
SWI-Prolog Jasmine (ODB) Interface

Jan Wielemaker
SWI,

University of Amsterdam
The Netherlands

E-mail: J.Wielemaker@uva.nl

January 4, 2011

Abstract

The Jasmine interface provides a client interface to the Object Oriented Jasmine
database. The interface consists of two layers. The first is a simple wrapper around
the Jasmine C-interface. The second provides utility predicates providing more high-level
access to Jasmine.

Contents

1 Introduction 2

2 Basic ODB predicates 2
2.1 Session management . 2
2.2 ODQL Statements . 3
2.3 Variables . 3
2.4 Collections . 4

3 Utility Predicates 4

4 Error handling 5

5 Issues 6

6 Installation 6
6.1 Unix systems . 6
6.2 Windows . 6

1

1 Introduction

Jasmine is an object-oriented database (ODB), implementing ODQL (Object Database Query
Language). It provides a C-interface based on the following components:

• Session management
Connecting and disconnecting a database.

• Variables
Within the interface, variables can be declared. These variables can be manipulated
both using ODQL statement and from the access language. Variables play a vital role
in communicating data.

• Data conversion
Variables can be read and written. They are dynamically typed and the interface
provides access to their type and value. In Prolog we can exploit dynamic typing of
Prolog to hide most of the data conversion from the user.

• Collection conversion
Collections play a vital role in communicating results from databases. Variables are
bound to collections using ODQL statements. They can be queried for their size and
converted into Prolog lists.

2 Basic ODB predicates

Below is the definition of the basic ODB access predicates defined in jasmine.c.

2.1 Session management

Sessions are accessed using a session-handle. This opaque handle is normally preserved in the
Prolog database.

odb ses start(-SH, +Database, +User, +Passwd, +EnvFile)
Connect to the indicated database and return a handle for the created session in SH.
SH is an opaque Prolog term providing context for subsequent ODB calls. Database
specifies the database to connect to. It is an atom formatted as below, where nvode is
the name of the machine to connect to. User and Passwd and EnvFile are either atoms
or unbound variables. The latter makes the interface choose default values. EnvFile is
the name of a file providing parameters for the interface. See the C-API documentation
for details.

[vnode::]/jasmine/jasmine

odb ses end(+SH)
Terminate the session. Note that at halt/1 can be used to ensure termination of the
session when Prolog halts.

2

2.2 ODQL Statements

ODQL statement are passed in textual form and specified either as atoms or SWI-Prolog
strings. The latter makes it possible to construct statements using sformat/3. See also
odb exec odql/3.

odb exec odql(+SH, +Statement)
Execute the given ODQL Statement on the session SH. This predicate either succeeds
or raises an exception. See section ?? for details.

2.3 Variables

Variables play a vital role in the interface. Interface variables are defined using ODQL state-
ments. They are scoped to the session, but otherwise global. There are two approaches to
deal with this. One is to define a suitable set of variables for the application at startup and
the other is to create them as they are needed. In the latter case one should be sure the
variable name is currently not in use. In some of the examples we therefore see:

undefVar pcount;

Integer pcount;

From this example we learn that variables are typed. The type is accessible through the
C-interface and used by the access predicate to perform suitable conversion to Prolog.

odb get var(+SH, +Name, -Value)
Fetches the value of the named interface variable. Succeeds if the value can be unified
successfully, fails if the value is retrieved correctly but unification fails and raises an
exception otherwise.

The representation of Value depends on the type of Name in the database interface.

• Bool
Booleans are represented either using the atom true or false.

• ByteSequence
Byte-sequences are represented using an atom (as of SWI-Prolog 3.3 atoms can
hold 0-bytes are therefore are capable of storing an arbitrary byte-stream).

• Date
Dates are represented in SWI-Prolog as a floating point number representing the
time since the start of 1970. See the Prolog reference manual for manipulating
dates.

• Decimal
An ODB decimal is a sequence of digits with precision and scale. There is no
representation for this in Prolog and therefore we use decimal(Digits, Precision,
Scale). See the Jasmine C-API docs for details.

• Integer
Jasmine integers are, as SWI-Prolog’s integers 32 bit signed values and therefore
represented naturally.

3

• Nil
Nil is represented using the Prolog empty list (([])).1

• Object
Objects are represented using a opaque term.

• Real
Jasmine reals are double-precision floats and therefore naturally represented using
SWI-Prolog floats.

• String
Strings are, like ByteSequences, represented as Prolog atoms.

