1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
|
/* Part of SWI-Prolog
Author: Markus Triska
E-mail: triska@metalevel.at
WWW: http://www.swi-prolog.org
Copyright (C): 2014-2018 Markus Triska
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
CLP(B): Constraint Logic Programming over Boolean variables.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- module(clpb, [
op(300, fy, ~),
op(500, yfx, #),
sat/1,
taut/2,
labeling/1,
sat_count/2,
weighted_maximum/3,
random_labeling/2
]).
:- use_module(library(error)).
:- use_module(library(assoc)).
:- use_module(library(apply_macros)).
:- create_prolog_flag(clpb_monotonic, false, []).
:- create_prolog_flag(clpb_residuals, default, []).
/** <module> CLP(B): Constraint Logic Programming over Boolean Variables
## Introduction {#clpb-intro}
This library provides CLP(B), Constraint Logic Programming over
Boolean variables. It can be used to model and solve combinatorial
problems such as verification, allocation and covering tasks.
CLP(B) is an instance of the general [CLP(_X_) scheme](<#clp>),
extending logic programming with reasoning over specialised domains.
The implementation is based on reduced and ordered Binary Decision
Diagrams (BDDs).
Benchmarks and usage examples of this library are available from:
[__https://www.metalevel.at/clpb/__](https://www.metalevel.at/clpb/)
We recommend the following references for citing this library in
scientific publications:
==
@inproceedings{Triska2016,
author = "Markus Triska",
title = "The {Boolean} Constraint Solver of {SWI-Prolog}:
System Description",
booktitle = "FLOPS",
series = "LNCS",
volume = 9613,
year = 2016,
pages = "45--61"
}
@article{Triska2018,
title = "Boolean constraints in {SWI-Prolog}:
A comprehensive system description",
journal = "Science of Computer Programming",
volume = "164",
pages = "98 - 115",
year = "2018",
note = "Special issue of selected papers from FLOPS 2016",
issn = "0167-6423",
doi = "https://doi.org/10.1016/j.scico.2018.02.001",
url = "http://www.sciencedirect.com/science/article/pii/S0167642318300273",
author = "Markus Triska",
keywords = "CLP(B), Boolean unification, Decision diagrams, BDD"
}
==
These papers are available from
[https://www.metalevel.at/swiclpb.pdf](https://www.metalevel.at/swiclpb.pdf)
and
[https://www.metalevel.at/boolean.pdf](https://www.metalevel.at/boolean.pdf)
respectively.
## Boolean expressions {#clpb-exprs}
A _Boolean expression_ is one of:
| `0` | false |
| `1` | true |
| _variable_ | unknown truth value |
| _atom_ | universally quantified variable |
| ~ _Expr_ | logical NOT |
| _Expr_ + _Expr_ | logical OR |
| _Expr_ * _Expr_ | logical AND |
| _Expr_ # _Expr_ | exclusive OR |
| _Var_ ^ _Expr_ | existential quantification |
| _Expr_ =:= _Expr_ | equality |
| _Expr_ =\= _Expr_ | disequality (same as #) |
| _Expr_ =< _Expr_ | less or equal (implication) |
| _Expr_ >= _Expr_ | greater or equal |
| _Expr_ < _Expr_ | less than |
| _Expr_ > _Expr_ | greater than |
| card(Is,Exprs) | cardinality constraint (_see below_) |
| `+(Exprs)` | n-fold disjunction (_see below_) |
| `*(Exprs)` | n-fold conjunction (_see below_) |
where _Expr_ again denotes a Boolean expression.
The Boolean expression card(Is,Exprs) is true iff the number of true
expressions in the list `Exprs` is a member of the list `Is` of
integers and integer ranges of the form `From-To`. For example, to
state that precisely two of the three variables `X`, `Y` and `Z` are
`true`, you can use `sat(card([2],[X,Y,Z]))`.
`+(Exprs)` and `*(Exprs)` denote, respectively, the disjunction and
conjunction of all elements in the list `Exprs` of Boolean
expressions.
Atoms denote parametric values that are universally quantified. All
universal quantifiers appear implicitly in front of the entire
expression. In residual goals, universally quantified variables always
appear on the right-hand side of equations. Therefore, they can be
used to express functional dependencies on input variables.
## Interface predicates {#clpb-interface}
The most frequently used CLP(B) predicates are:
* sat(+Expr)
True iff the Boolean expression Expr is satisfiable.
* taut(+Expr, -T)
If Expr is a tautology with respect to the posted constraints, succeeds
with *T = 1*. If Expr cannot be satisfied, succeeds with *T = 0*.
Otherwise, it fails.
* labeling(+Vs)
Assigns truth values to the variables Vs such that all constraints
are satisfied.
The unification of a CLP(B) variable _X_ with a term _T_ is equivalent
to posting the constraint sat(X=:=T).
## Examples {#clpb-examples}
Here is an example session with a few queries and their answers:
==
?- use_module(library(clpb)).
true.
?- sat(X*Y).
X = Y, Y = 1.
?- sat(X * ~X).
false.
?- taut(X * ~X, T).
T = 0,
sat(X=:=X).
?- sat(X^Y^(X+Y)).
sat(X=:=X),
sat(Y=:=Y).
?- sat(X*Y + X*Z), labeling([X,Y,Z]).
X = Z, Z = 1, Y = 0 ;
X = Y, Y = 1, Z = 0 ;
X = Y, Y = Z, Z = 1.
?- sat(X =< Y), sat(Y =< Z), taut(X =< Z, T).
T = 1,
sat(X=:=X*Y),
sat(Y=:=Y*Z).
?- sat(1#X#a#b).
sat(X=:=a#b).
==
The pending residual goals constrain remaining variables to Boolean
expressions and are declaratively equivalent to the original query.
The last example illustrates that when applicable, remaining variables
are expressed as functions of universally quantified variables.
## Obtaining BDDs {#clpb-residual-goals}
By default, CLP(B) residual goals appear in (approximately) algebraic
normal form (ANF). This projection is often computationally expensive.
You can set the Prolog flag `clpb_residuals` to the value `bdd` to see
the BDD representation of all constraints. This results in faster
projection to residual goals, and is also useful for learning more
about BDDs. For example:
==
?- set_prolog_flag(clpb_residuals, bdd).
true.
?- sat(X#Y).
node(3)- (v(X, 0)->node(2);node(1)),
node(1)- (v(Y, 1)->true;false),
node(2)- (v(Y, 1)->false;true).
==
Note that this representation cannot be pasted back on the toplevel,
and its details are subject to change. Use copy_term/3 to obtain
such answers as Prolog terms.
The variable order of the BDD is determined by the order in which the
variables first appear in constraints. To obtain different orders,
you can for example use:
==
?- sat(+[1,Y,X]), sat(X#Y).
node(3)- (v(Y, 0)->node(2);node(1)),
node(1)- (v(X, 1)->true;false),
node(2)- (v(X, 1)->false;true).
==
## Enabling monotonic CLP(B) {#clpb-monotonic}
In the default execution mode, CLP(B) constraints are _not_ monotonic.
This means that _adding_ constraints can yield new solutions. For
example:
==
?- sat(X=:=1), X = 1+0.
false.
?- X = 1+0, sat(X=:=1), X = 1+0.
X = 1+0.
==
This behaviour is highly problematic from a logical point of view, and
it may render [**declarative
debugging**](https://www.metalevel.at/prolog/debugging)
techniques inapplicable.
Set the flag `clpb_monotonic` to `true` to make CLP(B) *monotonic*. If
this mode is enabled, then you must wrap CLP(B) variables with the
functor `v/1`. For example:
==
?- set_prolog_flag(clpb_monotonic, true).
true.
?- sat(v(X)=:=1#1).
X = 0.
==
@author [Markus Triska](https://www.metalevel.at)
*/
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Each CLP(B) variable belongs to exactly one BDD. Each CLP(B)
variable gets an attribute (in module "clpb") of the form:
index_root(Index,Root)
where Index is the variable's unique integer index, and Root is the
root of the BDD that the variable belongs to.
