1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
/* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@vu.nl
WWW: http://www.swi-prolog.org
Copyright (c) 2012-2016, University of Amsterdam
VU University Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(dcg_basics,
[ white//0, % <white inside line>
whites//0, % <white inside line>*
blank//0, % <blank>
blanks//0, % <blank>*
nonblank//1, % <nonblank>
nonblanks//1, % <nonblank>* --> chars (long)
blanks_to_nl//0, % [space,tab,ret]*nl
string//1, % <any>* -->chars (short)
string_without//2, % Exclude, -->chars (long)
% Characters
alpha_to_lower//1, % Get lower|upper, return lower
% Decimal numbers
digits//1, % [0-9]* -->chars
digit//1, % [0-9] --> char
integer//1, % [+-][0-9]+ --> integer
float//1, % [+-]?[0-9]+(.[0-9]*)?(e[+-]?[0-9]+)? --> float
number//1, % integer | float
% Hexadecimal numbers
xdigits//1, % [0-9A-Fa-f]* --> 0-15*
xdigit//1, % [0-9A-Fa-f] --> 0-15
xinteger//1, % [0-9A-Fa-f]+ --> integer
prolog_var_name//1, % Read a Prolog variable name
eos//0, % Test end of input.
remainder//1, % -List
% generation (TBD)
atom//1 % generate atom
]).
:- use_module(library(lists)).
:- use_module(library(error)).
/** <module> Various general DCG utilities
This library provides various commonly used DCG primitives acting on
list of character *codes*. Character classification is based on
code_type/2.
This module started its life as library(http/dcg_basics) to support the
HTTP protocol. Since then, it was increasingly used in code that has no
relation to HTTP and therefore this library was moved to the core
library.
@tbd This is just a starting point. We need a comprehensive set of
generally useful DCG primitives.
*/
%% string_without(+EndCodes, -Codes)// is det.
%
% Take as many codes from the input until the next character code
% appears in the list EndCodes. The terminating code itself is
% left on the input. Typical use is to read upto a defined
% delimiter such as a newline or other reserved character. For
% example:
%
% ==
% ...,
% string_without("\n", RestOfLine)
% ==
%
% @arg EndCodes is a list of character codes.
% @see string//1.
string_without(End, Codes) -->
{ string(End), !,
string_codes(End, EndCodes)
},
list_string_without(EndCodes, Codes).
string_without(End, Codes) -->
list_string_without(End, Codes).
list_string_without(Not, [C|T]) -->
[C],
{ \+ memberchk(C, Not)
}, !,
list_string_without(Not, T).
list_string_without(_, []) -->
[].
%% string(-Codes)// is nondet.
%
% Take as few as possible tokens from the input, taking one more
% each time on backtracking. This code is normally followed by a
% test for a delimiter. For example:
%
% ==
% upto_colon(Atom) -->
% string(Codes), ":", !,
% { atom_codes(Atom, Codes) }.
% ==
%
% @see string_without//2.
string([]) -->
[].
string([H|T]) -->
[H],
string(T).
%% blanks// is det.
%
% Skip zero or more white-space characters.
blanks -->
blank, !,
blanks.
blanks -->
[].
%% blank// is semidet.
%
% Take next =space= character from input. Space characters include
% newline.
%
% @see white//0
blank -->
[C],
{ nonvar(C),
code_type(C, space)
}.
%% nonblanks(-Codes)// is det.
%
% Take all =graph= characters
nonblanks([H|T]) -->
[H],
{ code_type(H, graph)
}, !,
nonblanks(T).
nonblanks([]) -->
[].
%% nonblank(-Code)// is semidet.
%
% Code is the next non-blank (=graph=) character.
nonblank(H) -->
[H],
{ code_type(H, graph)
}.
%% blanks_to_nl// is semidet.
%
% Take a sequence of blank//0 codes if blanks are followed by a
% newline or end of the input.
blanks_to_nl -->
"\n", !.
blanks_to_nl -->
blank, !,
blanks_to_nl.
blanks_to_nl -->
eos.
%% whites// is det.
%
% Skip white space _inside_ a line.
%
% @see blanks//0 also skips newlines.
whites -->
white, !,
whites.
whites -->
[].
%% white// is semidet.
%
% Take next =white= character from input. White characters do
% _not_ include newline.
white -->
[C],
{ nonvar(C),
code_type(C, white)
}.
/*******************************
* CHARACTER STUFF *
*******************************/
%% alpha_to_lower(?C)// is semidet.
%
% Read a letter (class =alpha=) and return it as a lowercase
% letter. If C is instantiated and the DCG list is already bound,
% C must be =lower= and matches both a lower and uppercase letter.
% If the output list is unbound, its first element is bound to C.
% For example:
%
% ==
% ?- alpha_to_lower(0'a, `AB`, R).
% R = [66].
% ?- alpha_to_lower(C, `AB`, R).
% C = 97, R = [66].
% ?- alpha_to_lower(0'a, L, R).
