File: ordsets.html

package info (click to toggle)
swi-prolog 7.2.3%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 84,180 kB
  • ctags: 45,684
  • sloc: ansic: 330,358; perl: 268,104; sh: 6,795; java: 4,904; makefile: 4,561; cpp: 4,153; ruby: 1,594; yacc: 843; xml: 82; sed: 12; sql: 6
file content (472 lines) | stat: -rw-r--r-- 13,976 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>SWI-Prolog 7.3.6 Reference Manual: Section A.19</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="optparse.html">
<link rel="next" href="pairs.html">

<style type="text/css">

/* Style sheet for SWI-Prolog latex2html
*/

dd.defbody
{ margin-bottom: 1em;
}

dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}

dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }

.bib dd
{ margin-bottom: 1em;
}

.bib dt
{ float: left;
margin-right: 1.3ex;
}

pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}

div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}

div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}

div.author
{ text-align: center;
font-style: italic;
}

div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}

div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}

div.toc-h1
{ font-size: 200%;
font-weight: bold;
}

div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}

div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}

div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}

span.sec-nr
{
}

span.sec-title
{
}

span.pred-ext
{ font-weight: bold;
}

span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}

div.caption
{ width: 80%;
margin: auto;
text-align:center;
}

/* Footnotes */
.fn {
color: red;
font-size: 70%;
}

.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}

sup:hover span.fn-text
{ display: block;
}

/* Lists */

dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}

/* PlDoc Tags */

dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}

dl.tags dd
{ margin-left: 3ex;
}

td.param
{ font-style: italic;
font-weight: bold;
}

/* Index */

dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}

/* Tables */

table.center
{ margin: auto;
}

table.latex
{ border-collapse:collapse;
}

table.latex tr
{ vertical-align: text-top;
}

table.latex td,th
{ padding: 2px 1em;
}

table.latex tr.hline td,th
{ border-top: 1px solid black;
}

table.frame-box
{ border: 2px solid black;
}

</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="optparse.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="pairs.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:ordsets"><a id="sec:A.19"><span class="sec-nr">A.19</span> <span class="sec-title">library(ordsets): 
Ordered set manipulation</span></a></h2>

<p><a id="sec:ordsets"></a>

<p>Ordered sets are lists with unique elements sorted to the standard 
order of terms (see <a class="pred" href="builtinlist.html#sort/2">sort/2</a>). 
Exploiting ordering, many of the set operations can be expressed in 
order N rather than N<code>^</code>2 when dealing with unordered sets 
that may contain duplicates. The <code>library(ordsets)</code> is 
available in a number of Prolog implementations. Our predicates are 
designed to be compatible with common practice in the Prolog community. 
The implementation is incomplete and relies partly on <code>library(oset)</code>, 
an older ordered set library distributed with SWI-Prolog. New 
applications are advised to use <code>library(ordsets)</code>.

<p>Some of these predicates match directly to corresponding list 
operations. It is advised to use the versions from this library to make 
clear you are operating on ordered sets. An exception is <a class="pred" href="lists.html#member/2">member/2</a>. 
See
<a class="pred" href="ordsets.html#ord_memberchk/2">ord_memberchk/2</a>.

<p>The ordsets library is based on the standard order of terms. This 
implies it can handle all Prolog terms, including variables. Note 
however, that the ordering is not stable if a term inside the set is 
further instantiated. Also note that variable ordering changes if 
variables in the set are unified with each other or a variable in the 
set is unified with a variable that is `older' than the newest variable 
in the set. In practice, this implies that it is allowed to use
<code>member(X, OrdSet)</code> on an ordered set that holds variables 
only if X is a fresh variable. In other cases one should cease using it 
as an ordset because the order it relies on may have been changed.

