1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
/* Part of SWI-Prolog
Author: Eva Stoewe, Guenter Kniesel and Jan Wielemaker
E-mail: pdt@lists.iai.uni-bonn.de
WWW: http://sewiki.iai.uni-bonn.de/research/pdt/start
Copyright (c) 2004-2012, CS Dept. III, University of Bonn
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(prolog_metainference,
[ infer_meta_predicate/2, % :Head, -MetaSpec
inferred_meta_predicate/2 % :Head, ?MetaSpec
]).
:- use_module(library(lists)).
:- use_module(library(apply)).
:- meta_predicate
inferred_meta_predicate(:, ?),
infer_meta_predicate(:, -).
:- dynamic
inferred_meta_pred/3. % Head, Module, Meta
/** <module> Infer meta-predicate properties
This module infers meta-predicate properties by inspecting the clauses
of predicates that call other predicates. This is extremely useful for
program analysis and refactoring because many programs `in the wild'
have incomplete or incorrect meta-predicate information.
@see This library is used by prolog_walk_code/1 to improve the
accuracy of this analysis.
@tbd Re-introduce some alias-analysis
@tbd Not all missing meta-declarations are interesting. Notably,
meta-predicates that are private and only pass meta-arguments
on behalve of a public meta-predicates do not need a declaration.
*/
%! inferred_meta_predicate(:Head, ?MetaSpec) is nondet.
%
% True when MetaSpec is an inferred meta-predicate specification
% for Head.
inferred_meta_predicate(M:Head, MetaSpec) :-
inferred_meta_pred(Head, M, MetaSpec).
inferred_meta_predicate(M:Head, MetaSpec) :-
predicate_property(M:Head, imported_from(From)),
inferred_meta_pred(Head, From, MetaSpec).
%! infer_meta_predicate(:Head, -MetaSpec) is semidet
%
% True when MetaSpec is a meta-predicate specifier for the
% predicate Head. Derived meta-predicates are collected and made
% available through inferred_meta_predicate/2.
infer_meta_predicate(Head, MetaSpec) :-
inferred_meta_predicate(Head, MetaSpec),
!.
infer_meta_predicate(M:Head, MetaSpec) :-
predicate_property(M:Head, imported_from(From)),
!,
do_infer_meta_predicate(From:Head, MetaSpec),
assertz(inferred_meta_pred(Head, From, MetaSpec)).
infer_meta_predicate(M:Head, MetaSpec) :-
do_infer_meta_predicate(M:Head, MetaSpec),
assertz(inferred_meta_pred(Head, M, MetaSpec)).
:- meta_predicate
do_infer_meta_predicate(:, -).
do_infer_meta_predicate(Module:AHead, MetaSpec):-
functor(AHead, Functor, Arity),
functor(Head, Functor, Arity), % Generalise the head
findall(MetaSpec,
meta_pred_args_in_clause(Module, Head, MetaSpec),
MetaSpecs),
MetaSpecs \== [],
combine_meta_args(MetaSpecs, MetaSpec).
%! meta_pred_args_in_clause(+Module, +Head, -MetaSpec) is nondet.
meta_pred_args_in_clause(Module, Head, MetaArgs) :-
clause(Module:Head, Body),
annotate_meta_vars_in_body(Body, Module),
meta_annotation(Head, MetaArgs).
%! annotate_meta_vars_in_body(+Term, +Module) is det
%
% Annotate variables in Term if they appear as meta-arguments.
%
% @tbd Aliasing. Previous code detected aliasing for
% - =/2
% - functor/3
% - atom_concat/3
% - =../2
% - arg/3
% @tbd We can make this nondet, exploring multiple aliasing
% paths in disjunctions.
annotate_meta_vars_in_body(A, _) :-
atomic(A),
!.
annotate_meta_vars_in_body(Var, _) :-
var(Var),
!,
annotate(Var, 0).
annotate_meta_vars_in_body(Module:Term, _) :-
!,
( atom(Module)
-> annotate_meta_vars_in_body(Term, Module)
; var(Module)
-> annotate(Module, m)
; true % may continue if Term is a system
). % predicate?
annotate_meta_vars_in_body((TermA, TermB), Module) :-
!,
annotate_meta_vars_in_body(TermB, Module),
annotate_meta_vars_in_body(TermA, Module).
annotate_meta_vars_in_body((TermA; TermB), Module) :-
!,
annotate_meta_vars_in_body(TermB, Module),
annotate_meta_vars_in_body(TermA, Module).
annotate_meta_vars_in_body((TermA->TermB), Module) :-
!,
annotate_meta_vars_in_body(TermB, Module),
annotate_meta_vars_in_body(TermA, Module).
annotate_meta_vars_in_body((TermA*->TermB), Module) :-
!,
annotate_meta_vars_in_body(TermB, Module),
annotate_meta_vars_in_body(TermA, Module).
annotate_meta_vars_in_body(A=B, _) :-
var(A), var(B),
!,
A = B.
annotate_meta_vars_in_body(Goal, Module) :- % TBD: do we trust this?
predicate_property(Module:Goal, meta_predicate(Head)),
!,
functor(Goal, _, Arity),
annotate_meta_args(1, Arity, Goal, Head, Module).
annotate_meta_vars_in_body(Goal, Module) :-
inferred_meta_predicate(Module:Goal, Head),
!,
functor(Goal, _, Arity),
annotate_meta_args(1, Arity, Goal, Head, Module).
annotate_meta_vars_in_body(_, _).
