class="defbody">
True if <var>Term</var> is an ordered set. All predicates in this
library expect ordered sets as input arguments. Failing to fullfil this
assumption results in undefined behaviour. Typically, ordered sets are
created by predicates from this library, <a class="pred" href="builtinlist.html#sort/2">sort/2</a>
or
<a class="pred" href="allsolutions.html#setof/3">setof/3</a>.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_empty/1"><strong>ord_empty</strong>(<var>?List</var>)</a></dt>
<dd class="defbody">
True when <var>List</var> is the empty ordered set. Simply unifies list
with the empty list. Not part of Quintus.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_seteq/2"><strong>ord_seteq</strong>(<var>+Set1,
+Set2</var>)</a></dt>
<dd class="defbody">
True if <var>Set1</var> and <var>Set2</var> have the same elements. As
both are canonical sorted lists, this is the same as <a class="pred" href="compare.html#==/2">==/2</a>.
<dl class="tags">
<dt class="tag">Compatibility</dt>
<dd>
sicstus
</dd>
</dl>
</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="list_to_ord_set/2"><strong>list_to_ord_set</strong>(<var>+List,
-OrdSet</var>)</a></dt>
<dd class="defbody">
Transform a list into an ordered set. This is the same as sorting the
list.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_intersect/2"><strong>ord_intersect</strong>(<var>+Set1,
+Set2</var>)</a></dt>
<dd class="defbody">
True if both ordered sets have a non-empty intersection.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_disjoint/2"><strong>ord_disjoint</strong>(<var>+Set1,
+Set2</var>)</a></dt>
<dd class="defbody">
True if <var>Set1</var> and <var>Set2</var> have no common elements.
This is the negation of <a class="pred" href="ordsets.html#ord_intersect/2">ord_intersect/2</a>.</dd>
<dt class="pubdef"><a id="ord_intersect/3"><strong>ord_intersect</strong>(<var>+Set1,
+Set2, -Intersection</var>)</a></dt>
<dd class="defbody">
<var>Intersection</var> holds the common elements of <var>Set1</var> and <var>Set2</var>.
<dl class="tags">
<dt class="tag">deprecated</dt>
<dd>
Use <a class="pred" href="ordsets.html#ord_intersection/3">ord_intersection/3</a>
</dd>
</dl>
</dd>
<dt class="pubdef"><a id="ord_intersection/2"><strong>ord_intersection</strong>(<var>+PowerSet,
-Intersection</var>)</a></dt>
<dd class="defbody">
<var>Intersection</var> of a powerset. True when <var>Intersection</var>
is an ordered set holding all elements common to all sets in <var>PowerSet</var>.
<dl class="tags">
<dt class="tag">Compatibility</dt>
<dd>
sicstus
</dd>
</dl>
</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_intersection/3"><strong>ord_intersection</strong>(<var>+Set1,
+Set2, -Intersection</var>)</a></dt>
<dd class="defbody">
<var>Intersection</var> holds the common elements of <var>Set1</var> and <var>Set2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_intersection/4"><strong>ord_intersection</strong>(<var>+Set1,
+Set2, ?Intersection, ?Difference</var>)</a></dt>
<dd class="defbody">
<var>Intersection</var> and difference between two ordered sets.
<var>Intersection</var> is the intersection between <var>Set1</var> and <var>Set2</var>,
while
<var>Difference</var> is defined by <code>ord_subtract(Set2, Set1, Difference)</code>.
<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="ordsets.html#ord_intersection/3">ord_intersection/3</a>
and <a class="pred" href="ordsets.html#ord_subtract/3">ord_subtract/3</a>.