Each CLP(B) variable also gets an attribute in module clpb_hash: an
association table node(LID,HID) -> Node, to keep the BDD reduced.
The association table of each variable must be rebuilt on occasion
to remove nodes that are no longer reachable. We rebuild the
association tables of involved variables after BDDs are merged to
build a new root. This only serves to reclaim memory: Keeping a
node in a local table even when it no longer occurs in any BDD does
not affect the solver's correctness. However, apply_shortcut/4
relies on the invariant that every node that occurs in the relevant
BDDs is also registered in the table of its branching variable.
A root is a logical variable with a single attribute ("clpb_bdd")
of the form:
Sat-BDD
where Sat is the SAT formula (in original form) that corresponds to
BDD. Sat is necessary to rebuild the BDD after variable aliasing,
and to project all remaining constraints to a list of sat/1 goals.
Finally, a BDD is either:
*) The integers 0 or 1, denoting false and true, respectively, or
*) A node of the form
node(ID, Var, Low, High, Aux)
Where ID is the node's unique integer ID, Var is the
node's branching variable, and Low and High are the
node's low (Var = 0) and high (Var = 1) children. Aux
is a free variable, one for each node, that can be used
to attach attributes and store intermediate results.
Variable aliasing is treated as a conjunction of corresponding SAT
formulae.
You should think of CLP(B) as a potentially vast collection of BDDs
that can range from small to gigantic in size, and which can merge.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Type checking.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
is_sat(V) :- var(V), !, non_monotonic(V).
is_sat(v(V)) :- var(V), !.
is_sat(v(I)) :- integer(I), between(0, 1, I).
is_sat(I) :- integer(I), between(0, 1, I).
is_sat(A) :- atom(A).
is_sat(~A) :- is_sat(A).
is_sat(A*B) :- is_sat(A), is_sat(B).
is_sat(A+B) :- is_sat(A), is_sat(B).
is_sat(A#B) :- is_sat(A), is_sat(B).
is_sat(A=:=B) :- is_sat(A), is_sat(B).
is_sat(A=\=B) :- is_sat(A), is_sat(B).
is_sat(A=<B) :- is_sat(A), is_sat(B).
is_sat(A>=B) :- is_sat(A), is_sat(B).
is_sat(A<B) :- is_sat(A), is_sat(B).
is_sat(A>B) :- is_sat(A), is_sat(B).
is_sat(+(Ls)) :- must_be(list, Ls), maplist(is_sat, Ls).
is_sat(*(Ls)) :- must_be(list, Ls), maplist(is_sat, Ls).
is_sat(X^F) :- var(X), is_sat(F).
is_sat(card(Is,Fs)) :-
must_be(list(ground), Is),
must_be(list, Fs),
maplist(is_sat, Fs).
non_monotonic(X) :-
( var_index(X, _) ->
% OK: already constrained to a CLP(B) variable
true
; current_prolog_flag(clpb_monotonic, true) ->
instantiation_error(X)
; true
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Rewriting to canonical expressions.
Atoms are converted to variables with a special attribute.
A global lookup table maintains the correspondence between atoms and
their variables throughout different sat/1 goals.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
% elementary
sat_rewrite(V, V) :- var(V), !.
sat_rewrite(I, I) :- integer(I), !.
sat_rewrite(A, V) :- atom(A), !, clpb_atom_var(A, V).
sat_rewrite(v(V), V).
sat_rewrite(P0*Q0, P*Q) :- sat_rewrite(P0, P), sat_rewrite(Q0, Q).
sat_rewrite(P0+Q0, P+Q) :- sat_rewrite(P0, P), sat_rewrite(Q0, Q).
sat_rewrite(P0#Q0, P#Q) :- sat_rewrite(P0, P), sat_rewrite(Q0, Q).
sat_rewrite(X^F0, X^F) :- sat_rewrite(F0, F).
sat_rewrite(card(Is,Fs0), card(Is,Fs)) :-
maplist(sat_rewrite, Fs0, Fs).
% synonyms
sat_rewrite(~P, R) :- sat_rewrite(1 # P, R).
sat_rewrite(P =:= Q, R) :- sat_rewrite(~P # Q, R).
sat_rewrite(P =\= Q, R) :- sat_rewrite(P # Q, R).
sat_rewrite(P =< Q, R) :- sat_rewrite(~P + Q, R).
sat_rewrite(P >= Q, R) :- sat_rewrite(Q =< P, R).
sat_rewrite(P < Q, R) :- sat_rewrite(~P * Q, R).
sat_rewrite(P > Q, R) :- sat_rewrite(Q < P, R).
sat_rewrite(+(Ls), R) :- foldl(or, Ls, 0, F), sat_rewrite(F, R).
sat_rewrite(*(Ls), R) :- foldl(and, Ls, 1, F), sat_rewrite(F, R).
or(A, B, B + A).
and(A, B, B * A).
must_be_sat(Sat) :-
must_be(acyclic, Sat),
( is_sat(Sat) -> true
; no_truth_value(Sat)
).
no_truth_value(Term) :- domain_error(clpb_expr, Term).
parse_sat(Sat0, Sat) :-
must_be_sat(Sat0),
sat_rewrite(Sat0, Sat),
term_variables(Sat, Vs),
maplist(enumerate_variable, Vs).
enumerate_variable(V) :-
( var_index_root(V, _, _) -> true
; clpb_next_id('$clpb_next_var', Index),
put_attr(V, clpb, index_root(Index,_)),
put_empty_hash(V)
).
var_index(V, I) :- var_index_root(V, I, _).
var_index_root(V, I, Root) :- get_attr(V, clpb, index_root(I,Root)).
put_empty_hash(V) :-
empty_assoc(H0),
put_attr(V, clpb_hash, H0).
sat_roots(Sat, Roots) :-
term_variables(Sat, Vs),
maplist(var_index_root, Vs, _, Roots0),
term_variables(Roots0, Roots).
%% sat(+Expr) is semidet.
%
% True iff Expr is a satisfiable Boolean expression.
sat(Sat0) :-
( phrase(sat_ands(Sat0), Ands), Ands = [_,_|_] ->
maplist(sat, Ands)
; parse_sat(Sat0, Sat),
sat_bdd(Sat, BDD),
sat_roots(Sat, Roots),
roots_and(Roots, Sat0-BDD, And-BDD1),
maplist(del_bdd, Roots),
maplist(=(Root), Roots),
root_put_formula_bdd(Root, And, BDD1),
is_bdd(BDD1),
satisfiable_bdd(BDD1)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Posting many small sat/1 constraints is better than posting a huge
conjunction (or negated disjunction), because unneeded nodes are
removed from node tables after BDDs are merged. This is not
possible in sat_bdd/2 because the nodes may occur in other BDDs. A
better version of sat_bdd/2 or a proper implementation of a unique
table including garbage collection would make this obsolete and
also improve taut/2 and sat_count/2 in such cases.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
sat_ands(X) -->
( { var(X) } -> [X]
; { X = (A*B) } -> sat_ands(A), sat_ands(B)
; { X = *(Ls) } -> sat_ands_(Ls)
; { X = ~Y } -> not_ors(Y)
; [X]
).
sat_ands_([]) --> [].
sat_ands_([L|Ls]) --> [L], sat_ands_(Ls).
not_ors(X) -->
( { var(X) } -> [~X]
; { X = (A+B) } -> not_ors(A), not_ors(B)
; { X = +(Ls) } -> not_ors_(Ls)
; [~X]
).
not_ors_([]) --> [].
not_ors_([L|Ls]) --> [~L], not_ors_(Ls).
del_bdd(Root) :- del_attr(Root, clpb_bdd).
root_get_formula_bdd(Root, F, BDD) :- get_attr(Root, clpb_bdd, F-BDD).
root_put_formula_bdd(Root, F, BDD) :- put_attr(Root, clpb_bdd, F-BDD).
roots_and(Roots, Sat0-BDD0, Sat-BDD) :-
foldl(root_and, Roots, Sat0-BDD0, Sat-BDD),
rebuild_hashes(BDD).
root_and(Root, Sat0-BDD0, Sat-BDD) :-
( root_get_formula_bdd(Root, F, B) ->
Sat = F*Sat0,
bdd_and(B, BDD0, BDD)
; Sat = Sat0,
BDD = BDD0
).
bdd_and(NA, NB, And) :-
apply(*, NA, NB, And),
is_bdd(And).
