1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
|
/* Part of SWI-Prolog
Author: Jan Wielemaker and Richard O'Keefe
E-mail: J.Wielemaker@cs.vu.nl
WWW: http://www.swi-prolog.org
Copyright (c) 2002-2016, University of Amsterdam
VU University Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(lists,
[ member/2, % ?X, ?List
append/2, % +ListOfLists, -List
append/3, % ?A, ?B, ?AB
prefix/2, % ?Part, ?Whole
select/3, % ?X, ?List, ?Rest
selectchk/3, % ?X, ?List, ?Rest
select/4, % ?X, ?XList, ?Y, ?YList
selectchk/4, % ?X, ?XList, ?Y, ?YList
nextto/3, % ?X, ?Y, ?List
delete/3, % ?List, ?X, ?Rest
nth0/3, % ?N, ?List, ?Elem
nth1/3, % ?N, ?List, ?Elem
nth0/4, % ?N, ?List, ?Elem, ?Rest
nth1/4, % ?N, ?List, ?Elem, ?Rest
last/2, % +List, -Element
proper_length/2, % @List, -Length
same_length/2, % ?List1, ?List2
reverse/2, % +List, -Reversed
permutation/2, % ?List, ?Permutation
flatten/2, % +Nested, -Flat
% Ordered operations
max_member/2, % -Max, +List
min_member/2, % -Min, +List
% Lists of numbers
sum_list/2, % +List, -Sum
max_list/2, % +List, -Max
min_list/2, % +List, -Min
numlist/3, % +Low, +High, -List
% set manipulation
is_set/1, % +List
list_to_set/2, % +List, -Set
intersection/3, % +List1, +List2, -Intersection
union/3, % +List1, +List2, -Union
subset/2, % +SubSet, +Set
subtract/3 % +Set, +Delete, -Remaining
]).
:- use_module(library(error)).
:- use_module(library(pairs)).
:- set_prolog_flag(generate_debug_info, false).
/** <module> List Manipulation
This library provides commonly accepted basic predicates for list
manipulation in the Prolog community. Some additional list manipulations
are built-in. See e.g., memberchk/2, length/2.
The implementation of this library is copied from many places. These
include: "The Craft of Prolog", the DEC-10 Prolog library (LISTRO.PL)
and the YAP lists library. Some predicates are reimplemented based on
their specification by Quintus and SICStus.
@compat Virtually every Prolog system has library(lists), but the set
of provided predicates is diverse. There is a fair agreement
on the semantics of most of these predicates, although error
handling may vary.
*/
%! member(?Elem, ?List)
%
% True if Elem is a member of List. The SWI-Prolog definition
% differs from the classical one. Our definition avoids unpacking
% each list element twice and provides determinism on the last
% element. E.g. this is deterministic:
%
% ==
% member(X, [One]).
% ==
%
% @author Gertjan van Noord
member(El, [H|T]) :-
member_(T, El, H).
member_(_, El, El).
member_([H|T], El, _) :-
member_(T, El, H).
%! append(?List1, ?List2, ?List1AndList2)
%
% List1AndList2 is the concatenation of List1 and List2
append([], L, L).
append([H|T], L, [H|R]) :-
append(T, L, R).
%! append(+ListOfLists, ?List)
%
% Concatenate a list of lists. Is true if ListOfLists is a list of
% lists, and List is the concatenation of these lists.
%
% @param ListOfLists must be a list of _possibly_ partial lists
append(ListOfLists, List) :-
must_be(list, ListOfLists),
append_(ListOfLists, List).
append_([], []).
append_([L|Ls], As) :-
append(L, Ws, As),
append_(Ls, Ws).
%! prefix(?Part, ?Whole)
%
% True iff Part is a leading substring of Whole. This is the same
% as append(Part, _, Whole).
prefix([], _).
prefix([E|T0], [E|T]) :-
prefix(T0, T).
%! select(?Elem, ?List1, ?List2)
%
% Is true when List1, with Elem removed, results in List2. This
% implementation is determinsitic if the last element of List1 has
% been selected.
select(X, [Head|Tail], Rest) :-
select3_(Tail, Head, X, Rest).
select3_(Tail, Head, Head, Tail).
select3_([Head2|Tail], Head, X, [Head|Rest]) :-
select3_(Tail, Head2, X, Rest).
