1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
/* Part of SWI-Prolog
Author: Tom Schrijvers, Markus Triska and Jan Wielemaker
E-mail: Tom.Schrijvers@cs.kuleuven.ac.be
WWW: http://www.swi-prolog.org
Copyright (c) 2004-2022, K.U.Leuven
SWI-Prolog Solutions b.v.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(dif,
[ dif/2 % +Term1, +Term2
]).
:- autoload(library(lists),[append/3,reverse/2]).
:- set_prolog_flag(generate_debug_info, false).
/** <module> The dif/2 constraint
*/
%! dif(+Term1, +Term2) is semidet.
%
% Constraint that expresses that Term1 and Term2 never become
% identical (==/2). Fails if `Term1 == Term2`. Succeeds if Term1
% can never become identical to Term2. In other cases the
% predicate succeeds after attaching constraints to the relevant
% parts of Term1 and Term2 that prevent the two terms to become
% identical.
dif(X,Y) :-
?=(X,Y),
!,
X \== Y.
dif(X,Y) :-
dif_c_c(X,Y,_).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The constraint is helt in an attribute `dif`. A constrained variable
holds a term vardif(L1,L2) where `L1` is a list OrNode-Value for
constraints on this variable and `L2` is the constraint list other
variables have on me.
The `OrNode` is a term node(Pairs), where `Pairs` is a of list Var=Value
terms representing the pending unifications. The original dif/2 call is
represented by a single OrNode.
If a unification related to an OrNode fails the terms are definitely
unequal and thus we can kill all pending constraints and succeed. If a
unequal related to an OrNode succeeds we decrement the `Count` of the
node. If the count reaches 0 all unifications of the OrNode have
succeeded, the original terms are equal and thus we need to fail.
The following invariants must hold
- Any variable involved in a dif/2 constraint has an attribute
vardif(L1,L2), Where each element of both lists is a term
OrNode-Value, L1 represents the values this variable may __not__
become equal to and L2 represents this variable involved in other
constraints. I.e, L2 is only used if a dif/2 requires two variables
to be different.
- An OrNode has an attribute node(Pairs), where Pairs contains the
possible unifications.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
dif_unifiable(X, Y, Us) :-
( current_prolog_flag(occurs_check, error)
-> catch(unifiable(X,Y,Us), error(occurs_check(_,_),_), false)
; unifiable(X, Y, Us)
).
%! dif_c_c(+X,+Y,!OrNode)
%
% Enforce dif(X,Y) that is related to the given OrNode. If X and Y are
% equal we reduce the OrNode. If they cannot unify we are done.
% Otherwise we extend the OrNode with new pairs and create/extend the
% vardif/2 terms for the left hand side of the unifier as well as the
% right hand if this is a variable.
dif_c_c(X,Y,OrNode) :-
( dif_unifiable(X, Y, Unifier)
-> ( Unifier == []
-> or_one_fail(OrNode)
; dif_c_c_l(Unifier,OrNode, U),
subunifier(U, OrNode)
)
; or_succeed(OrNode)
).
subunifier([], _).
subunifier([X=Y|T], OrNode) :-
dif_c_c(X, Y, OrNode),
subunifier(T, OrNode).
%! dif_c_c_l(+Unifier, +OrNode)
%
% Extend OrNode with new elements from the unifier. Note that it is
% possible that a unification against the same variable appears as a
% result of how unifiable acts on sharing subterms. This is prevented
% by simplify_ornode/3.
%
% @see test 14 in src/Tests/attvar/test_dif.pl.
dif_c_c_l(Unifier, OrNode, U) :-
extend_ornode(OrNode, List, Tail),
dif_c_c_l_aux(Unifier, OrNode, List0, Tail),
( simplify_ornode(List0, List, U)
-> true
; List = List0,
or_succeed(OrNode),
U = []
).
extend_ornode(OrNode, List, Vars) :-
( get_attr(OrNode, dif, node(Vars))
-> true
; Vars = []
),
put_attr(OrNode,dif,node(List)).
dif_c_c_l_aux([],_,List,List).
dif_c_c_l_aux([X=Y|Unifier],OrNode,List,Tail) :-
List = [X=Y|Rest],
add_ornode(X,Y,OrNode),
dif_c_c_l_aux(Unifier,OrNode,Rest,Tail).