%% taut(+Expr, -T) is semidet
%
% Tautology check. Succeeds with T = 0 if the Boolean expression Expr
% cannot be satisfied, and with T = 1 if Expr is always true with
% respect to the current constraints. Fails otherwise.
taut(Sat0, T) :-
parse_sat(Sat0, Sat),
( T = 0, \+ sat(Sat) -> true
; T = 1, tautology(Sat) -> true
; false
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The algebraic equivalence: tautology(F) <=> \+ sat(~F) does NOT
hold in CLP(B) because the quantifiers of universally quantified
variables always implicitly appear in front of the *entire*
expression. Thus we have for example: X+a is not a tautology, but
~(X+a), meaning forall(a, ~(X+a)), is unsatisfiable:
sat(~(X+a)) = sat(~X * ~a) = sat(~X), sat(~a) = X=0, false
The actual negation of X+a, namely ~forall(A,X+A), in terms of
CLP(B): ~ ~exists(A, ~(X+A)), is of course satisfiable:
?- sat(~ ~A^ ~(X+A)).
%@ X = 0,
%@ sat(A=:=A).
Instead, of such rewriting, we test whether the BDD of the negated
formula is 0. Critically, this avoids constraint propagation.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
tautology(Sat) :-
( phrase(sat_ands(Sat), Ands), Ands = [_,_|_] ->
maplist(tautology, Ands)
; catch((sat_roots(Sat, Roots),
roots_and(Roots, _-1, _-Ands),
sat_bdd(1#Sat, BDD),
bdd_and(BDD, Ands, B),
B == 0,
% reset all attributes
throw(tautology)),
tautology,
true)
).
satisfiable_bdd(BDD) :-
( BDD == 0 -> false
; BDD == 1 -> true
; ( bdd_nodes(var_unbound, BDD, Nodes) ->
bdd_variables_classification(BDD, Nodes, Classes),
partition(var_class, Classes, Eqs, Bs, Ds),
domain_consistency(Eqs, Goal),
aliasing_consistency(Bs, Ds, Goals),
maplist(unification, [Goal|Goals])
; % if any variable is instantiated, we do not perform
% any propagation for now
true
)
).
var_class(_=_, <).
var_class(further_branching(_,_), =).
var_class(negative_decisive(_), >).
unification(true).
unification(A=B) :- A = B. % safe_goal/1 detects safety of this call
var_unbound(Node) :-
node_var_low_high(Node, Var, _, _),
var(Var).
universal_var(Var) :- get_attr(Var, clpb_atom, _).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
By aliasing consistency, we mean that all unifications X=Y, where
taut(X=:=Y, 1) holds, are posted.
To detect this, we distinguish two kinds of variables among those
variables that are not skipped in any branch: further-branching and
negative-decisive. X is negative-decisive iff every node where X
appears as a branching variable has 0 as one of its children. X is
further-branching iff 1 is not a direct child of any node where X
appears as a branching variable.
Any potential aliasing must involve one further-branching, and one
negative-decisive variable. X=Y must hold if, for each low branch
of nodes with X as branching variable, Y has high branch 0, and for
each high branch of nodes involving X, Y has low branch 0.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
aliasing_consistency(Bs, Ds, Goals) :-
phrase(aliasings(Bs, Ds), Goals).
aliasings([], _) --> [].
aliasings([further_branching(B,Nodes)|Bs], Ds) -->
{ var_index(B, BI) },
aliasings_(Ds, B, BI, Nodes),
aliasings(Bs, Ds).
aliasings_([], _, _, _) --> [].
aliasings_([negative_decisive(D)|Ds], B, BI, Nodes) -->
{ var_index(D, DI) },
( { DI > BI,
always_false(high, DI, Nodes),
always_false(low, DI, Nodes),
var_or_atom(D, DA), var_or_atom(B, BA) } ->
[DA=BA]
; []
),
aliasings_(Ds, B, BI, Nodes).
var_or_atom(Var, VA) :-
( get_attr(Var, clpb_atom, VA) -> true
; VA = Var
).
always_false(Which, DI, Nodes) :-
phrase(nodes_always_false(Nodes, Which, DI), Opposites),
maplist(with_aux(unvisit), Opposites).
nodes_always_false([], _, _) --> [].
nodes_always_false([Node|Nodes], Which, DI) -->
{ which_node_child(Which, Node, Child),
opposite(Which, Opposite) },
opposite_always_false(Opposite, DI, Child),
nodes_always_false(Nodes, Which, DI).
which_node_child(low, Node, Child) :-
node_var_low_high(Node, _, Child, _).
which_node_child(high, Node, Child) :-
node_var_low_high(Node, _, _, Child).
opposite(low, high).
opposite(high, low).
opposite_always_false(Opposite, DI, Node) -->
( { node_visited(Node) } -> []
; { node_var_low_high(Node, Var, Low, High),
with_aux(put_visited, Node),
var_index(Var, VI) },
[Node],
( { VI =:= DI } ->
{ which_node_child(Opposite, Node, Child),
Child == 0 }
; opposite_always_false(Opposite, DI, Low),
opposite_always_false(Opposite, DI, High)
)
).
further_branching(Node) :-
node_var_low_high(Node, _, Low, High),
Low \== 1,
High \== 1.
negative_decisive(Node) :-
node_var_low_high(Node, _, Low, High),
( Low == 0 -> true
; High == 0 -> true
; false
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Instantiate all variables that only admit a single Boolean value.
This is the case if: The variable is not skipped in any branch
leading to 1 (its being skipped means that it may be assigned
either 0 or 1 and can thus not be fixed yet), and all nodes where
it occurs as a branching variable have either lower or upper child
fixed to 0 consistently.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_consistency(Eqs, Goal) :-
maplist(eq_a_b, Eqs, Vs, Values),
Goal = (Vs = Values). % propagate all assignments at once
eq_a_b(A=B, A, B).
consistently_false_(Which, Node) :-
which_node_child(Which, Node, Child),
Child == 0.
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
In essentially one sweep of the BDD, all variables can be classified:
Unification with 0 or 1, further branching and/or negative decisive.
Strategy: Breadth-first traversal of the BDD, failing (and thus
clearing all attributes) if the variable is skipped in some branch,
and moving the frontier along each time.
A formula is only satisfiable if it is a tautology after all (also
implicitly) existentially quantified variables are projected away.