<dl class="latex">
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="is_ordset/1"><strong>is_ordset</strong>(<var>@Term</var>)</a></dt>
<dd class="defbody">
True if <var>Term</var> is an ordered set. All predicates in this 
library expect ordered sets as input arguments. Failing to fullfil this 
assumption results in undefined behaviour. Typically, ordered sets are 
created by predicates from this library, <a class="pred" href="builtinlist.html#sort/2">sort/2</a> 
or
<a class="pred" href="allsolutions.html#setof/3">setof/3</a>.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_empty/1"><strong>ord_empty</strong>(<var>?List</var>)</a></dt>
<dd class="defbody">
True when <var>List</var> is the empty ordered set. Simply unifies list 
with the empty list. Not part of Quintus.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_seteq/2"><strong>ord_seteq</strong>(<var>+Set1, 
+Set2</var>)</a></dt>
<dd class="defbody">
True if <var>Set1</var> and <var>Set2</var> have the same elements. As 
both are canonical sorted lists, this is the same as <a class="pred" href="compare.html#==/2">==/2</a>.

<dl class="tags">
<dt class="tag">Compatibility</dt>
<dd>
sicstus
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="list_to_ord_set/2"><strong>list_to_ord_set</strong>(<var>+List, 
-OrdSet</var>)</a></dt>
<dd class="defbody">
Transform a list into an ordered set. This is the same as sorting the 
list.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_intersect/2"><strong>ord_intersect</strong>(<var>+Set1, 
+Set2</var>)</a></dt>
<dd class="defbody">
True if both ordered sets have a non-empty intersection.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_disjoint/2"><strong>ord_disjoint</strong>(<var>+Set1, 
+Set2</var>)</a></dt>
<dd class="defbody">
True if <var>Set1</var> and <var>Set2</var> have no common elements. 
This is the negation of <a class="pred" href="ordsets.html#ord_intersect/2">ord_intersect/2</a>.</dd>
<dt class="pubdef"><a id="ord_intersect/3"><strong>ord_intersect</strong>(<var>+Set1, 
+Set2, -Intersection</var>)</a></dt>
<dd class="defbody">
<var>Intersection</var> holds the common elements of <var>Set1</var> and <var>Set2</var>.

<dl class="tags">
<dt class="tag">deprecated</dt>
<dd>
Use <a class="pred" href="ordsets.html#ord_intersection/3">ord_intersection/3</a>
</dd>
</dl>

</dd>
<dt class="pubdef"><a id="ord_intersection/2"><strong>ord_intersection</strong>(<var>+PowerSet, 
-Intersection</var>)</a></dt>
<dd class="defbody">
<var>Intersection</var> of a powerset. True when <var>Intersection</var> 
is an ordered set holding all elements common to all sets in <var>PowerSet</var>.

<dl class="tags">
<dt class="tag">Compatibility</dt>
<dd>
sicstus
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_intersection/3"><strong>ord_intersection</strong>(<var>+Set1, 
+Set2, -Intersection</var>)</a></dt>
<dd class="defbody">
<var>Intersection</var> holds the common elements of <var>Set1</var> and <var>Set2</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_intersection/4"><strong>ord_intersection</strong>(<var>+Set1, 
+Set2, ?Intersection, ?Difference</var>)</a></dt>
<dd class="defbody">
<var>Intersection</var> and difference between two ordered sets.
<var>Intersection</var> is the intersection between <var>Set1</var> and <var>Set2</var>, 
while
<var>Difference</var> is defined by <code>ord_subtract(Set2, Set1, Difference)</code>.

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
<a class="pred" href="ordsets.html#ord_intersection/3">ord_intersection/3</a> 
and <a class="pred" href="ordsets.html#ord_subtract/3">ord_subtract/3</a>.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_add_element/3"><strong>ord_add_element</strong>(<var>+Set1, 
+Element, ?Set2</var>)</a></dt>
<dd class="defbody">
Insert an element into the set. This is the same as
<code>ord_union(Set1, [Element], Set2)</code>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_del_element/3"><strong>ord_del_element</strong>(<var>+Set, 
+Element, -NewSet</var>)</a></dt>
<dd class="defbody">
Delete an element from an ordered set. This is the same as
<code>ord_subtract(Set, [Element], NewSet)</code>.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_selectchk/3"><strong>ord_selectchk</strong>(<var>+Item, 
?Set1, ?Set2</var>)</a></dt>
<dd class="defbody">
Selectchk/3, specialised for ordered sets. Is true when
<code>select(Item, Set1, Set2)</code> and <var>Set1</var>, <var>Set2</var> 
are both sorted lists without duplicates. This implementation is only 
expected to work for <var>Item</var> ground and either <var>Set1</var> 
or <var>Set2</var> ground. The "chk" suffix is meant to remind you of <a class="pred" href="builtinlist.html#memberchk/2">memberchk/2</a>, 
which also expects its first argument to be ground. <code>ord_selectchk(X, S, T)</code> 
=<var>&gt;</var>
<code>ord_memberchk(X, S)</code> &amp; <code>\+</code> <code>ord_memberchk(X, T)</code>.