%! add_ornode(+X, +Y, +OrNode)
%
% Extend the vardif constraints on X and Y with the OrNode.
add_ornode(X,Y,OrNode) :-
add_ornode_var1(X,Y,OrNode),
( var(Y)
-> add_ornode_var2(X,Y,OrNode)
; true
).
add_ornode_var1(X,Y,OrNode) :-
( get_attr(X,dif,Attr)
-> Attr = vardif(V1,V2),
put_attr(X,dif,vardif([OrNode-Y|V1],V2))
; put_attr(X,dif,vardif([OrNode-Y],[]))
).
add_ornode_var2(X,Y,OrNode) :-
( get_attr(Y,dif,Attr)
-> Attr = vardif(V1,V2),
put_attr(Y,dif,vardif(V1,[OrNode-X|V2]))
; put_attr(Y,dif,vardif([],[OrNode-X]))
).
%! simplify_ornode(+OrNode) is semidet.
%
% Simplify the possible unifications left on the original dif/2 terms.
% There are two reasons for simplification. First of all, due to the
% way unifiable works we may end up with variables in the unifier that
% do not refer to the original terms, but to variables in subterms,
% e.g. `[V1 = f(a, V2), V2 = b]`. As a result of subsequent unifying
% variables, the unifier may end up having multiple entries for the
% same variable, possibly having different values, e.g., `[X = a, X =
% b]`. As these can never be satified both we have prove of
% inequality.
%
% Finally, we remove elements from the list that have become equal. If
% the OrNode is empty, the original terms are equal and thus we must
% fail.
simplify_ornode(OrNode) :-
( get_attr(OrNode, dif, node(Pairs0))
-> simplify_ornode(Pairs0, Pairs, U),
Pairs-U \== []-[],
put_attr(OrNode, dif, node(Pairs)),
subunifier(U, OrNode)
; true
).
simplify_ornode(List0, List, U) :-
sort(1, @=<, List0, Sorted),
simplify_ornode_(Sorted, List, U).
simplify_ornode_([], List, U) =>
List = [],
U = [].
simplify_ornode_([V1=V2|T], List, U), V1 == V2 =>
simplify_ornode_(T, List, U).
simplify_ornode_([V1=Val1,V2=Val2|T], List, U), var(V1), V1 == V2 =>
( ?=(Val1, Val2)
-> Val1 == Val2,
simplify_ornode_([V1=Val2|T], List, U)
; U = [Val1=Val2|UT],
simplify_ornode_([V2=Val2|T], List, UT)
).
simplify_ornode_([H|T], List, U) =>
List = [H|Rest],
simplify_ornode_(T, Rest, U).
%! attr_unify_hook(+VarDif, +Other)
%
% If two dif/2 variables are unified we must join the two vardif/2
% terms. To do so, we filter the vardif terms for the ones involved in
% this unification. Those that are represent OrNodes that have a
% unification satisfied. For the rest we remove the unifications with
% _self_, append them and use this as new vardif term.
%
% On unification with a value, we recursively call dif_c_c/3 using the
% existing OrNodes.
attr_unify_hook(vardif(V1,V2),Other) :-
( get_attr(Other, dif, vardif(OV1,OV2))
-> reverse_lookups(V1, Other, OrNodes1, NV1),
or_one_fails(OrNodes1),
reverse_lookups(OV1, Other, OrNodes2, NOV1),
or_one_fails(OrNodes2),
remove_obsolete(V2, Other, NV2),
remove_obsolete(OV2, Other, NOV2),
append(NV1, NOV1, CV1),
append(NV2, NOV2, CV2),
( CV1 == [], CV2 == []
-> del_attr(Other, dif)
; put_attr(Other, dif, vardif(CV1,CV2))
)
; var(Other) % unrelated variable
-> put_attr(Other, dif, vardif(V1,V2))
; verify_compounds(V1, Other),
verify_compounds(V2, Other)
).
remove_obsolete([], _, []).