However, we only need to check this explicitly if at least one
universally quantified variable appears. Otherwise, we know that
the formula is satisfiable at this point, because its BDD is not 0.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
bdd_variables_classification(BDD, Nodes, Classes) :-
nodes_variables(Nodes, Vs0),
variables_in_index_order(Vs0, Vs),
( partition(universal_var, Vs, [_|_], Es) ->
foldl(existential, Es, BDD, 1)
; true
),
phrase(variables_classification(Vs, [BDD]), Classes),
maplist(with_aux(unvisit), Nodes).
variables_classification([], _) --> [].
variables_classification([V|Vs], Nodes0) -->
{ var_index(V, Index) },
( { phrase(nodes_with_variable(Nodes0, Index), Nodes) } ->
( { maplist(consistently_false_(low), Nodes) } -> [V=1]
; { maplist(consistently_false_(high), Nodes) } -> [V=0]
; []
),
( { maplist(further_branching, Nodes) } ->
[further_branching(V, Nodes)]
; []
),
( { maplist(negative_decisive, Nodes) } ->
[negative_decisive(V)]
; []
),
{ maplist(with_aux(unvisit), Nodes) },
variables_classification(Vs, Nodes)
; variables_classification(Vs, Nodes0)
).
nodes_with_variable([], _) --> [].
nodes_with_variable([Node|Nodes], VI) -->
{ Node \== 1 },
( { node_visited(Node) } -> nodes_with_variable(Nodes, VI)
; { with_aux(put_visited, Node),
node_var_low_high(Node, OVar, Low, High),
var_index(OVar, OVI) },
{ OVI =< VI },
( { OVI =:= VI } -> [Node]
; nodes_with_variable([Low,High], VI)
),
nodes_with_variable(Nodes, VI)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Node management. Always use an existing node, if there is one.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
make_node(Var, Low, High, Node) :-
( Low == High -> Node = Low
; low_high_key(Low, High, Key),
( lookup_node(Var, Key, Node) -> true
; clpb_next_id('$clpb_next_node', ID),
Node = node(ID,Var,Low,High,_Aux),
register_node(Var, Key, Node)
)
).
make_node(Var, Low, High, Node) -->
% make it conveniently usable within DCGs
{ make_node(Var, Low, High, Node) }.
% The key of a node for hashing is determined by the IDs of its
% children.
low_high_key(Low, High, node(LID,HID)) :-
node_id(Low, LID),
node_id(High, HID).
rebuild_hashes(BDD) :-
bdd_nodes(nodevar_put_empty_hash, BDD, Nodes),
maplist(re_register_node, Nodes).
nodevar_put_empty_hash(Node) :-
node_var_low_high(Node, Var, _, _),
empty_assoc(H0),
put_attr(Var, clpb_hash, H0).
re_register_node(Node) :-
node_var_low_high(Node, Var, Low, High),
low_high_key(Low, High, Key),
register_node(Var, Key, Node).
register_node(Var, Key, Node) :-
get_attr(Var, clpb_hash, H0),
put_assoc(Key, H0, Node, H),
put_attr(Var, clpb_hash, H).
lookup_node(Var, Key, Node) :-
get_attr(Var, clpb_hash, H0),
get_assoc(Key, H0, Node).
node_id(0, false).
node_id(1, true).
node_id(node(ID,_,_,_,_), ID).
node_aux(Node, Aux) :- arg(5, Node, Aux).
node_var_low_high(Node, Var, Low, High) :-
Node = node(_,Var,Low,High,_).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
sat_bdd/2 converts a SAT formula in canonical form to an ordered
and reduced BDD.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
sat_bdd(V, Node) :- var(V), !, make_node(V, 0, 1, Node).
sat_bdd(I, I) :- integer(I), !.
sat_bdd(V^Sat, Node) :- !, sat_bdd(Sat, BDD), existential(V, BDD, Node).
sat_bdd(card(Is,Fs), Node) :- !, counter_network(Is, Fs, Node).
sat_bdd(Sat, Node) :- !,
Sat =.. [F,A,B],
sat_bdd(A, NA),
sat_bdd(B, NB),
apply(F, NA, NB, Node).
existential(V, BDD, Node) :-
var_index(V, Index),
bdd_restriction(BDD, Index, 0, NA),
bdd_restriction(BDD, Index, 1, NB),
apply(+, NA, NB, Node).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Counter network for card(Is,Fs).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
counter_network(Cs, Fs, Node) :-
same_length([_|Fs], Indicators),
fill_indicators(Indicators, 0, Cs),
phrase(formulas_variables(Fs, Vars0), ExBDDs),
maplist(unvisit, Vars0),
% The counter network is built bottom-up, so variables with
% highest index must be processed first.
variables_in_index_order(Vars0, Vars1),
reverse(Vars1, Vars),
counter_network_(Vars, Indicators, Node0),
foldl(existential_and, ExBDDs, Node0, Node).
% Introduce fresh variables for expressions that are not variables.
% These variables are later existentially quantified to remove them.
% Also, new variables are introduced for variables that are used more
% than once, as in card([0,1],[X,X,Y]), to keep the BDD ordered.
formulas_variables([], []) --> [].
formulas_variables([F|Fs], [V|Vs]) -->
( { var(F), \+ is_visited(F) } ->
{ V = F,
put_visited(F) }
; { enumerate_variable(V),
sat_rewrite(V =:= F, Sat),
sat_bdd(Sat, BDD) },
[V-BDD]
),
formulas_variables(Fs, Vs).
counter_network_([], [Node], Node).
counter_network_([Var|Vars], [I|Is0], Node) :-
foldl(indicators_pairing(Var), Is0, Is, I, _),
counter_network_(Vars, Is, Node).
indicators_pairing(Var, I, Node, Prev, I) :- make_node(Var, Prev, I, Node).
fill_indicators([], _, _).
fill_indicators([I|Is], Index0, Cs) :-
( memberchk(Index0, Cs) -> I = 1
; member(A-B, Cs), between(A, B, Index0) -> I = 1
; I = 0
),
Index1 is Index0 + 1,
fill_indicators(Is, Index1, Cs).
existential_and(Ex-BDD, Node0, Node) :-
bdd_and(BDD, Node0, Node1),
existential(Ex, Node1, Node),
% remove attributes to avoid residual goals for variables that
% are only used as substitutes for formulas
del_attrs(Ex).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Compute F(NA, NB).
We use a DCG to thread through an implicit argument G0, an
association table F(IDA,IDB) -> Node, used for memoization.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
apply(F, NA, NB, Node) :-
empty_assoc(G0),
phrase(apply(F, NA, NB, Node), [G0], _).
apply(F, NA, NB, Node) -->
( { integer(NA), integer(NB) } -> { once(bool_op(F, NA, NB, Node)) }
; { apply_shortcut(F, NA, NB, Node) } -> []
; { node_id(NA, IDA), node_id(NB, IDB), Key =.. [F,IDA,IDB] },
( state(G0), { get_assoc(Key, G0, Node) } -> []
; apply_(F, NA, NB, Node),
state(G0, G),
{ put_assoc(Key, G0, Node, G) }
)
).
apply_shortcut(+, NA, NB, Node) :-
( NA == 0 -> Node = NB
; NA == 1 -> Node = 1
; NB == 0 -> Node = NA
; NB == 1 -> Node = 1
; false
).
apply_shortcut(*, NA, NB, Node) :-
( NA == 0 -> Node = 0
; NA == 1 -> Node = NB
; NB == 0 -> Node = 0
; NB == 1 -> Node = NA
; false
).
apply_(F, NA, NB, Node) -->
{ var_less_than(NA, NB),
!,
node_var_low_high(NA, VA, LA, HA) },
apply(F, LA, NB, Low),
apply(F, HA, NB, High),
make_node(VA, Low, High, Node).
apply_(F, NA, NB, Node) -->
{ node_var_low_high(NA, VA, LA, HA),
node_var_low_high(NB, VB, LB, HB),
VA == VB },
!,
apply(F, LA, LB, Low),
apply(F, HA, HB, High),
make_node(VA, Low, High, Node).
apply_(F, NA, NB, Node) --> % NB < NA
{ node_var_low_high(NB, VB, LB, HB) },
apply(F, NA, LB, Low),
apply(F, NA, HB, High),
make_node(VB, Low, High, Node).
node_varindex(Node, VI) :-
node_var_low_high(Node, V, _, _),
var_index(V, VI).
var_less_than(NA, NB) :-
( integer(NB) -> true
; node_varindex(NA, VAI),
node_varindex(NB, VBI),
VAI < VBI
).
bool_op(+, 0, 0, 0).
bool_op(+, 0, 1, 1).
bool_op(+, 1, 0, 1).
bool_op(+, 1, 1, 1).
bool_op(*, 0, 0, 0).
bool_op(*, 0, 1, 0).
bool_op(*, 1, 0, 0).
bool_op(*, 1, 1, 1).
bool_op(#, 0, 0, 0).
bool_op(#, 0, 1, 1).
bool_op(#, 1, 0, 1).
bool_op(#, 1, 1, 0).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Access implicit state in DCGs.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
state(S) --> state(S, S).
state(S0, S), [S] --> [S0].