%! selectchk(+Elem, +List, -Rest) is semidet.
%
% Semi-deterministic removal of first element in List that unifies
% with Elem.
selectchk(Elem, List, Rest) :-
select(Elem, List, Rest0),
!,
Rest = Rest0.
%! select(?X, ?XList, ?Y, ?YList) is nondet.
%
% Select from two lists at the same positon. True if XList is
% unifiable with YList apart a single element at the same position
% that is unified with X in XList and with Y in YList. A typical
% use for this predicate is to _replace_ an element, as shown in
% the example below. All possible substitutions are performed on
% backtracking.
%
% ==
% ?- select(b, [a,b,c,b], 2, X).
% X = [a, 2, c, b] ;
% X = [a, b, c, 2] ;
% false.
% ==
%
% @see selectchk/4 provides a semidet version.
select(X, XList, Y, YList) :-
select4_(XList, X, Y, YList).
select4_([X|List], X, Y, [Y|List]).
select4_([X0|XList], X, Y, [X0|YList]) :-
select4_(XList, X, Y, YList).
%! selectchk(?X, ?XList, ?Y, ?YList) is semidet.
%
% Semi-deterministic version of select/4.
selectchk(X, XList, Y, YList) :-
select(X, XList, Y, YList),
!.
%! nextto(?X, ?Y, ?List)
%
% True if Y directly follows X in List.
nextto(X, Y, [X,Y|_]).
nextto(X, Y, [_|Zs]) :-
nextto(X, Y, Zs).
%! delete(+List1, @Elem, -List2) is det.
%
% Delete matching elements from a list. True when List2 is a list
% with all elements from List1 except for those that unify with
% Elem. Matching Elem with elements of List1 is uses =|\+ Elem \=
% H|=, which implies that Elem is not changed.
%
% @deprecated There are too many ways in which one might want to
% delete elements from a list to justify the name.
% Think of matching (= vs. ==), delete first/all,
% be deterministic or not.
% @see select/3, subtract/3.
delete([], _, []).
delete([Elem|Tail], Del, Result) :-
( \+ Elem \= Del
-> delete(Tail, Del, Result)
; Result = [Elem|Rest],
delete(Tail, Del, Rest)
).
/* nth0/3, nth1/3 are improved versions from
Martin Jansche <martin@pc03.idf.uni-heidelberg.de>
*/
%! nth0(?Index, ?List, ?Elem)
%
% True when Elem is the Index'th element of List. Counting starts
% at 0.
%
% @error type_error(integer, Index) if Index is not an integer or
% unbound.
% @see nth1/3.
nth0(Index, List, Elem) :-
( integer(Index)
-> nth0_det(Index, List, Elem) % take nth deterministically
; var(Index)
-> List = [H|T],
nth_gen(T, Elem, H, 0, Index) % match
; must_be(integer, Index)
).
nth0_det(0, [Elem|_], Elem) :- !.
nth0_det(1, [_,Elem|_], Elem) :- !.
nth0_det(2, [_,_,Elem|_], Elem) :- !.
nth0_det(3, [_,_,_,Elem|_], Elem) :- !.
nth0_det(4, [_,_,_,_,Elem|_], Elem) :- !.
nth0_det(5, [_,_,_,_,_,Elem|_], Elem) :- !.
nth0_det(N, [_,_,_,_,_,_ |Tail], Elem) :-
M is N - 6,
M >= 0,
nth0_det(M, Tail, Elem).
nth_gen(_, Elem, Elem, Base, Base).
nth_gen([H|Tail], Elem, _, N, Base) :-
succ(N, M),
nth_gen(Tail, Elem, H, M, Base).
%! nth1(?Index, ?List, ?Elem)
%
% Is true when Elem is the Index'th element of List. Counting
% starts at 1.
%
% @see nth0/3.
nth1(Index, List, Elem) :-
( integer(Index)
-> Index0 is Index - 1,
nth0_det(Index0, List, Elem) % take nth deterministically
; var(Index)
-> List = [H|T],
nth_gen(T, Elem, H, 1, Index) % match
; must_be(integer, Index)
).
%! nth0(?N, ?List, ?Elem, ?Rest) is det.