</dd>
</dl>
</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_add_element/3"><strong>ord_add_element</strong>(<var>+Set1,
+Element, ?Set2</var>)</a></dt>
<dd class="defbody">
Insert an element into the set. This is the same as
<code>ord_union(Set1, [Element], Set2)</code>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_del_element/3"><strong>ord_del_element</strong>(<var>+Set,
+Element, -NewSet</var>)</a></dt>
<dd class="defbody">
Delete an element from an ordered set. This is the same as
<code>ord_subtract(Set, [Element], NewSet)</code>.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_selectchk/3"><strong>ord_selectchk</strong>(<var>+Item,
?Set1, ?Set2</var>)</a></dt>
<dd class="defbody">
Selectchk/3, specialised for ordered sets. Is true when
<code>select(Item, Set1, Set2)</code> and <var>Set1</var>, <var>Set2</var>
are both sorted lists without duplicates. This implementation is only
expected to work for <var>Item</var> ground and either <var>Set1</var>
or <var>Set2</var> ground. The "chk" suffix is meant to remind you of <a class="pred" href="builtinlist.html#memberchk/2">memberchk/2</a>,
which also expects its first argument to be ground. <code>ord_selectchk(X, S, T)</code>
=<var>></var>
<code>ord_memberchk(X, S)</code> & <code>\+</code> <code>ord_memberchk(X, T)</code>.
<dl class="tags">
<dt class="tag">author</dt>
<dd>
Richard O'Keefe
</dd>
</dl>
</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_memberchk/2"><strong>ord_memberchk</strong>(<var>+Element,
+OrdSet</var>)</a></dt>
<dd class="defbody">
True if <var>Element</var> is a member of <var>OrdSet</var>, compared
using ==. Note that <i>enumerating</i> elements of an ordered set can be
done using
<a class="pred" href="lists.html#member/2">member/2</a>.
<p>Some Prolog implementations also provide <span class="pred-ext">ord_member/2</span>,
with the same semantics as <a class="pred" href="ordsets.html#ord_memberchk/2">ord_memberchk/2</a>.
We believe that having a semidet <span class="pred-ext">ord_member/2</span>
is unacceptably inconsistent with the *_chk convention. Portable code
should use <a class="pred" href="ordsets.html#ord_memberchk/2">ord_memberchk/2</a>
or
<a class="pred" href="lists.html#member/2">member/2</a>.
<dl class="tags">
<dt class="tag">author</dt>
<dd>
Richard O'Keefe
</dd>
</dl>
</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_subset/2"><strong>ord_subset</strong>(<var>+Sub,
+Super</var>)</a></dt>
<dd class="defbody">
Is true if all elements of <var>Sub</var> are in <var>Super</var></dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_subtract/3"><strong>ord_subtract</strong>(<var>+InOSet,
+NotInOSet, -Diff</var>)</a></dt>
<dd class="defbody">
<var>Diff</var> is the set holding all elements of <var>InOSet</var>
that are not in
<var>NotInOSet</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_union/2"><strong>ord_union</strong>(<var>+SetOfSets,
-Union</var>)</a></dt>
<dd class="defbody">
True if <var>Union</var> is the union of all elements in the superset
<var>SetOfSets</var>. Each member of <var>SetOfSets</var> must be an
ordered set, the sets need not be ordered in any way.
<dl class="tags">
<dt class="tag">author</dt>
<dd>
Copied from YAP, probably originally by Richard O'Keefe.
</dd>
</dl>
</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_union/3"><strong>ord_union</strong>(<var>+Set1,
+Set2, ?Union</var>)</a></dt>
<dd class="defbody">
<var>Union</var> is the union of <var>Set1</var> and <var>Set2</var></dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_union/4"><strong>ord_union</strong>(<var>+Set1,
+Set2, -Union, -New</var>)</a></dt>
<dd class="defbody">
True iff <code>ord_union(Set1, Set2, Union)</code> and
<code>ord_subtract(Set2, Set1, New)</code>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_symdiff/3"><strong>ord_symdiff</strong>(<var>+Set1,
+Set2, ?Difference</var>)</a></dt>
<dd class="defbody">
Is true when <var>Difference</var> is the symmetric difference of <var>Set1</var>
and
<var>Set2</var>. I.e., <var>Difference</var> contains all elements that
are not in the intersection of <var>Set1</var> and <var>Set2</var>. The
semantics is the same as the sequence below (but the actual
implementation requires only a single scan).
<pre class="code">
ord_union(Set1, Set2, Union),
ord_intersection(Set1, Set2, Intersection),
ord_subtract(Union, Intersection, Difference).
</pre>
<p>For example:
<pre class="code">
?- ord_symdiff([1,2], [2,3], X).
X = [1,3].
</pre>
<p></dd>
</dl>
<p></body></html>
|