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Unification. X = Expr is equivalent to sat(X =:= Expr).
Current limitation:
===================
The current interface of attributed variables is not general enough
to express what we need. For example,
?- sat(A + B), A = A + 1.
should be equivalent to
?- sat(A + B), sat(A =:= A + 1).
However, attr_unify_hook/2 is only called *after* the unification
of A with A + 1 has already taken place and turned A into a cyclic
ground term, raised an error or failed (depending on the flag
occurs_check), making it impossible to reason about the variable A
in the unification hook. Therefore, a more general interface for
attributed variables should replace the current one. In particular,
unification filters should be able to reason about terms before
they are unified with anything.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
attr_unify_hook(index_root(I,Root), Other) :-
( integer(Other) ->
( between(0, 1, Other) ->
root_get_formula_bdd(Root, Sat, BDD0),
bdd_restriction(BDD0, I, Other, BDD),
root_put_formula_bdd(Root, Sat, BDD),
satisfiable_bdd(BDD)
; no_truth_value(Other)
)
; atom(Other) ->
root_get_formula_bdd(Root, Sat0, _),
parse_sat(Sat0, Sat),
sat_bdd(Sat, BDD),
root_put_formula_bdd(Root, Sat0, BDD),
is_bdd(BDD),
satisfiable_bdd(BDD)
; % due to variable aliasing, any BDDs may now be unordered,
% so we need to rebuild the new BDD from the conjunction.
root_get_formula_bdd(Root, Sat0, _),
Sat = Sat0*OtherSat,
( var(Other), var_index_root(Other, _, OtherRoot),
OtherRoot \== Root ->
root_get_formula_bdd(OtherRoot, OtherSat, _),
parse_sat(Sat, Sat1),
sat_bdd(Sat1, BDD1),
And = Sat,
sat_roots(Sat, Roots)
; parse_sat(Other, OtherSat),
sat_roots(Sat, Roots),
maplist(root_rebuild_bdd, Roots),
roots_and(Roots, 1-1, And-BDD1)
),
maplist(del_bdd, Roots),
maplist(=(NewRoot), Roots),
root_put_formula_bdd(NewRoot, And, BDD1),
is_bdd(BDD1),
satisfiable_bdd(BDD1)
).
root_rebuild_bdd(Root) :-
( root_get_formula_bdd(Root, F0, _) ->
parse_sat(F0, Sat),
sat_bdd(Sat, BDD),
root_put_formula_bdd(Root, F0, BDD)
; true
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Support for project_attributes/2.
This is called by the toplevel as
project_attributes(+QueryVars, +AttrVars)
in order to project all remaining constraints onto QueryVars.
All CLP(B) variables that do not occur in QueryVars or AttrVars
need to be existentially quantified, so that they do not occur in
residual goals. This is very easy to do in the case of CLP(B).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
project_attributes(QueryVars0, AttrVars) :-
append(QueryVars0, AttrVars, QueryVars1),
include(clpb_variable, QueryVars1, QueryVars),
maplist(var_index_root, QueryVars, _, Roots0),
sort(Roots0, Roots),
maplist(remove_hidden_variables(QueryVars), Roots).
clpb_variable(Var) :- var_index(Var, _).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
All CLP(B) variables occurring in BDDs but not in query variables
become existentially quantified. This must also be reflected in the
formula. In addition, an attribute is attached to these variables
to suppress superfluous sat(V=:=V) goals.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
remove_hidden_variables(QueryVars, Root) :-
root_get_formula_bdd(Root, Formula, BDD0),
maplist(put_visited, QueryVars),
bdd_variables(BDD0, HiddenVars0),
exclude(universal_var, HiddenVars0, HiddenVars),
maplist(unvisit, QueryVars),
foldl(existential, HiddenVars, BDD0, BDD),
foldl(quantify_existantially, HiddenVars, Formula, ExFormula),
root_put_formula_bdd(Root, ExFormula, BDD).
quantify_existantially(E, E0, E^E0) :- put_attr(E, clpb_omit_boolean, true).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
BDD restriction.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
bdd_restriction(Node, VI, Value, Res) :-
empty_assoc(G0),
phrase(bdd_restriction_(Node, VI, Value, Res), [G0], _),
is_bdd(Res).
bdd_restriction_(Node, VI, Value, Res) -->
( { integer(Node) } -> { Res = Node }
; { node_var_low_high(Node, Var, Low, High) } ->
( { integer(Var) } ->
( { Var =:= 0 } -> bdd_restriction_(Low, VI, Value, Res)
; { Var =:= 1 } -> bdd_restriction_(High, VI, Value, Res)
; { no_truth_value(Var) }
)
; { var_index(Var, I0),
node_id(Node, ID) },
( { I0 =:= VI } ->
( { Value =:= 0 } -> { Res = Low }
; { Value =:= 1 } -> { Res = High }
)
; { I0 > VI } -> { Res = Node }
; state(G0), { get_assoc(ID, G0, Res) } -> []
; bdd_restriction_(Low, VI, Value, LRes),
bdd_restriction_(High, VI, Value, HRes),
make_node(Var, LRes, HRes, Res),
state(G0, G),
{ put_assoc(ID, G0, Res, G) }
)
)
; { domain_error(node, Node) }
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Relating a BDD to its elements (nodes and variables).
Note that BDDs can become quite big (easily millions of nodes), and
memory space is a major bottleneck for many problems. If possible,
we therefore do not duplicate the entire BDD in memory (as in
bdd_ites/2), but only extract its features as needed.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
bdd_nodes(BDD, Ns) :- bdd_nodes(ignore_node, BDD, Ns).
ignore_node(_).
% VPred is a unary predicate that is called for each node that has a
% branching variable (= each inner node).
bdd_nodes(VPred, BDD, Ns) :-
phrase(bdd_nodes_(VPred, BDD), Ns),
maplist(with_aux(unvisit), Ns).
bdd_nodes_(VPred, Node) -->
( { node_visited(Node) } -> []
; { call(VPred, Node),
with_aux(put_visited, Node),
node_var_low_high(Node, _, Low, High) },
[Node],
bdd_nodes_(VPred, Low),
bdd_nodes_(VPred, High)
).
node_visited(Node) :- integer(Node).
node_visited(Node) :- with_aux(is_visited, Node).
bdd_variables(BDD, Vs) :-
bdd_nodes(BDD, Nodes),
nodes_variables(Nodes, Vs).
nodes_variables(Nodes, Vs) :-
phrase(nodes_variables_(Nodes), Vs),
maplist(unvisit, Vs).
nodes_variables_([]) --> [].
nodes_variables_([Node|Nodes]) -->
{ node_var_low_high(Node, Var, _, _) },
( { integer(Var) } -> []
; { is_visited(Var) } -> []
; { put_visited(Var) },
[Var]
),
nodes_variables_(Nodes).
unvisit(V) :- del_attr(V, clpb_visited).
is_visited(V) :- get_attr(V, clpb_visited, true).
put_visited(V) :- put_attr(V, clpb_visited, true).
with_aux(Pred, Node) :-
node_aux(Node, Aux),
call(Pred, Aux).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Internal consistency checks.
