File: basics.pl

package info (click to toggle)
swi-prolog 9.0.4%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 82,408 kB
  • sloc: ansic: 387,503; perl: 359,326; cpp: 6,613; lisp: 6,247; java: 5,540; sh: 3,147; javascript: 2,668; python: 1,900; ruby: 1,594; yacc: 845; makefile: 428; xml: 317; sed: 12; sql: 6
file content (320 lines) | stat: -rw-r--r-- 7,367 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*  Part of SWI-Prolog

    Author:        Jan Wielemaker
    E-mail:        J.Wielemaker@vu.nl
    WWW:           http://www.swi-prolog.org
    Copyright (c)  2019, CWI, Amsterdam
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:

    1. Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.

    2. Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in
       the documentation and/or other materials provided with the
       distribution.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGE.
*/

:- module(basics,
	  [ append/3, flatten/2, ith/3,
            length/2, member/2, memberchk/2, subset/2, subseq/3,
            reverse/2, select/3,

            for/3,                               % ?I,+B1,+B2)
            between/3,

            ground/1,
            copy_term/2,

            log_ith/3, log_ith_bound/3, log_ith_new/3, log_ith_to_list/2,
            logk_ith/4,

            comma_memberchk/2, abscomma_memberchk/2, comma_to_list/2,
            comma_length/2, comma_member/2, comma_append/3
	  ]).
:- use_module(library(lists)).

/** <module> XSB basics.P emulation

This module provides the XSB `basics`  module. The implementation either
simply uses SWI-Prolog built-ins and libraries or is copied from the XSB
file.

@license LGPLv2
*/

:- license(lgpl).

%!  for(?I,+B1,+B2)
%
%   Nondeterministically binds I to all  integer   values  from B1 to B2
%   inclusive. B1 and B2 must be integers, but either may be larger.

for(I, B1, B2) :-
    B2 >= B1,
    !,
    between(B1, B2, I).
for(I, B1, B2) :-
    End is B1 - B2,
    between(0, End, Diff),
    I is B1-Diff.

%!  ith(?Index, +List, ?Element)

ith(Index,List,Element) :-
    nth1(Index, List, Element).

subseq([],[],[]).
subseq([H|T],[H|S],C) :- subseq(T,S,C).
subseq([H|T],S,[H|C]) :- subseq(T,S,C).

log_ith(K,T,E) :-
	(integer(K)	% integer
	 ->	log_ith0(K,T,E,1)
	 ;	log_ith1(K,T,E,1)
	).

% K is bound
log_ith0(K,[L|R],E,N) :-
	(K < N
	 ->	bintree0(K,L,E,N)
	 ;	K1 is K-N,
		N2 is N+N,
		log_ith0(K1,R,E,N2)
	).

% First arg (K) is bound
bintree0(K,T,E,N) :-
	(N > 1
	 ->	T = [L|R],
		N2 is N // 2,
		(K < N2
		 ->	bintree0(K,L,E,N2)
		 ;	K1 is K - N2,
			bintree0(K1,R,E,N2)
		)
	 ;      K =:= 0,
		T = E
	).


% K is unbound
log_ith1(K,[L|_R],E,N) :-
	bintree1(K,L,E,N).
log_ith1(K,[_L|R],E,N) :-
	N1 is N + N,
	log_ith1(K1,R,E,N1),
	K is K1 + N.

% First arg (K) is unbound
bintree1(0,E,E,1).
bintree1(K,[L|R],E,N) :-
	N > 1,
	N2 is N // 2,
	(bintree1(K,L,E,N2)
	 ;
	 bintree1(K1,R,E,N2),
	 K is K1 + N2
	).

% log_ith_bound(Index,ListStr,Element) is like log_ith, but only
% succeeds if the Index_th element of ListStr is nonvariable and equal
% to Element.  This can be used in both directions, and is most useful
% with Index unbound, since it will then bind Index and Element for each
% nonvariable element in ListStr (in time proportional to N*logN, for N
% the number of nonvariable entries in ListStr.)

log_ith_bound(K,T,E) :-
	nonvar(T),
	(integer(K)	% integer
	 ->	log_ith2(K,T,E,1)
	 ;	log_ith3(K,T,E,1)
	).

log_ith2(K,[L|R],E,N) :-
	(K < N
	 ->	nonvar(L),bintree2(K,L,E,N)
	 ;	nonvar(R),
		K1 is K-N,
		N2 is N+N,
		log_ith2(K1,R,E,N2)
	).

bintree2(0,E,E,1) :- !.
bintree2(K,[L|R],E,N) :-
	N > 1,
	N2 is N // 2,
	(K < N2
	 ->	nonvar(L),
		bintree2(K,L,E,N2)
	 ;	nonvar(R),
		K1 is K - N2,
		bintree2(K1,R,E,N2)
	).

log_ith3(K,[L|_R],E,N) :-
	nonvar(L),
	bintree3(K,L,E,N).
log_ith3(K,[_L|R],E,N) :-
	nonvar(R),
	N1 is N + N,
	log_ith3(K1,R,E,N1),
	K is K1 + N.

bintree3(0,E,E,1).
bintree3(K,[L|R],E,N) :-
	N > 1,
	N2 is N // 2,
	(nonvar(L),
	 bintree3(K,L,E,N2)
	 ;
	 nonvar(R),
	 bintree3(K1,R,E,N2),
	 K is K1 + N2
	).