%! annotate_meta_args(+Arg, +Arity, +Goal, +MetaSpec, +Module)
annotate_meta_args(I, Arity, Goal, MetaSpec, Module) :-
I =< Arity,
!,
arg(I, MetaSpec, MetaArg),
arg(I, Goal, Arg),
annotate_meta_arg(MetaArg, Arg, Module),
I2 is I + 1,
annotate_meta_args(I2, Arity, Goal, MetaSpec, Module).
annotate_meta_args(_, _, _, _, _).
annotate_meta_arg(Spec, Arg, _) :-
var(Arg),
!,
annotate(Arg, Spec).
annotate_meta_arg(0, Arg, Module) :-
!,
annotate_meta_vars_in_body(Arg, Module).
annotate_meta_arg(N, Arg, Module) :-
integer(N),
callable(Arg),
!,
Arg =.. List,
length(Extra, N),
append(List, Extra, ListX),
ArgX =.. ListX,
annotate_meta_vars_in_body(ArgX, Module).
annotate_meta_arg(Spec, Arg, _) :-
is_meta(Spec),
compound(Arg),
Arg = Module:_,
var(Module),
!,
annotate(Module, m).
annotate_meta_arg(_,_,_).
annotate(Var, Annotation) :-
get_attr(Var, prolog_metainference, Annot0),
!,
join_annotation(Annot0, Annotation, Joined),
put_attr(Var, prolog_metainference, Joined).
annotate(Var, Annotation) :-
put_attr(Var, prolog_metainference, Annotation).
join_annotation(A, A, A) :- !.
join_annotation(A, B, C) :-
( is_meta(A), \+ is_meta(B)
-> C = A
; \+ is_meta(A), is_meta(B)
-> C = B
; is_meta(A), is_meta(B)
-> C = (:)
; C = *
).
attr_unify_hook(A0, Other) :-
get_attr(Other, prolog_metainference, A1),
!,
join_annotation(A0, A1, A),
put_attr(Other, prolog_metainference, A).
%! meta_annotation(+Head, -Annotation) is semidet.
%
% True when Annotation is an appropriate meta-specification for
% Head.
meta_annotation(Head, Meta) :-
functor(Head, Name, Arity),
functor(Meta, Name, Arity),
meta_args(1, Arity, Head, Meta, HasMeta),
HasMeta == true.
meta_args(I, Arity, Head, Meta, HasMeta) :-
I =< Arity,
!,
arg(I, Head, HeadArg),
arg(I, Meta, MetaArg),
meta_arg(HeadArg, MetaArg),
( is_meta(MetaArg)
-> HasMeta = true
; true
),
I2 is I + 1,
meta_args(I2, Arity, Head, Meta, HasMeta).
meta_args(_, _, _, _, _).
is_meta(I) :- integer(I), !.
is_meta(:).
is_meta(^).
is_meta(//).
%! meta_arg(+AnnotatedArg, -MetaSpec) is det.
%
% True when MetaSpec is a proper annotation for the argument
% AnnotatedArg. This is simple if the argument is a plain argument
% in the head (first clause). If it is a compound term, it must
% unify to _:_, otherwise there is no point turning it into a meta
% argument. If the module part is then passed to a module
% sensitive predicate, we assume it is a meta-predicate.
meta_arg(HeadArg, MetaArg) :-
get_attr(HeadArg, prolog_metainference, MetaArg),
MetaArg \== m,
!.
meta_arg(HeadArg, :) :-
compound(HeadArg),
HeadArg = M:_,
get_attr(M, prolog_metainference, m),
!.
meta_arg(_, *).
%! combine_meta_args(+Heads, -Head) is det.
%
% Combine multiple meta-specifications.
combine_meta_args([], []) :- !.
combine_meta_args([List], List) :- !.
combine_meta_args([Spec,Spec|Specs], CombinedArgs) :-
!,
combine_meta_args([Spec|Specs], CombinedArgs).
combine_meta_args([Spec1,Spec2|Specs], CombinedArgs) :-
Spec1 =.. [Name|Args1],
Spec2 =.. [Name|Args2],
maplist(join_annotation, Args1, Args2, Args),
Spec =.. [Name|Args],
combine_meta_args([Spec|Specs], CombinedArgs).
|