<dl class="tags">
<dt class="tag">author</dt>
<dd>
Richard O'Keefe
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_memberchk/2"><strong>ord_memberchk</strong>(<var>+Element, 
+OrdSet</var>)</a></dt>
<dd class="defbody">
True if <var>Element</var> is a member of <var>OrdSet</var>, compared 
using ==. Note that <i>enumerating</i> elements of an ordered set can be 
done using
<a class="pred" href="lists.html#member/2">member/2</a>.

<p>Some Prolog implementations also provide <span class="pred-ext">ord_member/2</span>, 
with the same semantics as <a class="pred" href="ordsets.html#ord_memberchk/2">ord_memberchk/2</a>. 
We believe that having a semidet <span class="pred-ext">ord_member/2</span> 
is unacceptably inconsistent with the *_chk convention. Portable code 
should use <a class="pred" href="ordsets.html#ord_memberchk/2">ord_memberchk/2</a> 
or
<a class="pred" href="lists.html#member/2">member/2</a>.

<dl class="tags">
<dt class="tag">author</dt>
<dd>
Richard O'Keefe
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="ord_subset/2"><strong>ord_subset</strong>(<var>+Sub, 
+Super</var>)</a></dt>
<dd class="defbody">
Is true if all elements of <var>Sub</var> are in <var>Super</var></dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_subtract/3"><strong>ord_subtract</strong>(<var>+InOSet, 
+NotInOSet, -Diff</var>)</a></dt>
<dd class="defbody">
<var>Diff</var> is the set holding all elements of <var>InOSet</var> 
that are not in
<var>NotInOSet</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_union/2"><strong>ord_union</strong>(<var>+SetOfSets, 
-Union</var>)</a></dt>
<dd class="defbody">
True if <var>Union</var> is the union of all elements in the superset
<var>SetOfSets</var>. Each member of <var>SetOfSets</var> must be an 
ordered set, the sets need not be ordered in any way.

<dl class="tags">
<dt class="tag">author</dt>
<dd>
Copied from YAP, probably originally by Richard O'Keefe.
</dd>
</dl>

</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_union/3"><strong>ord_union</strong>(<var>+Set1, 
+Set2, ?Union</var>)</a></dt>
<dd class="defbody">
<var>Union</var> is the union of <var>Set1</var> and <var>Set2</var></dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_union/4"><strong>ord_union</strong>(<var>+Set1, 
+Set2, -Union, -New</var>)</a></dt>
<dd class="defbody">
True iff <code>ord_union(Set1, Set2, Union)</code> and
<code>ord_subtract(Set2, Set1, New)</code>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="ord_symdiff/3"><strong>ord_symdiff</strong>(<var>+Set1, 
+Set2, ?Difference</var>)</a></dt>
<dd class="defbody">
Is true when <var>Difference</var> is the symmetric difference of <var>Set1</var> 
and
<var>Set2</var>. I.e., <var>Difference</var> contains all elements that 
are not in the intersection of <var>Set1</var> and <var>Set2</var>. The 
semantics is the same as the sequence below (but the actual 
implementation requires only a single scan).

<pre class="code">
      ord_union(Set1, Set2, Union),
      ord_intersection(Set1, Set2, Intersection),
      ord_subtract(Union, Intersection, Difference).
</pre>

<p>For example:

<pre class="code">
?- ord_symdiff([1,2], [2,3], X).
X = [1,3].
</pre>

<p></dd>
</dl>

<p></body></html>