%% convert a log_ith structure to a list of nonempty elements
log_ith_to_list(T,L) :- log_ith_to_list(T,0,L,[]).

log_ith_to_list(T,K,L0,L) :-
	(var(T)
	 ->	L = L0
	 ;	T = [F|R],
		log_ith_to_list_btree(F,K,L0,L1),
		K1 is K+1,
		log_ith_to_list(R,K1,L1,L)
	).

log_ith_to_list_btree(T,K,L0,L) :-
	(var(T)
	 ->	L = L0
	 ; K =:= 0
	 ->	L0 = [T|L]
	 ;	T = [TL|TR],
		K1 is K-1,
		log_ith_to_list_btree(TL,K1,L0,L1),
		log_ith_to_list_btree(TR,K1,L1,L)
	).

/* log_ith_new(I,T,E) adds E to the "end" of the log_list and unifies
I to its index.  */
log_ith_new(I,T,E) :-
	(var(T)
	 ->	T = [E|_],
		I = 0
	 ;	log_ith_new_o(I,T,E,1,1)
	).

log_ith_new_o(I,[L|R],E,K,NI) :-
	(var(R),
	 log_ith_new_d(I,L,E,K,NIA)
	 ->	I is NI + NIA - 1
	 ;	NNI is 2*NI,
		K1 is K+1,
		log_ith_new_o(I,R,E,K1,NNI)
	).

log_ith_new_d(I,T,E,K,NIA) :-
	(K =< 1
	 ->	var(T),
		T=E,
		NIA = 0
	 ;	K1 is K-1,
		T = [L|R],
		(var(R),
		 log_ith_new_d(I,L,E,K1,NIA)
		 ->	true
		 ;	log_ith_new_d(I,R,E,K1,NNIA),
			NIA is NNIA + 2 ** (K1-1)
		)
	).


/* logk_ith(+KBase,+Index,?ListStr,?Element) is similar log_ith/3
except it uses a user specified base of KBase, which must be between 2
and 255.  log_ith uses binary trees with a list cons at each node;
logk_ith uses a term of arity KBase at each node.  KBase and Index
must be bound to integers. */
% :- mode logk_ith(+,+,?,?).
logk_ith(K,I,T,E) :-
	integer(K),
	integer(I),	% integer
	logk_ith0(K,I,T,E,K).

% I is bound
logk_ith0(K,I,[L|R],E,N) :-
	(I < N
	 ->	ktree0(K,I,L,E,N)
	 ;	I1 is I - N,
		N2 is K*N,
		logk_ith0(K,I1,R,E,N2)
	).

% First arg (I) is bound
ktree0(K,I,T,E,N) :-
	(var(T)
	 ->	functor(T,n,K)
	 ;	true
	),
	(N > K
	 ->	N2 is N // K,
		N3 is I // N2 + 1,
		I1 is I rem N2,  %  mod overflows?
		arg(N3,T,T1),
		ktree0(K,I1,T1,E,N2)
	 ;	I1 is I+1,
		arg(I1,T,E)
	).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Commautils.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

comma_to_list((One,Two),[One|Twol]):- !,
	comma_to_list(Two,Twol).
comma_to_list(One,[One]).

% warning: may bind variables.
comma_member(A,','(A,_)).
comma_member(A,','(_,R)):-
	comma_member(A,R).
comma_member(A,A):- \+ (functor(A,',',2)).

comma_memberchk(A,','(A,_)):- !.
comma_memberchk(A,','(_,R)):-
	comma_memberchk(A,R).
comma_memberchk(A,A):- \+ (functor(A,',',_)).

abscomma_memberchk(A,A1):- A == A1,!.
abscomma_memberchk(','(A,_),A1):- A == A1,!.
abscomma_memberchk(','(_,R),A1):-
	abscomma_memberchk(R,A1).

comma_length(','(_L,R),N1):- !,
	comma_length(R,N),
	N1 is N + 1.
comma_length(true,0):- !.
comma_length(_,1).

comma_append(','(L,R),Cl,','(L,R1)):- !,
	comma_append(R,Cl,R1).
comma_append(true,Cl,Cl):- !.
comma_append(L,Cl,Out):-
	(Cl == true -> Out = L ; Out = ','(L,Cl)).