1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@vu.nl
WWW: http://www.swi-prolog.org
Copyright (c) 2001-2020, University of Amsterdam
SWI-Prolog Solutions b.v.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(occurs,
[ contains_term/2, % +SubTerm, +Term
contains_var/2, % +SubTerm, +Term
free_of_term/2, % +SubTerm, +Term
free_of_var/2, % +SubTerm, +Term
occurrences_of_term/3, % +SubTerm, +Term, ?Tally
occurrences_of_var/3, % +SubTerm, +Term, ?Tally
sub_term/2, % -SubTerm, +Term
sub_var/2, % -SubTerm, +Term (SWI extra)
sub_term_shared_variables/3 % +Sub, +Term, -Vars
]).
/** <module> Finding and counting sub-terms
This is a SWI-Prolog implementation of the corresponding Quintus
library, based on the generalised arg/3 predicate of SWI-Prolog.
@see library(terms) provides similar predicates and is probably
more wide-spread than this library.
*/
%! contains_term(+Sub, +Term) is semidet.
%
% Succeeds if Sub is contained in Term (=, deterministically)
contains_term(X, X) :- !.
contains_term(X, Term) :-
compound(Term),
arg(_, Term, Arg),
contains_term(X, Arg),
!.
%! contains_var(+Sub, +Term) is det.
%
% Succeeds if Sub is contained in Term (==, deterministically)
contains_var(X0, X1) :-
X0 == X1,
!.
contains_var(X, Term) :-
compound(Term),
arg(_, Term, Arg),
contains_var(X, Arg),
!.
%! free_of_term(+Sub, +Term)
%
% Succeeds of Sub does not unify to any subterm of Term
free_of_term(Sub, Term) :-
\+ contains_term(Sub, Term).
%! free_of_var(+Sub, +Term)
%
% Succeeds of Sub is not equal (==) to any subterm of Term
free_of_var(Sub, Term) :-
\+ contains_var(Sub, Term).
%! occurrences_of_term(+SubTerm, +Term, ?Count)
%
% Count the number of SubTerms in Term
occurrences_of_term(Sub, Term, Count) :-
count(sub_term(Sub, Term), Count).
%! occurrences_of_var(+SubTerm, +Term, ?Count)
%
% Count the number of SubTerms in Term
occurrences_of_var(Sub, Term, Count) :-
count(sub_var(Sub, Term), Count).
%! sub_term(-Sub, +Term)
%
% Generates (on backtracking) all subterms of Term.
sub_term(X, X).
sub_term(X, Term) :-
compound(Term),
arg(_, Term, Arg),
sub_term(X, Arg).
%! sub_var(-Sub, +Term)
%
% Generates (on backtracking) all subterms (==) of Term.
sub_var(X0, X1) :-
X0 == X1.
sub_var(X, Term) :-
compound(Term),
arg(_, Term, Arg),
sub_var(X, Arg).
%! sub_term_shared_variables(+Sub, +Term, -Vars) is det.
%
% If Sub is a sub term of Term, Vars is bound to the list of variables
% in Sub that also appear outside Sub in Term. Note that if Sub
% appears twice in Term, its variables are all considered shared.
%
% An example use-case is refactoring a large clause body by
% introducing intermediate predicates. This predicate can be used to
% find the arguments that must be passed to the new predicate.
sub_term_shared_variables(Sub, Term, Vars) :-
term_replace_first(Term, Sub, true, Term2),
term_variables(Term2, AllVars),
term_variables(Sub, SubVars),
intersection_eq(SubVars, AllVars, Vars).
term_replace_first(TermIn, From, To, TermOut) :-
term_replace_(TermIn, From, To, TermOut, done(_)).
%term_replace(TermIn, From, To, TermOut) :-
% term_replace_(TermIn, From, To, TermOut, all).
%! term_replace_(+From, +To, +TermIn, -TermOut, +Done)
%
% Replace instances (==/2) of From inside TermIn by To.
term_replace_(TermIn, _From, _To, TermOut, done(Done)) :-
Done == true,
!,
TermOut = TermIn.
term_replace_(TermIn, From, To, TermOut, Done) :-
From == TermIn,
!,
TermOut = To,
( Done = done(Var)
-> Var = true
; true
).
term_replace_(TermIn, From, To, TermOut, Done) :-
compound(TermIn),
compound_name_arity(TermIn, Name, Arity),
Arity > 0,
!,
compound_name_arity(TermOut, Name, Arity),
term_replace_compound(1, Arity, TermIn, From, To, TermOut, Done).
term_replace_(Term, _, _, Term, _).
term_replace_compound(I, Arity, TermIn, From, To, TermOut, Done) :-
I =< Arity,
!,
arg(I, TermIn, A1),
arg(I, TermOut, A2),
term_replace_(A1, From, To, A2, Done),
I2 is I+1,
term_replace_compound(I2, Arity, TermIn, From, To, TermOut, Done).
term_replace_compound(_I, _Arity, _TermIn, _From, _To, _TermOut, _).
%! intersection_eq(+Small, +Big, -Shared) is det.
%
% Shared are the variables in Small that also appear in Big. The
% variables in Shared are in the same order as Small.
intersection_eq([], _, []).
intersection_eq([H|T0], L, List) :-
( member_eq(H, L)
-> List = [H|T],
intersection_eq(T0, L, T)
; intersection_eq(T0, L, List)
).
member_eq(E, [H|T]) :-
( E == H
-> true
; member_eq(E, T)
).
/*******************************
* UTIL *
*******************************/
%! count(:Goal, -Count)
%
% Count number of times Goal succeeds.
:- meta_predicate count(0,-).
count(Goal, Count) :-
State = count(0),
( Goal,
arg(1, State, N0),
N is N0 + 1,
nb_setarg(1, State, N),
fail
; arg(1, State, Count)
).
|