To enable these checks, set the flag clpb_validation to true.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
is_bdd(BDD) :-
( current_prolog_flag(clpb_validation, true) ->
bdd_ites(BDD, ITEs),
pairs_values(ITEs, Ls0),
sort(Ls0, Ls1),
( same_length(Ls0, Ls1) -> true
; domain_error(reduced_ites, (ITEs,Ls0,Ls1))
),
( member(ITE, ITEs), \+ registered_node(ITE) ->
domain_error(registered_node, ITE)
; true
),
( member(I, ITEs), \+ ordered(I) ->
domain_error(ordered_node, I)
; true
)
; true
).
ordered(_-ite(Var,High,Low)) :-
( var_index(Var, VI) ->
greater_varindex_than(High, VI),
greater_varindex_than(Low, VI)
; true
).
greater_varindex_than(Node, VI) :-
( integer(Node) -> true
; node_var_low_high(Node, Var, _, _),
( var_index(Var, OI) ->
OI > VI
; true
)
).
registered_node(Node-ite(Var,High,Low)) :-
( var(Var) ->
low_high_key(Low, High, Key),
lookup_node(Var, Key, Node0),
Node == Node0
; true
).
bdd_ites(BDD, ITEs) :-
bdd_nodes(BDD, Nodes),
maplist(node_ite, Nodes, ITEs).
node_ite(Node, Node-ite(Var,High,Low)) :-
node_var_low_high(Node, Var, Low, High).
%% labeling(+Vs) is multi.
%
% Enumerate concrete solutions. Assigns truth values to the Boolean
% variables Vs such that all stated constraints are satisfied.
labeling(Vs0) :-
must_be(list, Vs0),
maplist(labeling_var, Vs0),
variables_in_index_order(Vs0, Vs),
maplist(indomain, Vs).
labeling_var(V) :- var(V), !.
labeling_var(V) :- V == 0, !.
labeling_var(V) :- V == 1, !.
labeling_var(V) :- domain_error(clpb_variable, V).
variables_in_index_order(Vs0, Vs) :-
maplist(var_with_index, Vs0, IVs0),
keysort(IVs0, IVs),
pairs_values(IVs, Vs).
var_with_index(V, I-V) :-
( var_index_root(V, I, _) -> true
; I = 0
).
indomain(0).
indomain(1).
%% sat_count(+Expr, -Count) is det.
%
% Count the number of admissible assignments. Count is the number of
% different assignments of truth values to the variables in the
% Boolean expression Expr, such that Expr is true and all posted
% constraints are satisfiable.
%
% A common form of invocation is `sat_count(+[1|Vs], Count)`: This
% counts the number of admissible assignments to `Vs` without imposing
% any further constraints.
%
% Examples:
%
% ==
% ?- sat(A =< B), Vs = [A,B], sat_count(+[1|Vs], Count).
% Vs = [A, B],
% Count = 3,
% sat(A=:=A*B).
%
% ?- length(Vs, 120),
% sat_count(+Vs, CountOr),
% sat_count(*(Vs), CountAnd).
% Vs = [...],
% CountOr = 1329227995784915872903807060280344575,
% CountAnd = 1.
% ==
sat_count(Sat0, N) :-
catch((parse_sat(Sat0, Sat),
sat_bdd(Sat, BDD),
sat_roots(Sat, Roots),
roots_and(Roots, _-BDD, _-BDD1),
% we mark variables that occur in Sat0 as visited ...
term_variables(Sat0, Vs),
maplist(put_visited, Vs),
% ... so that they do not appear in Vs1 ...
bdd_variables(BDD1, Vs1),
partition(universal_var, Vs1, Univs, Exis),
% ... and then remove remaining variables:
foldl(universal, Univs, BDD1, BDD2),
foldl(existential, Exis, BDD2, BDD3),
variables_in_index_order(Vs, IVs),
foldl(renumber_variable, IVs, 1, VNum),
bdd_count(BDD3, VNum, Count0),
var_u(BDD3, VNum, P),
% Do not unify N directly, because we are not prepared
% for propagation here in case N is a CLP(B) variable.
N0 is 2^(P - 1)*Count0,
% reset all attributes and Aux variables
throw(count(N0))),
count(N0),
N = N0).
universal(V, BDD, Node) :-
var_index(V, Index),
bdd_restriction(BDD, Index, 0, NA),
bdd_restriction(BDD, Index, 1, NB),
apply(*, NA, NB, Node).
renumber_variable(V, I0, I) :-
put_attr(V, clpb, index_root(I0,_)),
I is I0 + 1.
bdd_count(Node, VNum, Count) :-
( integer(Node) -> Count = Node
; node_aux(Node, Count),
( integer(Count) -> true
; node_var_low_high(Node, V, Low, High),
bdd_count(Low, VNum, LCount),
bdd_count(High, VNum, HCount),
bdd_pow(Low, V, VNum, LPow),
bdd_pow(High, V, VNum, HPow),
Count is LPow*LCount + HPow*HCount
)
).
bdd_pow(Node, V, VNum, Pow) :-
var_index(V, Index),
var_u(Node, VNum, P),
Pow is 2^(P - Index - 1).
var_u(Node, VNum, Index) :-
( integer(Node) -> Index = VNum
; node_varindex(Node, Index)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Pick a solution in such a way that each solution is equally likely.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
%% random_labeling(+Seed, +Vs) is det.
%
% Select a single random solution. An admissible assignment of truth
% values to the Boolean variables in Vs is chosen in such a way that
% each admissible assignment is equally likely. Seed is an integer,
% used as the initial seed for the random number generator.
single_bdd(Vars0) :-
maplist(monotonic_variable, Vars0, Vars),
% capture all variables with a single BDD
sat(+[1|Vars]).
random_labeling(Seed, Vars) :-
must_be(list, Vars),
set_random(seed(Seed)),
( ground(Vars) -> true
; catch((single_bdd(Vars),
once((member(Var, Vars),var(Var))),
var_index_root(Var, _, Root),
root_get_formula_bdd(Root, _, BDD),
bdd_variables(BDD, Vs),
variables_in_index_order(Vs, IVs),
foldl(renumber_variable, IVs, 1, VNum),
phrase(random_bindings(VNum, BDD), Bs),
maplist(del_attrs, Vs),
% reset all attribute modifications
throw(randsol(Vars, Bs))),
randsol(Vars, Bs),
true),
maplist(call, Bs),
% set remaining variables to 0 or 1 with equal probability
include(var, Vars, Remaining),
maplist(maybe_zero, Remaining)
).
maybe_zero(Var) :-
( maybe -> Var = 0
; Var = 1
).
random_bindings(_, Node) --> { Node == 1 }, !.
random_bindings(VNum, Node) -->
{ node_var_low_high(Node, Var, Low, High),
bdd_count(Node, VNum, Total),
bdd_count(Low, VNum, LCount) },
( { maybe(LCount, Total) } ->
[Var=0], random_bindings(VNum, Low)
; [Var=1], random_bindings(VNum, High)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Find solutions with maximum weight.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
%% weighted_maximum(+Weights, +Vs, -Maximum) is multi.
%
% Enumerate weighted optima over admissible assignments. Maximize a
% linear objective function over Boolean variables Vs with integer
% coefficients Weights. This predicate assigns 0 and 1 to the
% variables in Vs such that all stated constraints are satisfied, and
% Maximum is the maximum of sum(Weight_i*V_i) over all admissible
% assignments. On backtracking, all admissible assignments that
% attain the optimum are generated.
%
% This predicate can also be used to _minimize_ a linear Boolean
% program, since negative integers can appear in Weights.
%
% Example:
%
% ==
% ?- sat(A#B), weighted_maximum([1,2,1], [A,B,C], Maximum).
% A = 0, B = 1, C = 1, Maximum = 3.
