1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@vu.nl
WWW: http://www.swi-prolog.org
Copyright (c) 2015-2017, VU University Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(solution_sequences,
[ distinct/1, % :Goal
distinct/2, % ?Witness, :Goal
reduced/1, % :Goal
reduced/3, % ?Witness, :Goal, +Options
limit/2, % +Limit, :Goal
offset/2, % +Offset, :Goal
call_nth/2, % :Goal, ?Nth
order_by/2, % +Spec, :Goal
group_by/4 % +By, +Template, :Goal, -Bag
]).
:- autoload(library(apply),[maplist/3]).
:- autoload(library(error),
[domain_error/2,must_be/2,instantiation_error/1]).
:- autoload(library(lists),[reverse/2,member/2]).
:- autoload(library(nb_set),
[empty_nb_set/1,add_nb_set/3,size_nb_set/2]).
:- autoload(library(option),[option/3]).
:- autoload(library(ordsets),[ord_subtract/3]).
/** <module> Modify solution sequences
The meta predicates of this library modify the sequence of solutions of
a goal. The modifications and the predicate names are based on the
classical database operations DISTINCT, LIMIT, OFFSET, ORDER BY and
GROUP BY.
These predicates were introduced in the context of the
[SWISH](http://swish.swi-prolog.org) Prolog browser-based shell, which
can represent the solutions to a predicate as a table. Notably wrapping
a goal in distinct/1 avoids duplicates in the result table and using
order_by/2 produces a nicely ordered table.
However, the predicates from this library can also be used to stay
longer within the clean paradigm where non-deterministic predicates are
composed from simpler non-deterministic predicates by means of
conjunction and disjunction. While evaluating a conjunction, we might
want to eliminate duplicates of the first part of the conjunction. Below
we give both the classical solution for solving variations of (a(X),
b(X)) and the ones using this library side-by-side.
$ Avoid duplicates of earlier steps :
==
setof(X, a(X), Xs), distinct(a(X)),
member(X, Xs), b(X)
b(X).
==
Note that the distinct/1 based solution returns the first result
of distinct(a(X)) immediately after a/1 produces a result, while
the setof/3 based solution will first compute all results of a/1.
$ Only try b(X) only for the top-10 a(X) :
==
setof(X, a(X), Xs), limit(10, order_by([desc(X)], a(X))),
reverse(Xs, Desc), b(X)
first_max_n(10, Desc, Limit),
member(X, Limit),
b(X)
==
Here we see power of composing primitives from this library and
staying within the paradigm of pure non-deterministic relational
predicates.
@see all solution predicates findall/3, bagof/3 and setof/3.
@see library(aggregate)
*/
:- meta_predicate
distinct(0),
distinct(?, 0),
reduced(0),
reduced(?, 0, +),
limit(+, 0),
offset(+, 0),
call_nth(0, ?),
order_by(+, 0),
group_by(?, ?, 0, -).
:- noprofile((
distinct/1,
distinct/2,
reduced/1,
reduced/2,
limit/2,
offset/2,
call_nth/2,
order_by/2,
group_by/3)).
%! distinct(:Goal).
%! distinct(?Witness, :Goal).
%
% True if Goal is true and no previous solution of Goal bound
% Witness to the same value. As previous answers need to be
% copied, equivalence testing is based on _term variance_ (=@=/2).
% The variant distinct/1 is equivalent to distinct(Goal,Goal).
%
% If the answers are ground terms, the predicate behaves as the
% code below, but answers are returned as soon as they become
% available rather than first computing the complete answer set.
%
% ==
% distinct(Goal) :-
% findall(Goal, Goal, List),
% list_to_set(List, Set),
% member(Goal, Set).
% ==
distinct(Goal) :-
distinct(Goal, Goal).
distinct(Witness, Goal) :-
term_variables(Witness, Vars),
Witness1 =.. [v|Vars],
empty_nb_set(Set),
call(Goal),
add_nb_set(Witness1, Set, true).
%! reduced(:Goal).
%! reduced(?Witness, :Goal, +Options).
%
% Similar to distinct/1, but does not guarantee unique results in
% return for using a limited amount of memory. Both distinct/1 and
% reduced/1 create a table that block duplicate results. For
% distinct/1, this table may get arbitrary large. In contrast,
% reduced/1 discards the table and starts a new one of the table size
% exceeds a specified limit. This filter is useful for reducing the
% number of answers when processing large or infinite long tail
% distributions. Options:
%
% - size_limit(+Integer)
% Max number of elements kept in the table. Default is 10,000.
reduced(Goal) :-
reduced(Goal, Goal, []).
reduced(Witness, Goal, Options) :-
option(size_limit(SizeLimit), Options, 10_000),
term_variables(Witness, Vars),
Witness1 =.. [v|Vars],
empty_nb_set(Set),
State = state(Set),
call(Goal),
reduced_(State, Witness1, SizeLimit).
reduced_(State, Witness1, SizeLimit) :-
arg(1, State, Set),
add_nb_set(Witness1, Set, true),
size_nb_set(Set, Size),
( Size > SizeLimit
-> empty_nb_set(New),
nb_setarg(1, State, New)
; true
).
%! limit(+Count, :Goal)
%
% Limit the number of solutions. True if Goal is true, returning
% at most Count solutions. Solutions are returned as soon as they
% become available.
