1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@vu.nl
WWW: http://www.swi-prolog.org
Copyright (c) 2004-2013, University of Amsterdam
VU University Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(prolog_operator,
[ push_operators/1, % +List
push_operators/2, % +List, -Undo
pop_operators/0,
pop_operators/1, % +Undo
push_op/3 % Precedence, Type, Name
]).
/** <module> Manage operators
Often, one wants to define operators to improve the readibility of some
very specific code. Operators in Prolog are global objects and changing
operators changes syntax and possible semantics of existing sources. For
this reason it is desirable to reset operator declarations after the
code that needs them has been read. This module defines a rather cruel
-but portable- method to do this.
Usage:
==
:- push_operators(
[ op(900, fx, hello_world)
, op(600, xf, *)
]).
hello_world World :-
....
:- pop_operators.
==
While the above are for source-code, the calls push_operators/2 and
pop_operators/1 can be used for local processing where it is more
comfortable to carry the undo context around.
NOTE: In recent versions of SWI-Prolog operators are local to a module
and can be exported using the syntax below. This is not portable, but
otherwise a more structured approach for operator handling.
==
:- module(mymodule,
[ mypred/1,
op(500, fx, myop)
]).
==
@compat SWI-Prolog
*/
:- thread_local
operator_stack/1.
:- meta_predicate
push_operators(:),
push_operators(:,-),
push_op(+,+,:).
%! push_operators(:New) is det.
%! push_operators(:New, -Undo) is det.
%
% Installs the operators from New, where New is a list of op(Prec,
% Type, :Name). The modifications to the operator table are undone
% in a matching call to pop_operators/0.
push_operators(New, Undo) :-
strip_module(New, Module, Ops0),
tag_ops(Ops0, Module, Ops),
undo_operators(Ops, Undo),
set_operators(Ops).
push_operators(New) :-
push_operators(New, Undo),
asserta(operator_stack(mark-Undo)).
%! push_op(+Precedence, +Type, :Name) is det.
%
% As op/3, but this call must appear between push_operators/1 and
% pop_operators/0. The change is undone by the call to
% pop_operators/0
push_op(P, T, A) :-
undo_operator(op(P,T,A), Undo),
op(P, T, A),
asserta(operator_stack(incremental-Undo)).
%! pop_operators is det.
%
% Revert all changes to the operator table realised since the last
% push_operators/1.
pop_operators :-
retract(operator_stack(Mark-Undo)),
set_operators(Undo),
Mark == mark,
!.
%! pop_operators(+Undo) is det.
%
% Reset operators as pushed by push_operators/2.
pop_operators(Undo) :-
set_operators(Undo).
tag_ops([], _, []).
tag_ops([op(P,Tp,N0)|T0], M, [op(P,Tp,N)|T]) :-
strip_module(M:N0, M1, N1),
N = M1:N1,
tag_ops(T0, M, T).
set_operators([]).
set_operators([H|R]) :-
set_operators(H),
set_operators(R).
set_operators(op(P,T,A)) :-
op(P, T, A).
undo_operators([], []).
undo_operators([O0|T0], [U0|T]) :-
undo_operator(O0, U0),
undo_operators(T0, T).
undo_operator(op(_P, T, N), op(OP, OT, N)) :-
current_op(OP, OT, N),
same_op_type(T, OT),
!.
undo_operator(op(P, T, [H|R]), [OH|OT]) :-
!,
undo_operator(op(P, T, H), OH),
undo_operator(op(P, T, R), OT).
undo_operator(op(_, _, []), []) :- !.
undo_operator(op(_P, T, N), op(0, T, N)).
same_op_type(T, OT) :-
op_type(T, Type),
op_type(OT, Type).
op_type(fx, prefix).
op_type(fy, prefix).
op_type(xfx, infix).
op_type(xfy, infix).
op_type(yfx, infix).
op_type(xf, postfix).
op_type(yf, postfix).
|