% ==
weighted_maximum(Ws, Vars, Max) :-
must_be(list(integer), Ws),
must_be(list(var), Vars),
single_bdd(Vars),
Vars = [Var|_],
var_index_root(Var, _, Root),
root_get_formula_bdd(Root, _, BDD0),
bdd_variables(BDD0, Vs),
% existentially quantify variables that are not considered
maplist(put_visited, Vars),
exclude(is_visited, Vs, Unvisited),
maplist(unvisit, Vars),
foldl(existential, Unvisited, BDD0, BDD),
maplist(var_with_index, Vars, IVs),
pairs_keys_values(Pairs0, IVs, Ws),
keysort(Pairs0, Pairs1),
pairs_keys_values(Pairs1, IVs1, WeightsIndexOrder),
pairs_values(IVs1, VarsIndexOrder),
% Pairs is a list of Var-Weight terms, in index order of Vars
pairs_keys_values(Pairs, VarsIndexOrder, WeightsIndexOrder),
bdd_maximum(BDD, Pairs, Max),
max_labeling(BDD, Pairs).
max_labeling(1, Pairs) :- max_upto(Pairs, _, _).
max_labeling(node(_,Var,Low,High,Aux), Pairs0) :-
max_upto(Pairs0, Var, Pairs),
get_attr(Aux, clpb_max, max(_,Dir)),
direction_labeling(Dir, Var, Low, High, Pairs).
max_upto([], _, _).
max_upto([Var0-Weight|VWs0], Var, VWs) :-
( Var == Var0 -> VWs = VWs0
; Weight =:= 0 ->
( Var0 = 0 ; Var0 = 1 ),
max_upto(VWs0, Var, VWs)
; Weight < 0 -> Var0 = 0, max_upto(VWs0, Var, VWs)
; Var0 = 1, max_upto(VWs0, Var, VWs)
).
direction_labeling(low, 0, Low, _, Pairs) :- max_labeling(Low, Pairs).
direction_labeling(high, 1, _, High, Pairs) :- max_labeling(High, Pairs).
bdd_maximum(1, Pairs, Max) :-
pairs_values(Pairs, Weights0),
include(<(0), Weights0, Weights),
sum_list(Weights, Max).
bdd_maximum(node(_,Var,Low,High,Aux), Pairs0, Max) :-
( get_attr(Aux, clpb_max, max(Max,_)) -> true
; ( skip_to_var(Var, Weight, Pairs0, Pairs),
( Low == 0 ->
bdd_maximum_(High, Pairs, MaxHigh, MaxToHigh),
Max is MaxToHigh + MaxHigh + Weight,
Dir = high
; High == 0 ->
bdd_maximum_(Low, Pairs, MaxLow, MaxToLow),
Max is MaxToLow + MaxLow,
Dir = low
; bdd_maximum_(Low, Pairs, MaxLow, MaxToLow),
bdd_maximum_(High, Pairs, MaxHigh, MaxToHigh),
Max0 is MaxToLow + MaxLow,
Max1 is MaxToHigh + MaxHigh + Weight,
Max is max(Max0,Max1),
( Max0 =:= Max1 -> Dir = _Any
; Max0 < Max1 -> Dir = high
; Dir = low
)
),
store_maximum(Aux, Max, Dir)
)
).
bdd_maximum_(Node, Pairs, Max, MaxTo) :-
bdd_maximum(Node, Pairs, Max),
between_weights(Node, Pairs, MaxTo).
store_maximum(Aux, Max, Dir) :- put_attr(Aux, clpb_max, max(Max,Dir)).
between_weights(Node, Pairs0, MaxTo) :-
( Node == 1 -> MaxTo = 0
; node_var_low_high(Node, Var, _, _),
phrase(skip_to_var_(Var, _, Pairs0, _), Weights0),
include(<(0), Weights0, Weights),
sum_list(Weights, MaxTo)
).
skip_to_var(Var, Weight, Pairs0, Pairs) :-
phrase(skip_to_var_(Var, Weight, Pairs0, Pairs), _).
skip_to_var_(Var, Weight, [Var0-Weight0|VWs0], VWs) -->
( { Var == Var0 } ->
{ Weight = Weight0, VWs0 = VWs }
; ( { Weight0 =< 0 } -> []
; [Weight0]
),
skip_to_var_(Var, Weight, VWs0, VWs)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Projection to residual goals.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
attribute_goals(Var) -->
{ var_index_root(Var, _, Root) },
( { root_get_formula_bdd(Root, Formula, BDD) } ->
{ del_bdd(Root) },
( { current_prolog_flag(clpb_residuals, bdd) } ->
{ bdd_nodes(BDD, Nodes),
phrase(nodes(Nodes), Ns) },
[clpb:'$clpb_bdd'(Ns)]
; { prepare_global_variables(BDD),
phrase(sat_ands(Formula), Ands0),
ands_fusion(Ands0, Ands),
maplist(formula_anf, Ands, ANFs0),
sort(ANFs0, ANFs1),
exclude(eq_1, ANFs1, ANFs2),
variables_separation(ANFs2, ANFs) },
sats(ANFs)
),
( { get_attr(Var, clpb_atom, Atom) } ->
[clpb:sat(Var=:=Atom)]
; []
),
% formula variables not occurring in the BDD should be booleans
{ bdd_variables(BDD, Vs),
maplist(del_clpb, Vs),
term_variables(Formula, RestVs0),
include(clpb_variable, RestVs0, RestVs) },
booleans(RestVs)
; boolean(Var) % the variable may have occurred only in taut/2
).
del_clpb(Var) :- del_attr(Var, clpb).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
To make residual projection work with recorded constraints, the
global counters must be adjusted so that new variables and nodes
also get new IDs. Also, clpb_next_id/2 is used to actually create
these counters, because creating them with b_setval/2 would make
them [] on backtracking, which is quite unfortunate in itself.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
prepare_global_variables(BDD) :-
clpb_next_id('$clpb_next_var', V0),
clpb_next_id('$clpb_next_node', N0),
bdd_nodes(BDD, Nodes),
foldl(max_variable_node, Nodes, V0-N0, MaxV0-MaxN0),
MaxV is MaxV0 + 1,
MaxN is MaxN0 + 1,
b_setval('$clpb_next_var', MaxV),
b_setval('$clpb_next_node', MaxN).
max_variable_node(Node, V0-N0, V-N) :-
node_id(Node, N1),
node_varindex(Node, V1),
N is max(N0,N1),
V is max(V0,V1).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Fuse formulas that share the same variables into single conjunctions.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
ands_fusion(Ands0, Ands) :-
maplist(with_variables, Ands0, Pairs0),
keysort(Pairs0, Pairs),
group_pairs_by_key(Pairs, Groups),
pairs_values(Groups, Andss),
maplist(list_to_conjunction, Andss, Ands).
with_variables(F, Vs-F) :-
term_variables(F, Vs0),
variables_in_index_order(Vs0, Vs).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
If possible, separate variables into different sat/1 goals.
A formula F can be split in two if for two of its variables A and B,
taut((A^F)*(B^F) =:= F, 1) holds. In the first conjunct, A does not
occur, and in the second, B does not occur. We separate variables
until that is no longer possible. There may be a better way to do this.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
variables_separation(Fs0, Fs) :- separation_fixpoint(Fs0, [], Fs).
separation_fixpoint(Fs0, Ds0, Fs) :-
phrase(variables_separation_(Fs0, Ds0, Rest), Fs1),
partition(anf_done, Fs1, Ds1, Fs2),
maplist(arg(1), Ds1, Ds2),
maplist(arg(1), Fs2, Fs3),
append(Ds0, Ds2, Ds3),
append(Rest, Fs3, Fs4),
sort(Fs4, Fs5),
sort(Ds3, Ds4),
( Fs5 == [] -> Fs = Ds4
; separation_fixpoint(Fs5, Ds4, Fs)
).
anf_done(done(_)).
variables_separation_([], _, []) --> [].
variables_separation_([F0|Fs0], Ds, Rest) -->
( { member(Done, Ds), F0 == Done } ->
variables_separation_(Fs0, Ds, Rest)
; { sat_rewrite(F0, F),
sat_bdd(F, BDD),
bdd_variables(BDD, Vs0),
exclude(universal_var, Vs0, Vs),
maplist(existential_(BDD), Vs, Nodes),
phrase(pairs(Nodes), Pairs),
group_pairs_by_key(Pairs, Groups),
phrase(groups_separation(Groups, BDD), ANFs) },
( { ANFs = [_|_] } ->
list(ANFs),
{ Rest = Fs0 }
; [done(F0)],
variables_separation_(Fs0, Ds, Rest)
)
).
