1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
/* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@vu.nl
WWW: http://www.swi-prolog.org
Copyright (c) 2006-2018, University of Amsterdam
VU University Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(error,
[ type_error/2, % +Type, +Term
domain_error/2, % +Domain, +Term
existence_error/2, % +Type, +Term
existence_error/3, % +Type, +Term, +Set
permission_error/3, % +Action, +Type, +Term
instantiation_error/1, % +Term
uninstantiation_error/1, % +Term
representation_error/1, % +Reason
syntax_error/1, % +Culprit
resource_error/1, % +Culprit
must_be/2, % +Type, +Term
is_of_type/2, % +Type, +Term
current_type/3 % ?Type, @Var, -Body
]).
:- set_prolog_flag(generate_debug_info, false).
/** <module> Error generating support
This module provides predicates to simplify error generation and
checking. It's implementation is based on a discussion on the SWI-Prolog
mailinglist on best practices in error handling. The utility predicate
must_be/2 provides simple run-time type validation. The *_error
predicates are simple wrappers around throw/1 to simplify throwing the
most common ISO error terms.
@author Jan Wielemaker
@author Richard O'Keefe
@author Ulrich Neumerkel
@see library(debug) and library(prolog_stack).
@see print_message/2 is used to print (uncaught) error terms.
*/
:- multifile
has_type/2.
/*******************************
* ISO ERRORS *
*******************************/
%! type_error(+Type, +Term).
%
% Tell the user that Term is not of the expected Type. This error
% is closely related to domain_error/2 because the notion of types
% is not really set in stone in Prolog. We introduce the
% difference using a simple example.
%
% Suppose an argument must be a non-negative integer. If the
% actual argument is not an integer, this is a _type_error_. If it
% is a negative integer, it is a _domain_error_.
%
% Typical borderline cases are predicates accepting a compound
% term, e.g., point(X,Y). One could argue that the basic type is a
% compound-term and any other compound term is a domain error.
% Most Prolog programmers consider each compound as a type and
% would consider a compound that is not point(_,_) a _type_error_.
type_error(Type, Term) :-
throw(error(type_error(Type, Term), _)).
%! domain_error(+Type, +Term).
%
% The argument is of the proper type, but has a value that is
% outside the supported values. See type_error/2 for a more
% elaborate discussion of the distinction between type- and
% domain-errors.
domain_error(Type, Term) :-
throw(error(domain_error(Type, Term), _)).
%! existence_error(+Type, +Term).
%
% Term is of the correct type and correct domain, but there is no
% existing (external) resource that is represented by it.
existence_error(Type, Term) :-
throw(error(existence_error(Type, Term), _)).
%! existence_error(+Type, +Term, +Set).
%
% Term is of the correct type and correct domain, but there is no
% existing (external) resource that is represented by it in the
% provided set.
%
% @compat This error is not in ISO.
existence_error(Type, Term, Set) :-
throw(error(existence_error(Type, Term, Set), _)).
%! permission_error(+Action, +Type, +Term).
%
% It is not allowed to perform Action on the object Term that is
% of the given Type.
permission_error(Action, Type, Term) :-
throw(error(permission_error(Action, Type, Term), _)).
%! instantiation_error(+Term).
%
% An argument is under-instantiated. I.e. it is not acceptable as
% it is, but if some variables are bound to appropriate values it
% would be acceptable.
%
% @param Term is the term that needs (further) instantiation.
% Unfortunately, the ISO error does not allow for passing
% this term along with the error, but we pass it to this
% predicate for documentation purposes and to allow for
% future enhancement.
instantiation_error(_Term) :-
throw(error(instantiation_error, _)).
%! uninstantiation_error(+Term)
%
% An argument is over-instantiated. This error is used for output
% arguments whose value cannot be known upfront. For example, the
% goal open(File, read, input) cannot succeed because the system
% will allocate a new unique stream handle that will never unify
% with `input`.
uninstantiation_error(Term) :-
throw(error(uninstantiation_error(Term), _)).
%! representation_error(+Reason).
%
% A representation error indicates a limitation of the
% implementation. SWI-Prolog has no such limits that are not
% covered by other errors, but an example of a representation
% error in another Prolog implementation could be an attempt to
% create a term with an arity higher than supported by the system.
representation_error(Reason) :-
throw(error(representation_error(Reason), _)).