%
% Select/insert element at index. True when Elem is the N'th
% (0-based) element of List and Rest is the remainder (as in by
% select/3) of List. For example:
%
% ==
% ?- nth0(I, [a,b,c], E, R).
% I = 0, E = a, R = [b, c] ;
% I = 1, E = b, R = [a, c] ;
% I = 2, E = c, R = [a, b] ;
% false.
% ==
%
% ==
% ?- nth0(1, L, a1, [a,b]).
% L = [a, a1, b].
% ==
nth0(V, In, Element, Rest) :-
var(V),
!,
generate_nth(0, V, In, Element, Rest).
nth0(V, In, Element, Rest) :-
must_be(nonneg, V),
find_nth0(V, In, Element, Rest).
%! nth1(?N, ?List, ?Elem, ?Rest) is det.
%
% As nth0/4, but counting starts at 1.
nth1(V, In, Element, Rest) :-
var(V),
!,
generate_nth(1, V, In, Element, Rest).
nth1(V, In, Element, Rest) :-
must_be(positive_integer, V),
succ(V0, V),
find_nth0(V0, In, Element, Rest).
generate_nth(I, I, [Head|Rest], Head, Rest).
generate_nth(I, IN, [H|List], El, [H|Rest]) :-
I1 is I+1,
generate_nth(I1, IN, List, El, Rest).
find_nth0(0, [Head|Rest], Head, Rest) :- !.
find_nth0(N, [Head|Rest0], Elem, [Head|Rest]) :-
M is N-1,
find_nth0(M, Rest0, Elem, Rest).
%! last(?List, ?Last)
%
% Succeeds when Last is the last element of List. This
% predicate is =semidet= if List is a list and =multi= if List is
% a partial list.
%
% @compat There is no de-facto standard for the argument order of
% last/2. Be careful when porting code or use
% append(_, [Last], List) as a portable alternative.
last([X|Xs], Last) :-
last_(Xs, X, Last).
last_([], Last, Last).
last_([X|Xs], _, Last) :-
last_(Xs, X, Last).
%! proper_length(@List, -Length) is semidet.
%
% True when Length is the number of elements in the proper list
% List. This is equivalent to
%
% ==
% proper_length(List, Length) :-
% is_list(List),
% length(List, Length).
% ==
proper_length(List, Length) :-
'$skip_list'(Length0, List, Tail),
Tail == [],
Length = Length0.
%! same_length(?List1, ?List2)
%
% Is true when List1 and List2 are lists with the same number of
% elements. The predicate is deterministic if at least one of the
% arguments is a proper list. It is non-deterministic if both
% arguments are partial lists.
%
% @see length/2
same_length([], []).
same_length([_|T1], [_|T2]) :-
same_length(T1, T2).
%! reverse(?List1, ?List2)
%
% Is true when the elements of List2 are in reverse order compared to
% List1.
reverse(Xs, Ys) :-
reverse(Xs, [], Ys, Ys).
reverse([], Ys, Ys, []).
reverse([X|Xs], Rs, Ys, [_|Bound]) :-
reverse(Xs, [X|Rs], Ys, Bound).
%! permutation(?Xs, ?Ys) is nondet.
%
% True when Xs is a permutation of Ys. This can solve for Ys given
% Xs or Xs given Ys, or even enumerate Xs and Ys together. The
% predicate permutation/2 is primarily intended to generate
% permutations. Note that a list of length N has N! permutations,
% and unbounded permutation generation becomes prohibitively
% expensive, even for rather short lists (10! = 3,628,800).
%
% If both Xs and Ys are provided and both lists have equal length
% the order is |Xs|^2. Simply testing whether Xs is a permutation
% of Ys can be achieved in order log(|Xs|) using msort/2 as
% illustrated below with the =semidet= predicate is_permutation/2:
%
% ==
% is_permutation(Xs, Ys) :-
% msort(Xs, Sorted),
% msort(Ys, Sorted).
% ==
%
% The example below illustrates that Xs and Ys being proper lists
% is not a sufficient condition to use the above replacement.
%
% ==
% ?- permutation([1,2], [X,Y]).
% X = 1, Y = 2 ;
% X = 2, Y = 1 ;
% false.
