1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/* Part of SWI-Prolog
This example code is in the public domain
*/
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This code may be compiled using
swipl-ld -shared -o test test.cpp
and subsequently loading using
swipl test.pl
Next, run example predicates such as below. Scan through this file
to find the predicates provided by this C++ code.
?- hello(world).
Hello world
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
#define PROLOG_MODULE "user"
#include "SWI-cpp.h"
#include <iostream>
#include <math.h>
using namespace std;
PREDICATE(hello, 1)
{ cout << "Hello " << (char *)A1 << endl;
return TRUE;
}
PREDICATE(add, 3)
{ return A3 = (long)A1 + (long)A2;
}
PREDICATE(name_arity, 1)
{ cout << "name = " << A1.name() << ", arity = " << A1.arity() << endl;
return TRUE;
}
PREDICATE(list_modules, 0)
{ PlTermv av(1);
PlQuery q("current_module", av);
while( q.next_solution() )
cout << (char *)av[0] << endl;
return TRUE;
}
PREDICATE(average, 3) /* average(+Templ, :Goal, -Average) */
{ long sum = 0;
long n = 0;
PlTermv av(A2); /* could be inlined in next call */
PlQuery q("call", av); /* but MSVC has a bug here */
while( q.next_solution() )
{ sum += (long)A1;
n++;
}
return A3 = (double)sum/(double)n;
}
PREDICATE(hello, 0)
{ PlQuery q("write", PlTermv("hello world\n"));
return q.next_solution();
}
PREDICATE(term, 1)
{ return A1 = PlCompound("hello", PlTermv("world"));
}
PlAtom ATOM_atom("atom");
PREDICATE(term, 2)
{ PlAtom a(A1);
if ( a == ATOM_atom )
return A2 = PlTerm("hello world");
if ( A1 == "string" )
return A2 = PlString("hello world");
if ( A1 == "code_list" )
return A2 = PlCodeList("hello world");
if ( A1 == "char_list" )
return A2 = PlCharList("hello world");
if ( A1 == "term" )
return A2 = PlCompound("hello(world)");
throw PlDomainError("type", A1);
}
PREDICATE(can_unify, 2)
{ PlFrame fr;
int rval = (A1=A2);
fr.rewind();
return rval;
}
PREDICATE(write_list, 1)
{ PlTail tail(A1);
PlTerm e;
while(tail.next(e))
cout << (char *)e << endl;
return TRUE;
}
PREDICATE(cappend, 3)
{ PlTail l1(A1);
PlTail l3(A3);
PlTerm e;
while(l1.next(e))
{ if ( !l3.append(e) )
return FALSE;
}
return A2 = l3;
}
PREDICATE(call_atom, 1)
{ try
{ return PlCall((char *)A1);
} catch ( PlTypeError &ex )
{ cerr << "Type Error caugth in C++" << endl;
cerr << "Message: \"" << (char *)ex << "\"" << endl;
return FALSE;
}
}
/* The purpose of this predicate is mostly to show that
resource errors are dealt with appropriately: with large
enough argument, this will overflow the stacks. The Prolog
error is mapped to a C++ exception and back again when
control is passed back to Prolog. So this is just fine:
?- square_roots(1000000000, L)
ERROR: Out of global stack
*/
PREDICATE(square_roots, 2)
{ int end = A1;
PlTail list(A2);
for(int i=0; i<end; i++)
list.append(sqrt((double)i));
return list.close();
}
|