%! syntax_error(+Culprit)
%
% A text has invalid syntax. The error is described by Culprit.
%
% @tbd Deal with proper description of the location of the
% error. For short texts, we allow for Type(Text), meaning
% Text is not a valid Type. E.g. syntax_error(number('1a'))
% means that =1a= is not a valid number.
syntax_error(Culprit) :-
throw(error(syntax_error(Culprit), _)).
%! resource_error(+Culprit)
%
% A goal cannot be completed due to lack of resources.
resource_error(Culprit) :-
throw(error(resource_error(Culprit), _)).
/*******************************
* MUST-BE *
*******************************/
%! must_be(+Type, @Term) is det.
%
% True if Term satisfies the type constraints for Type. Defined
% types are =atom=, =atomic=, =between=, =boolean=, =callable=,
% =chars=, =codes=, =text=, =compound=, =constant=, =float=,
% =integer=, =nonneg=, =positive_integer=, =negative_integer=,
% =nonvar=, =number=, =oneof=, =list=, =list_or_partial_list=,
% =symbol=, =var=, =rational=, =encoding=, =dict= and =string=.
%
% Most of these types are defined by an arity-1 built-in predicate
% of the same name. Below is a brief definition of the other
% types.
%
% | acyclic | Acyclic term (tree); see acyclic_term/1 |
% | any | |
% | between(FloatL,FloatU) | Number [FloatL..FloatU] |
% | between(IntL,IntU) | Integer [IntL..IntU] |
% | boolean | One of =true= or =false= |
% | char | Atom of length 1 |
% | chars | Proper list of 1-character atoms |
% | code | Representation Unicode code point |
% | codes | Proper list of Unicode character codes |
% | constant | Same as `atomic` |
% | cyclic | Cyclic term (rational tree); see cyclic_term/1 |
% | dict | A dictionary term; see is_dict/1 |
% | encoding | Valid name for a character encoding; see current_encoding/1 |
% | list | A (non-open) list; see is_list/1 |
% | negative_integer | Integer < 0 |
% | nonneg | Integer >= 0 |
% | oneof(L) | Ground term that is member of L |
% | positive_integer | Integer > 0 |
% | proper_list | Same as list |
% | list(Type) | Proper list with elements of Type |
% | list_or_partial_list | A list or an open list (ending in a variable); see is_list_or_partial_list/1 |
% | stream | A stream name or valid stream handle; see is_stream/1 |
% | symbol | Same as `atom` |
% | text | One of =atom=, =string=, =chars= or =codes= |
% | type | Term is a valid type specification |
%
% Note: The Windows version can only represent Unicode code points
% up to 2^16-1. Higher values cause a representation error on most
% text handling predicates.
%
% @throws instantiation_error if Term is insufficiently
% instantiated and type_error(Type, Term) if Term is not of Type.
must_be(Type, X) :-
( nonvar(Type),
has_type(Type, X)
-> true
; nonvar(Type)
-> is_not(Type, X)
; instantiation_error(Type)
).
%! is_not(+Type, @Term)
%
% Throws appropriate error. It is _known_ that Term is not of type
% Type.
%
% @throws type_error(Type, Term)
% @throws instantiation_error
is_not(list, X) :-
!,
not_a_list(list, X).
is_not(list(Of), X) :-
!,
not_a_list(list(Of), X).
is_not(list_or_partial_list, X) :-
!,
type_error(list, X).
is_not(chars, X) :-
!,
not_a_list(list(char), X).
is_not(codes, X) :-
!,
not_a_list(list(code), X).
is_not(var,X) :-
!,
uninstantiation_error(X).
is_not(cyclic, X) :-
domain_error(cyclic_term, X).
is_not(acyclic, X) :-
domain_error(acyclic_term, X).
is_not(Type, X) :-
( var(X)
-> instantiation_error(X)
; ground_type(Type), \+ ground(X)
-> instantiation_error(X)
; current_type(Type, _Var, _Body)
-> type_error(Type, X)
; existence_error(type, Type)
).
ground_type(ground).
ground_type(oneof(_)).
ground_type(stream).
ground_type(text).
ground_type(string).
ground_type(rational).
not_a_list(Type, X) :-
'$skip_list'(_, X, Rest),
( var(Rest)
-> instantiation_error(X)
; Rest == []
-> Type = list(Of),
( nonvar(Of)
-> element_is_not(X, Of)
; instantiation_error(Of)
)
; type_error(Type, X)
).
element_is_not([H|T], Of) :-
has_type(Of, H),
!,
element_is_not(T, Of).
element_is_not([H|_], Of) :-
!,
is_not(Of, H).
element_is_not(_List, _Of) :-
assertion(fail).