% ==
%
% @error type_error(list, Arg) if either argument is not a proper
% or partial list.
permutation(Xs, Ys) :-
'$skip_list'(Xlen, Xs, XTail),
'$skip_list'(Ylen, Ys, YTail),
( XTail == [], YTail == [] % both proper lists
-> Xlen == Ylen
; var(XTail), YTail == [] % partial, proper
-> length(Xs, Ylen)
; XTail == [], var(YTail) % proper, partial
-> length(Ys, Xlen)
; var(XTail), var(YTail) % partial, partial
-> length(Xs, Len),
length(Ys, Len)
; must_be(list, Xs), % either is not a list
must_be(list, Ys)
),
perm(Xs, Ys).
perm([], []).
perm(List, [First|Perm]) :-
select(First, List, Rest),
perm(Rest, Perm).
%! flatten(+NestedList, -FlatList) is det.
%
% Is true if FlatList is a non-nested version of NestedList. Note
% that empty lists are removed. In standard Prolog, this implies
% that the atom '[]' is removed too. In SWI7, `[]` is distinct
% from '[]'.
%
% Ending up needing flatten/2 often indicates, like append/3 for
% appending two lists, a bad design. Efficient code that generates
% lists from generated small lists must use difference lists,
% often possible through grammar rules for optimal readability.
%
% @see append/2
flatten(List, FlatList) :-
flatten(List, [], FlatList0),
!,
FlatList = FlatList0.
flatten(Var, Tl, [Var|Tl]) :-
var(Var),
!.
flatten([], Tl, Tl) :- !.
flatten([Hd|Tl], Tail, List) :-
!,
flatten(Hd, FlatHeadTail, List),
flatten(Tl, Tail, FlatHeadTail).
flatten(NonList, Tl, [NonList|Tl]).
/*******************************
* ORDER OPERATIONS *
*******************************/
%! max_member(-Max, +List) is semidet.
%
% True when Max is the largest member in the standard order of
% terms. Fails if List is empty.
%
% @see compare/3
% @see max_list/2 for the maximum of a list of numbers.
max_member(Max, [H|T]) :-
max_member_(T, H, Max).
max_member_([], Max, Max).
max_member_([H|T], Max0, Max) :-
( H @=< Max0
-> max_member_(T, Max0, Max)
; max_member_(T, H, Max)
).
%! min_member(-Min, +List) is semidet.
%
% True when Min is the smallest member in the standard order of
% terms. Fails if List is empty.
%
% @see compare/3
% @see min_list/2 for the minimum of a list of numbers.
min_member(Min, [H|T]) :-
min_member_(T, H, Min).
min_member_([], Min, Min).
min_member_([H|T], Min0, Min) :-
( H @>= Min0
-> min_member_(T, Min0, Min)
; min_member_(T, H, Min)
).
/*******************************
* LISTS OF NUMBERS *
*******************************/
%! sum_list(+List, -Sum) is det.
%
% Sum is the result of adding all numbers in List.
sum_list(Xs, Sum) :-
sum_list(Xs, 0, Sum).
sum_list([], Sum, Sum).
sum_list([X|Xs], Sum0, Sum) :-
Sum1 is Sum0 + X,
sum_list(Xs, Sum1, Sum).
%! max_list(+List:list(number), -Max:number) is semidet.
%
% True if Max is the largest number in List. Fails if List is
% empty.
%
% @see max_member/2.
max_list([H|T], Max) :-
max_list(T, H, Max).
max_list([], Max, Max).
max_list([H|T], Max0, Max) :-
Max1 is max(H, Max0),
max_list(T, Max1, Max).
%! min_list(+List:list(number), -Min:number) is semidet.
%
% True if Min is the smallest number in List. Fails if List is
% empty.
%
% @see min_member/2.
min_list([H|T], Min) :-
min_list(T, H, Min).
min_list([], Min, Min).
min_list([H|T], Min0, Min) :-
Min1 is min(H, Min0),
min_list(T, Min1, Min).
%! numlist(+Low, +High, -List) is semidet.
%
% List is a list [Low, Low+1, ... High]. Fails if High < Low.
