1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@vu.nl
WWW: http://www.swi-prolog.org
Copyright (c) 2007-2014, University of Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(nb_rbtrees,
[ nb_rb_insert/3, % !T0, +Key, +Value
nb_rb_get_node/3, % +Tree, +Key, -Node
nb_rb_node_value/2, % +Node, -Value
nb_rb_set_node_value/2 % +Node, +Value
]).
/** <module> Non-backtrackable operations on red black trees
This library is an extension to rbtrees.pl, implementing Red-black
trees. This library adds non-backtrackable destructive update to RB
trees which allows us to fill RB trees in a failure driven loop.
This module builds on top of the rbtrees.pl and used code copied from
library written by Vitor Santos Costa.
@author Jan Wielemaker
*/
/*******************************
* TREE INSERTION *
*******************************/
%! nb_rb_insert(!RBTree, +Key, +Value)
%
% Add Key-Value to the tree RBTree using non-backtrackable
% destructive assignment.
nb_rb_insert(Tree, Key0, Val0) :-
duplicate_term(Key0, Key),
duplicate_term(Val0, Val),
Tree = t(Nil, T),
insert(T, Key, Val, Nil, NT, Flag),
( Flag == shared
-> true
; nb_linkarg(2, Tree, NT)
).
insert(Tree0,Key,Val,Nil,Tree, Flag) :-
insert2(Tree0,Key,Val,Nil,TreeI,Flag),
( Flag == shared
-> Tree = Tree0
; fix_root(TreeI,Tree)
).
%
% make sure the root is always black.
%
fix_root(black(L,K,V,R),black(L,K,V,R)).
fix_root(red(L,K,V,R),black(L,K,V,R)).
%
% Cormen et al present the algorithm as
% (1) standard tree insertion;
% (2) from the viewpoint of the newly inserted node:
% partially fix the tree;
% move upwards
% until reaching the root.
%
% We do it a little bit different:
%
% (1) standard tree insertion;
% (2) move upwards:
% when reaching a black node;
% if the tree below may be broken, fix it.
% We take advantage of Prolog unification
% to do several operations in a single go.
%
%
% actual insertion
%
insert2(black('',_,_,''), K, V, Nil, T, Status) :-
!,
T = red(Nil,K,V,Nil),
Status = not_done.
insert2(In, K, V, Nil, NT, Flag) :-
In = red(L,K0,V0,R),
!,
( K @< K0
-> insert2(L, K, V, Nil, NL, Flag),
( Flag == shared
-> NT = In
; NT = red(NL,K0,V0,R)
)
; insert2(R, K, V, Nil, NR, Flag),
( Flag == shared
-> NT = In
; NT = red(L,K0,V0,NR)
)
).
insert2(In, K, V, Nil, NT, Flag) :-
In = black(L,K0,V0,R),
( K @< K0
-> insert2(L, K, V, Nil, IL, Flag0),
( Flag0 == shared
-> NT = In
; fix_left(Flag0, black(IL,K0,V0,R), NT0, Flag1),
( Flag1 == share
-> nb_linkarg(1, In, IL),
Flag = shared,
NT = In
; NT = NT0,
Flag = Flag1
)
)
; insert2(R, K, V, Nil, IR, Flag0),
( Flag0 == shared
-> NT = In
; fix_right(Flag0, black(L,K0,V0,IR), NT0, Flag1),
( Flag1 == share
-> nb_linkarg(4, In, IR),
Flag = shared,
NT = In
; NT = NT0,
Flag = Flag1
)
)
).
%
% How to fix if we have inserted on the left
%
fix_left(shared,T,T,shared) :- !.
fix_left(done,T,T,done) :- !.
fix_left(not_done,Tmp,Final,Done) :-
fix_left(Tmp,Final,Done).
%
% case 1 of RB: just need to change colors.