remove_obsolete([N-Y|T], X, L) :-
( Y==X
-> remove_obsolete(T, X, L)
; L=[N-Y|RT],
remove_obsolete(T, X, RT)
).
reverse_lookups([],_,[],[]).
reverse_lookups([N-X|NXs],Value,Nodes,Rest) :-
( X == Value
-> Nodes = [N|RNodes],
Rest = RRest
; Nodes = RNodes,
Rest = [N-X|RRest]
),
reverse_lookups(NXs,Value,RNodes,RRest).
verify_compounds([],_).
verify_compounds([OrNode-Y|Rest],X) :-
( var(Y)
-> true
; OrNode == (-)
-> true
; dif_c_c(X,Y,OrNode)
),
verify_compounds(Rest,X).
%! or_succeed(+OrNode) is det.
%
% The dif/2 constraint related to OrNode is complete, i.e., some
% (sub)terms can definitely not become equal. Next, we can clean up
% the constraints. We do so by setting the OrNode to `-` and remove
% this _dead_ OrNode from every vardif/2 attribute we can find.
or_succeed(OrNode) :-
( get_attr(OrNode,dif,Attr)
-> Attr = node(Pairs),
del_attr(OrNode,dif),
OrNode = (-),
del_or_dif(Pairs)
; true
).
del_or_dif([]).
del_or_dif([X=Y|Xs]) :-
cleanup_dead_nodes(X),
cleanup_dead_nodes(Y), % JW: what about embedded variables?
del_or_dif(Xs).
cleanup_dead_nodes(X) :-
( get_attr(X,dif,Attr)
-> Attr = vardif(V1,V2),
filter_dead_ors(V1,NV1),
filter_dead_ors(V2,NV2),
( NV1 == [], NV2 == []
-> del_attr(X,dif)
; put_attr(X,dif,vardif(NV1,NV2))
)
; true
).
filter_dead_ors([],[]).
filter_dead_ors([Or-Y|Rest],List) :-
( var(Or)
-> List = [Or-Y|NRest]
; List = NRest
),
filter_dead_ors(Rest,NRest).
%! or_one_fail(+OrNode) is semidet.
%
% Some unification related to OrNode succeeded. We can decrement the
% `Count` of the OrNode. If this reaches 0, the original terms are
% equal and we must fail.
or_one_fail(OrNode) :-
simplify_ornode(OrNode).
or_one_fails([]).
or_one_fails([N|Ns]) :-
or_one_fail(N),
or_one_fails(Ns).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The attribute of a variable X is vardif/2. The first argument is a
list of pairs. The first component of each pair is an OrNode. The
attribute of each OrNode is node/2. The second argument of node/2
is a list of equations A = B. If the LHS of the first equation is
X, then return a goal, otherwise don't because someone else will.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
attribute_goals(Var) -->
( { get_attr(Var, dif, vardif(Ors,_)) }
-> or_nodes(Ors, Var)
; or_node(Var)
).
or_node(O) -->
( { get_attr(O, dif, node(Pairs)) }
-> { eqs_lefts_rights(Pairs, As, Bs) },
mydif(As, Bs),
{ del_attr(O, dif) }
; []
).
or_nodes([], _) --> [].
or_nodes([O-_|Os], X) -->
( { get_attr(O, dif, node(Eqs)) }
-> ( { Eqs = [LHS=_|_], LHS == X }
-> { eqs_lefts_rights(Eqs, As, Bs) },
mydif(As, Bs),
{ del_attr(O, dif) }
; []
)
; [] % or-node already removed
),
or_nodes(Os, X).
mydif([X], [Y]) --> !, dif_if_necessary(X, Y).
mydif(Xs0, Ys0) -->
{ reverse(Xs0, Xs), reverse(Ys0, Ys), % follow original order
X =.. [f|Xs], Y =.. [f|Ys]
},
dif_if_necessary(X, Y).
dif_if_necessary(X, Y) -->
( { dif_unifiable(X, Y, _) }
-> [dif(X,Y)]
; []
).
eqs_lefts_rights([], [], []).
eqs_lefts_rights([A=B|ABs], [A|As], [B|Bs]) :-
eqs_lefts_rights(ABs, As, Bs).
|