• Tuple
Database N-tuples are represented using a term tuple(...Arg...), where Arg is the
converted value for the corresponding position in the tuple.

odb set var(+SH, +Name, +Value)
Set a variable. In accordance with the guidelines in the interface this first fetches the
value to examine the type of the variable. The latter is problematic, as not-yet-filled
variables yield the Nil type. In this case the type is determined from Value.

This translation currently does not deal with the type-ambiguities. It is currently not
possible to set nil-variables to a boolean, byte-sequence or date. This problem can be
fixed by using an ODQL query to fill the empty variable with an object of the requested
type.

2.4 Collections

Database queries normally yield collections as results. The interface simply converts collec-
tions into Prolog lists. The current interface does not yet provide mechanisms for fetching
part of a collection. Note that, using ODQL statements it is possible to get the length of a
collection before conversion:

collection_length(SH, Collection, Length) :-

odb_exec_odql(SH, ’Integer len;’),

odb_exec_odql(SH, ’len = ~w.count();’, [Collection]),

odb_get_var(SH, len, Length).

odb collection to list(+SH, +Collection, -List)
Where Collection is the name of a variable containing a collection or the object-identifier
of a collection. The elements of the collection are converted using the same rules as
odb get var/3.

3 Utility Predicates

The predicates of the previous section provide all important aspects of the C-API to the
Prolog user. The provided access however is very low-level. A very first start has been made
to provide a number of utility predicates.

1This could be considered a bug. What would be a better choice?

4

odb exec odql(+SH, +Format, +Args)
First constructs a command using sformat/3 from Format and Args and then execute
it.

odql(:SH, +Declarations, +Statements)
Utility to deal with a sequence of ODQL statements, requiring some variables to exe-
cute them. Declarations is a list of VarName:Type. These variables are first unset and
then declared using the given type. Please note that this principle is not re-entrant.
Statements is a list containing a mix of ODQL statements, set/get variables, access
collections and ordinary Prolog code:

get(VarName, Value)
Fetch the interface variable VarName using odb get var/3.

set(VarName, Value)
Store the interface variable VarName using odb set var/3.

get list(Collection, List)
Get a variable or object-id into a list of values using odb collection to list/2.

{}(Goal)
Call normal Prolog goal in the module from which odql/3 was called. Note that
{Goal} is the same as {}(Goal).

-(Format, Args)
Execute an ODQL query using odb exec odql/3.

Command
Execute ODQL command.

Here is an example, extracting the available class-families from the Jasmine database:

families(SH, List) :-

odql(SH,

[ss:’Bag<String>’

],

[’ss = FamilyManager.getAllFamilies();’,

get_list(ss, List)

]).

4 Error handling

All errors are reported using Prolog exceptions. This package raises two types of exceptions.
If Prolog arguments cannot be converted into the desired data, normal Prolog type error and
instantiation error exceptions are raised. Jasmine calls returning an error are translated
into an error term of the format

error(package(jasmine, ErrorId), Context)

Where Context is

5

context(Message,)

In this term, ErrorId is the (numerical) error identifier raised by Jasmine and Message is
Jasmine’s textual representation of the error.

5 Issues

The interface defined here provides the foreign-language basis for a more advanced Prolog
ODQL interface. Specifying all ODQL as strings and dealing with the interface variables is
not a desirable way to deal with ODQL. A more fundamental approach is to define a Prolog
API for ODQL and an interface for translating these Prolog queries into textual ODQL calls.
For example, the families/2 example above could be written as:

families(SH, Families) :-

odql(Families:bag(string) = ’FamilyManager’.getAllFamilies).

6 Installation

The jasmine package has currently been build only on Windows. As Jasmine is also avail-
able on Unix, the standard SWI-Prolog package infra-structure for Unix foreign packages is
provided.

6.1 Unix systems

Installation on Unix system uses the commonly found configure, make and make install se-
quence. SWI-Prolog should be installed before building this package. If SWI-Prolog is not
installed as pl, the environment variable PL must be set to the name of the SWI-Prolog
executable. Installation is now accomplished using:

% ./configure

% make

% make install

This installs the Prolog library files in $PLBASE/library, where $PLBASE refers to the SWI-
Prolog ‘home-directory’.

6.2 Windows

Run the file setup.pl by double clicking it. This will install the required files into the
SWI-Prolog directory and update the library directory.

6

	Introduction
	Basic ODB predicates
	Session management
	ODQL Statements
	Variables
	Collections

	Utility Predicates
	Error handling
	Issues
	Installation
	Unix systems
	Windows