%
% @error type_error(integer, Low)
% @error type_error(integer, High)
numlist(L, U, Ns) :-
must_be(integer, L),
must_be(integer, U),
L =< U,
numlist_(L, U, Ns).
numlist_(U, U, List) :-
!,
List = [U].
numlist_(L, U, [L|Ns]) :-
L2 is L+1,
numlist_(L2, U, Ns).
/********************************
* SET MANIPULATION *
*********************************/
%! is_set(@Set) is semidet.
%
% True if Set is a proper list without duplicates. Equivalence is
% based on ==/2. The implementation uses sort/2, which implies
% that the complexity is N*log(N) and the predicate may cause a
% resource-error. There are no other error conditions.
is_set(Set) :-
'$skip_list'(Len, Set, Tail),
Tail == [], % Proper list
sort(Set, Sorted),
length(Sorted, Len).
%! list_to_set(+List, ?Set) is det.
%
% True when Set has the same elements as List in the same order.
% The left-most copy of duplicate elements is retained. List may
% contain variables. Elements _E1_ and _E2_ are considered
% duplicates iff _E1_ == _E2_ holds. The complexity of the
% implementation is N*log(N).
%
% @see sort/2 can be used to create an ordered set. Many
% set operations on ordered sets are order N rather than
% order N**2. The list_to_set/2 predicate is more
% expensive than sort/2 because it involves, two sorts
% and a linear scan.
% @compat Up to version 6.3.11, list_to_set/2 had complexity
% N**2 and equality was tested using =/2.
% @error List is type-checked.
list_to_set(List, Set) :-
must_be(list, List),
number_list(List, 1, Numbered),
sort(1, @=<, Numbered, ONum),
remove_dup_keys(ONum, NumSet),
sort(2, @=<, NumSet, ONumSet),
pairs_keys(ONumSet, Set).
number_list([], _, []).
number_list([H|T0], N, [H-N|T]) :-
N1 is N+1,
number_list(T0, N1, T).
remove_dup_keys([], []).
remove_dup_keys([H|T0], [H|T]) :-
H = V-_,
remove_same_key(T0, V, T1),
remove_dup_keys(T1, T).
remove_same_key([V1-_|T0], V, T) :-
V1 == V,
!,
remove_same_key(T0, V, T).
remove_same_key(L, _, L).
%! intersection(+Set1, +Set2, -Set3) is det.
%
% True if Set3 unifies with the intersection of Set1 and Set2. The
% complexity of this predicate is |Set1|*|Set2|. A _set_ is defined to
% be an unordered list without duplicates. Elements are considered
% duplicates if they can be unified.
%
% @see ord_intersection/3.
intersection([], _, []) :- !.
intersection([X|T], L, Intersect) :-
memberchk(X, L),
!,
Intersect = [X|R],
intersection(T, L, R).
intersection([_|T], L, R) :-
intersection(T, L, R).
%! union(+Set1, +Set2, -Set3) is det.
%
% True if Set3 unifies with the union of the lists Set1 and Set2. The
% complexity of this predicate is |Set1|*|Set2|. A _set_ is defined to
% be an unordered list without duplicates. Elements are considered
% duplicates if they can be unified.
%
% @see ord_union/3
union([], L, L) :- !.
union([H|T], L, R) :-
memberchk(H, L),
!,
union(T, L, R).
union([H|T], L, [H|R]) :-
union(T, L, R).
%! subset(+SubSet, +Set) is semidet.
%
% True if all elements of SubSet belong to Set as well. Membership
% test is based on memberchk/2. The complexity is |SubSet|*|Set|. A
% _set_ is defined to be an unordered list without duplicates.
% Elements are considered duplicates if they can be unified.
%
% @see ord_subset/2.
subset([], _) :- !.
subset([E|R], Set) :-
memberchk(E, Set),
subset(R, Set).
%! subtract(+Set, +Delete, -Result) is det.
%
% Delete all elements in Delete from Set. Deletion is based on
% unification using memberchk/2. The complexity is |Delete|*|Set|. A
% _set_ is defined to be an unordered list without duplicates.
% Elements are considered duplicates if they can be unified.
%
% @see ord_subtract/3.
subtract([], _, []) :- !.
subtract([E|T], D, R) :-
memberchk(E, D),
!,
subtract(T, D, R).
subtract([H|T], D, [H|R]) :-
subtract(T, D, R).
|