% L = [97|R].
% ==
alpha_to_lower(L) -->
[C],
{ nonvar(C)
-> code_type(C, alpha),
code_type(C, to_upper(L))
; L = C
}.
/*******************************
* NUMBERS *
*******************************/
%% digits(?Chars)// is det.
%% digit(?Char)// is det.
%% integer(?Integer)// is det.
%
% Number processing. The predicate digits//1 matches a posibly
% empty set of digits, digit//1 processes a single digit and
% integer processes an optional sign followed by a non-empty
% sequence of digits into an integer.
digits([H|T]) -->
digit(H), !,
digits(T).
digits([]) -->
[].
digit(C) -->
[C],
{ code_type(C, digit)
}.
integer(I, Head, Tail) :-
nonvar(I), !,
format(codes(Head, Tail), '~d', [I]).
integer(I) -->
int_codes(Codes),
{ number_codes(I, Codes)
}.
int_codes([C,D0|D]) -->
sign(C), !,
digit(D0),
digits(D).
int_codes([D0|D]) -->
digit(D0),
digits(D).
%% float(?Float)// is det.
%
% Process a floating point number. The actual conversion is
% controlled by number_codes/2.
float(F, Head, Tail) :-
float(F), !,
with_output_to(codes(Head, Tail), write(F)).
float(F) -->
number(F),
{ float(F) }.
%% number(+Number)// is det.
%% number(-Number)// is semidet.
%
% Generate extract a number. Handles both integers and floating
% point numbers.
number(N, Head, Tail) :-
number(N), !,
format(codes(Head, Tail), '~w', N).
number(N) -->
{ var(N)
},
!,
int_codes(I),
( dot,
digit(DF0),
digits(DF)
-> {F = [0'., DF0|DF]}
; {F = []}
),
( exp
-> int_codes(DI),
{E=[0'e|DI]}
; {E = []}
),
{ append([I, F, E], Codes),
number_codes(N, Codes)
}.
number(N) -->
{ type_error(number, N) }.
sign(0'-) --> "-".
sign(0'+) --> "+".
dot --> ".".
exp --> "e".
exp --> "E".
/*******************************
* HEX NUMBERS *
*******************************/
%% xinteger(+Integer)// is det.
%% xinteger(-Integer)// is semidet.
%
% Generate or extract an integer from a sequence of hexadecimal
% digits. Hexadecimal characters include both uppercase (A-F) and
% lowercase (a-f) letters.
xinteger(Val, Head, Tail) :-
integer(Val),
format(codes(Head, Tail), '~16r', [Val]).
xinteger(Val) -->
xdigit(D0),
xdigits(D),
{ mkval([D0|D], 16, Val)
}.
%% xdigit(-Weight)// is semidet.
%
% True if the next code is a hexdecimal digit with Weight. Weight
% is between 0 and 15. Hexadecimal characters include both
% uppercase (A-F) and lowercase (a-f) letters.
xdigit(D) -->
[C],
{ code_type(C, xdigit(D))
}.
%% xdigits(-WeightList)// is det.
%
% List of weights of a sequence of hexadecimal codes. WeightList
% may be empty. Hexadecimal characters include both uppercase
% (A-F) and lowercase (a-f) letters.
xdigits([D0|D]) -->
xdigit(D0), !,
xdigits(D).
xdigits([]) -->
[].
mkval([W0|Weights], Base, Val) :-
mkval(Weights, Base, W0, Val).
mkval([], _, W, W).
mkval([H|T], Base, W0, W) :-
W1 is W0*Base+H,
mkval(T, Base, W1, W).
/*******************************
* END-OF-STRING *
*******************************/
%% eos//
%
% Matches end-of-input. The implementation behaves as the
% following portable implementation:
%
% ==
% eos --> call(eos_).
% eos_([], []).
% ==
%
% @tbd This is a difficult concept and violates the _context free_
% property of DCGs. Explain the exact problems.
eos([], []).
%% remainder(-List)//
%
% Unify List with the remainder of the input.
remainder(List, List, []).
/*******************************
* PROLOG SYNTAX *
*******************************/
%% prolog_var_name(-Name:atom)// is semidet.
%
% Matches a Prolog variable name. Primarily intended to deal with
% quasi quotations that embed Prolog variables.
prolog_var_name(Name) -->
[C0], { code_type(C0, prolog_var_start) }, !,
prolog_id_cont(CL),
{ atom_codes(Name, [C0|CL]) }.
prolog_id_cont([H|T]) -->
[H], { code_type(H, prolog_identifier_continue) }, !,
prolog_id_cont(T).
prolog_id_cont([]) --> "".
/*******************************
* GENERATION *
*******************************/
%% atom(++Atom)// is det.
%
% Generate codes of Atom. Current implementation uses write/1,
% dealing with any Prolog term. Atom must be ground though.
atom(Atom, Head, Tail) :-
must_be(ground, Atom),
format(codes(Head, Tail), '~w', [Atom]).
|