existential_(BDD, V, Node) :- existential(V, BDD, Node).
groups_separation([], _) --> [].
groups_separation([BDD1-BDDs|Groups], OrigBDD) -->
{ phrase(separate_pairs(BDDs, BDD1, OrigBDD), Nodes) },
( { Nodes = [_|_] } ->
nodes_anfs([BDD1|Nodes])
; []
),
groups_separation(Groups, OrigBDD).
separate_pairs([], _, _) --> [].
separate_pairs([BDD2|Ps], BDD1, OrigBDD) -->
( { apply(*, BDD1, BDD2, And),
And == OrigBDD } ->
[BDD2]
; []
),
separate_pairs(Ps, BDD1, OrigBDD).
nodes_anfs([]) --> [].
nodes_anfs([N|Ns]) --> { node_anf(N, ANF) }, [anf(ANF)], nodes_anfs(Ns).
pairs([]) --> [].
pairs([V|Vs]) --> pairs_(Vs, V), pairs(Vs).
pairs_([], _) --> [].
pairs_([B|Bs], A) --> [A-B], pairs_(Bs, A).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Set the Prolog flag clpb_residuals to bdd to obtain the BDD nodes
as residuals. Note that they cannot be used as regular goals.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
nodes([]) --> [].
nodes([Node|Nodes]) -->
{ node_var_low_high(Node, Var0, Low, High),
var_or_atom(Var0, Var),
maplist(node_projection, [Node,High,Low], [ID,HID,LID]),
var_index(Var0, VI) },
[ID-(v(Var,VI) -> HID ; LID)],
nodes(Nodes).
node_projection(Node, Projection) :-
node_id(Node, ID),
( integer(ID) -> Projection = node(ID)
; Projection = ID
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
By default, residual goals are sat/1 calls of the remaining formulas,
using (mostly) algebraic normal form.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
sats([]) --> [].
sats([A|As]) --> [clpb:sat(A)], sats(As).
booleans([]) --> [].
booleans([B|Bs]) --> boolean(B), { del_clpb(B) }, booleans(Bs).
boolean(Var) -->
( { get_attr(Var, clpb_omit_boolean, true) } -> []
; [clpb:sat(Var =:= Var)]
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Relate a formula to its algebraic normal form (ANF).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
formula_anf(Formula0, ANF) :-
parse_sat(Formula0, Formula),
sat_bdd(Formula, Node),
node_anf(Node, ANF).
node_anf(Node, ANF) :-
node_xors(Node, Xors0),
maplist(maplist(monotonic_variable), Xors0, Xors),
maplist(list_to_conjunction, Xors, Conjs),
( Conjs = [Var,C|Rest], clpb_var(Var) ->
foldl(xor, Rest, C, RANF),
ANF = (Var =\= RANF)
; Conjs = [One,Var,C|Rest], One == 1, clpb_var(Var) ->
foldl(xor, Rest, C, RANF),
ANF = (Var =:= RANF)
; Conjs = [C|Cs],
foldl(xor, Cs, C, ANF)
).
monotonic_variable(Var0, Var) :-
( var(Var0), current_prolog_flag(clpb_monotonic, true) ->
Var = v(Var0)
; Var = Var0
).
clpb_var(Var) :- var(Var), !.
clpb_var(v(_)).
list_to_conjunction([], 1).
list_to_conjunction([L|Ls], Conj) :- foldl(and, Ls, L, Conj).
xor(A, B, B # A).
eq_1(V) :- V == 1.
node_xors(Node, Xors) :-
phrase(xors(Node), Xors0),
% we remove elements that occur an even number of times (A#A --> 0)
maplist(sort, Xors0, Xors1),
pairs_keys_values(Pairs0, Xors1, _),
keysort(Pairs0, Pairs),
group_pairs_by_key(Pairs, Groups),
exclude(even_occurrences, Groups, Odds),
pairs_keys(Odds, Xors2),
maplist(exclude(eq_1), Xors2, Xors).
even_occurrences(_-Ls) :- length(Ls, L), L mod 2 =:= 0.
xors(Node) -->
( { Node == 0 } -> []
; { Node == 1 } -> [[1]]
; { node_var_low_high(Node, Var0, Low, High),
var_or_atom(Var0, Var),
node_xors(Low, Ls0),
node_xors(High, Hs0),
maplist(with_var(Var), Ls0, Ls),
maplist(with_var(Var), Hs0, Hs) },
list(Ls0),
list(Ls),
list(Hs)
).
list([]) --> [].
list([L|Ls]) --> [L], list(Ls).
with_var(Var, Ls, [Var|Ls]).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Global variables for unique node and variable IDs and atoms.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
make_clpb_var('$clpb_next_var') :- nb_setval('$clpb_next_var', 0).
make_clpb_var('$clpb_next_node') :- nb_setval('$clpb_next_node', 0).
make_clpb_var('$clpb_atoms') :-
empty_assoc(E),
nb_setval('$clpb_atoms', E).
:- multifile user:exception/3.
user:exception(undefined_global_variable, Name, retry) :-
make_clpb_var(Name), !.
clpb_next_id(Var, ID) :-
b_getval(Var, ID),
Next is ID + 1,
b_setval(Var, Next).
clpb_atom_var(Atom, Var) :-
b_getval('$clpb_atoms', A0),
( get_assoc(Atom, A0, Var) -> true
; put_attr(Var, clpb_atom, Atom),
put_attr(Var, clpb_omit_boolean, true),
put_assoc(Atom, A0, Var, A),
b_setval('$clpb_atoms', A)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The variable attributes below are not used as constraints by this
library. Project remaining attributes to empty lists of residuals.
Because accessing these hooks is basically a cross-module call, we
must declare them public.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- public
clpb_hash:attr_unify_hook/2,
clpb_bdd:attribute_goals//1,
clpb_hash:attribute_goals//1,
clpb_omit_boolean:attr_unify_hook/2,
clpb_omit_boolean:attribute_goals//1,
clpb_atom:attr_unify_hook/2,
clpb_atom:attribute_goals//1.
clpb_hash:attr_unify_hook(_,_). % this unification is always admissible
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
If a universally quantified variable is unified to a Boolean value,
it indicates that the formula does not hold for the other value, so
it is false.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
clpb_atom:attr_unify_hook(_, _) :- false.
clpb_omit_boolean:attr_unify_hook(_,_).
clpb_bdd:attribute_goals(_) --> [].
clpb_hash:attribute_goals(_) --> [].
clpb_omit_boolean:attribute_goals(_) --> [].
clpb_atom:attribute_goals(_) --> [].
% clpb_hash:attribute_goals(Var) -->
% { get_attr(Var, clpb_hash, Assoc),
% assoc_to_list(Assoc, List0),
% maplist(node_portray, List0, List) }, [Var-List].
% node_portray(Key-Node, Key-Node-ite(Var,High,Low)) :-
% node_var_low_high(Node, Var, Low, High).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Messages
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- multifile prolog:message//1.
prolog:message(clpb(bounded)) -->
['Using CLP(B) with bounded arithmetic may yield wrong results.'-[]].
warn_if_bounded_arithmetic :-
( current_prolog_flag(bounded, true) ->
print_message(warning, clpb(bounded))
; true
).
:- initialization(warn_if_bounded_arithmetic).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Sanbox declarations
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- multifile
sandbox:safe_global_variable/1,
sandbox:safe_primitive/1.
sandbox:safe_global_variable('$clpb_next_var').
sandbox:safe_global_variable('$clpb_next_node').
sandbox:safe_global_variable('$clpb_atoms').
sandbox:safe_primitive(set_prolog_flag(clpb_residuals, _)).
|