%! is_of_type(+Type, @Term) is semidet.
%
% True if Term satisfies Type.
is_of_type(Type, Term) :-
nonvar(Type),
!,
has_type(Type, Term),
!.
is_of_type(Type, _) :-
instantiation_error(Type).
%! has_type(+Type, @Term) is semidet.
%
% True if Term satisfies Type.
:- '$clausable'(has_type/2). % always allow clause/2
has_type(any, _).
has_type(atom, X) :- atom(X).
has_type(atomic, X) :- atomic(X).
has_type(between(L,U), X) :- ( integer(L)
-> integer(X), between(L,U,X)
; number(X), X >= L, X =< U
).
has_type(boolean, X) :- (X==true;X==false), !.
has_type(callable, X) :- callable(X).
has_type(char, X) :- '$is_char'(X).
has_type(code, X) :- '$is_char_code'(X).
has_type(chars, X) :- '$is_char_list'(X, _Len).
has_type(codes, X) :- '$is_code_list'(X, _Len).
has_type(text, X) :- text(X).
has_type(compound, X) :- compound(X).
has_type(constant, X) :- atomic(X).
has_type(float, X) :- float(X).
has_type(ground, X) :- ground(X).
has_type(cyclic, X) :- cyclic_term(X).
has_type(acyclic, X) :- acyclic_term(X).
has_type(integer, X) :- integer(X).
has_type(nonneg, X) :- integer(X), X >= 0.
has_type(positive_integer, X) :- integer(X), X > 0.
has_type(negative_integer, X) :- integer(X), X < 0.
has_type(nonvar, X) :- nonvar(X).
has_type(number, X) :- number(X).
has_type(oneof(L), X) :- ground(X), \+ \+ memberchk(X, L).
has_type(proper_list, X) :- is_list(X).
has_type(list, X) :- is_list(X).
has_type(list_or_partial_list, X) :- is_list_or_partial_list(X).
has_type(symbol, X) :- atom(X).
has_type(var, X) :- var(X).
has_type(rational, X) :- rational(X).
has_type(string, X) :- string(X).
has_type(stream, X) :- is_stream(X).
has_type(encoding, X) :- current_encoding(X).
has_type(dict, X) :- is_dict(X).
has_type(list(Type), X) :- is_list(X), element_types(X, Type).
has_type(type, Type) :- ground(Type), current_type(Type,_,_).
text(X) :-
( atom(X)
; string(X)
; '$is_char_list'(X, _)
; '$is_code_list'(X, _)
),
!.
element_types(List, Type) :-
nonvar(Type),
!,
element_types_(List, Type).
element_types(_List, Type) :-
instantiation_error(Type).
element_types_([], _).
element_types_([H|T], Type) :-
has_type(Type, H),
!,
element_types_(T, Type).
is_list_or_partial_list(L0) :-
'$skip_list'(_, L0,L),
( var(L) -> true ; L == [] ).
%! current_encoding(?Name) is nondet.
%
% True if Name is the name of a supported encoding. See encoding
% option of e.g., open/4.
current_encoding(octet).
current_encoding(ascii).
current_encoding(iso_latin_1).
current_encoding(text).
current_encoding(utf8).
current_encoding(unicode_be).
current_encoding(unicode_le).
current_encoding(wchar_t).
%! current_type(?Type, @Var, -Body) is nondet.
%
% True when Type is a currently defined type and Var satisfies Type of
% the body term Body succeeds.
current_type(Type, Var, Body) :-
clause(has_type(Type, Var), Body0),
qualify(Body0, Body).
qualify(Var, VarQ) :-
var(Var),
!,
VarQ = Var.
qualify((A0,B0), (A,B)) :-
qualify(A0, A),
qualify(B0, B).
qualify(G0, G) :-
predicate_property(system:G0, built_in),
!,
G = G0.
qualify(G, error:G).
/*******************************
* SANDBOX *
*******************************/
:- multifile sandbox:safe_primitive/1.
sandbox:safe_primitive(error:current_type(_,_,_)).
|