%
fix_left(black(red(Al,AK,AV,red(Be,BK,BV,Ga)),KC,VC,red(De,KD,VD,Ep)),
red(black(Al,AK,AV,red(Be,BK,BV,Ga)),KC,VC,black(De,KD,VD,Ep)),
not_done) :- !.
fix_left(black(red(red(Al,KA,VA,Be),KB,VB,Ga),KC,VC,red(De,KD,VD,Ep)),
red(black(red(Al,KA,VA,Be),KB,VB,Ga),KC,VC,black(De,KD,VD,Ep)),
not_done) :- !.
%
% case 2 of RB: got a knee so need to do rotations
%
fix_left(black(red(Al,KA,VA,red(Be,KB,VB,Ga)),KC,VC,De),
black(red(Al,KA,VA,Be),KB,VB,red(Ga,KC,VC,De)),
done) :- !.
%
% case 3 of RB: got a line
%
fix_left(black(red(red(Al,KA,VA,Be),KB,VB,Ga),KC,VC,De),
black(red(Al,KA,VA,Be),KB,VB,red(Ga,KC,VC,De)),
done) :- !.
%
% case 4 of RB: nothig to do
%
fix_left(T,T,share). % shared?
%
% How to fix if we have inserted on the right
%
fix_right(shared,T,T,shared) :- !.
fix_right(done,T,T,done) :- !.
fix_right(not_done,Tmp,Final,Done) :-
fix_right(Tmp,Final,Done).
%
% case 1 of RB: just need to change colors.
%
fix_right(black(red(Ep,KD,VD,De),KC,VC,red(red(Ga,KB,VB,Be),KA,VA,Al)),
red(black(Ep,KD,VD,De),KC,VC,black(red(Ga,KB,VB,Be),KA,VA,Al)),
not_done) :- !.
fix_right(black(red(Ep,KD,VD,De),KC,VC,red(Ga,Ka,Va,red(Be,KB,VB,Al))),
red(black(Ep,KD,VD,De),KC,VC,black(Ga,Ka,Va,red(Be,KB,VB,Al))),
not_done) :- !.
%
% case 2 of RB: got a knee so need to do rotations
%
fix_right(black(De,KC,VC,red(red(Ga,KB,VB,Be),KA,VA,Al)),
black(red(De,KC,VC,Ga),KB,VB,red(Be,KA,VA,Al)),
done) :- !.
%
% case 3 of RB: got a line
%
fix_right(black(De,KC,VC,red(Ga,KB,VB,red(Be,KA,VA,Al))),
black(red(De,KC,VC,Ga),KB,VB,red(Be,KA,VA,Al)),
done) :- !.
%
% case 4 of RB: nothing to do.
%
fix_right(T,T,share).
/*******************************
* UPDATE *
*******************************/
%! nb_rb_get_node(+RBTree, +Key, -Node) is semidet.
%
% True if Node is the node in RBTree associated to Key. Fails if
% Key is not in RBTree. This predicate is intended to be used
% together with nb_rb_set_node_value/2 to update the associated
% key destructively.
nb_rb_get_node(t(_Nil, Tree), Key, Node) :-
find_node(Key, Tree, Node).
find_node(Key, Tree, Node) :-
Tree \== '',
arg(2, Tree, K),
compare(Diff, Key, K),
find_node(Diff, Key, Tree, Node).
find_node(=, _, Node, Node).
find_node(<, Key, Tree, Node) :-
arg(1, Tree, Left),
find_node(Key, Left, Node).
find_node(>, Key, Tree, Node) :-
arg(4, Tree, Right),
find_node(Key, Right, Node).
%! nb_rb_node_value(+Node, -Value) is det.
%
% Value is the value associated to Node.
nb_rb_node_value(Node, Value) :-
arg(3, Node, Value).
%! nb_rb_set_node_value(!Node, +Value) is det.
%
% Associate Value with Node.
nb_rb_set_node_value(Node, Value) :-
nb_setarg(3, Node, Value).
|