%
% @arg Count is either `infinite`, making this predicate equivalent to
% call/1 or an integer. If _|Count < 1|_ this predicate fails
% immediately.
limit(Count, Goal) :-
Count == infinite,
!,
call(Goal).
limit(Count, Goal) :-
Count > 0,
State = count(0),
call(Goal),
arg(1, State, N0),
N is N0+1,
( N =:= Count
-> !
; nb_setarg(1, State, N)
).
%! offset(+Count, :Goal)
%
% Ignore the first Count solutions. True if Goal is true and
% produces more than Count solutions. This predicate computes and
% ignores the first Count solutions.
offset(Count, Goal) :-
Count > 0,
!,
State = count(0),
call(Goal),
arg(1, State, N0),
( N0 >= Count
-> true
; N is N0+1,
nb_setarg(1, State, N),
fail
).
offset(Count, Goal) :-
Count =:= 0,
!,
call(Goal).
offset(Count, _) :-
domain_error(not_less_than_zero, Count).
%! call_nth(:Goal, ?Nth)
%
% True when Goal succeeded for the Nth time. If Nth is bound on entry,
% the predicate succeeds deterministically if there are at least Nth
% solutions for Goal.
call_nth(Goal, Nth) :-
integer(Nth),
!,
( Nth > 0
-> ( call_nth(Goal, Sofar),
Sofar =:= Nth
-> true
)
; domain_error(not_less_than_one, Nth)
).
call_nth(Goal, Nth) :-
var(Nth),
!,
State = count(0),
call(Goal),
arg(1, State, N0),
Nth is N0+1,
nb_setarg(1, State, Nth).
call_nth(_Goal, Bad) :-
must_be(integer, Bad).
%! order_by(+Spec, :Goal)
%
% Order solutions according to Spec. Spec is a list of terms, where
% each element is one of. The ordering of solutions of Goal that only
% differ in variables that are _not_ shared with Spec is not changed.
%
% - asc(Term)
% Order solution according to ascending Term
% - desc(Term)
% Order solution according to descending Term
%
% This predicate is based on findall/3 and (thus) variables in answers
% are _copied_.
order_by(Spec, Goal) :-
must_be(list, Spec),
non_empty_list(Spec),
maplist(order_witness, Spec, Witnesses0),
join_orders(Witnesses0, Witnesses),
non_witness_template(Goal, Witnesses, Others),
reverse(Witnesses, RevWitnesses),
maplist(x_vars, RevWitnesses, WitnessVars),
Template =.. [v,Others|WitnessVars],
findall(Template, Goal, Results),
order(RevWitnesses, 2, Results, OrderedResults),
member(Template, OrderedResults).
order([], _, Results, Results).
order([H|T], N, Results0, Results) :-
order1(H, N, Results0, Results1),
N2 is N + 1,
order(T, N2, Results1, Results).
order1(asc(_), N, Results0, Results) :-
sort(N, @=<, Results0, Results).
order1(desc(_), N, Results0, Results) :-
sort(N, @>=, Results0, Results).
non_empty_list([]) :-
!,
domain_error(non_empty_list, []).
non_empty_list(_).
order_witness(Var, _) :-
var(Var),
!,
instantiation_error(Var).
order_witness(asc(Term), asc(Witness)) :-
!,
witness(Term, Witness).
order_witness(desc(Term), desc(Witness)) :-
!,
witness(Term, Witness).
order_witness(Term, _) :-
domain_error(order_specifier, Term).
x_vars(asc(Vars), Vars).
x_vars(desc(Vars), Vars).
witness(Term, Witness) :-
term_variables(Term, Vars),
Witness =.. [v|Vars].
%! join_orders(+SpecIn, -SpecOut) is det.
%
% Merge subsequent asc and desc sequences. For example,
% [asc(v(A)), asc(v(B))] becomes [asc(v(A,B))].
join_orders([], []).
join_orders([asc(O1)|T0], [asc(O)|T]) :-
!,
ascs(T0, OL, T1),
join_witnesses(O1, OL, O),
join_orders(T1, T).
join_orders([desc(O1)|T0], [desc(O)|T]) :-
!,
descs(T0, OL, T1),
join_witnesses(O1, OL, O),
join_orders(T1, T).
ascs([asc(A)|T0], [A|AL], T) :-
!,
ascs(T0, AL, T).
ascs(L, [], L).
descs([desc(A)|T0], [A|AL], T) :-
!,
descs(T0, AL, T).
descs(L, [], L).
join_witnesses(O, [], O) :- !.
join_witnesses(O, OL, R) :-
term_variables([O|OL], VL),
R =.. [v|VL].
%! non_witness_template(+Goal, +Witness, -Template) is det.
%
% Create a template for the bindings that are not part of the
% witness variables.
non_witness_template(Goal, Witness, Template) :-
ordered_term_variables(Goal, AllVars),
ordered_term_variables(Witness, WitnessVars),
ord_subtract(AllVars, WitnessVars, TemplateVars),
Template =.. [t|TemplateVars].
ordered_term_variables(Term, Vars) :-
term_variables(Term, Vars0),
sort(Vars0, Vars).
%! group_by(+By, +Template, :Goal, -Bag) is nondet.
%
% Group bindings of Template that have the same value for By. This
% predicate is almost the same as bagof/3, but instead of
% specifying the existential variables we specify the free
% variables. It is provided for consistency and complete coverage
% of the common database vocabulary.
group_by(By, Template, Goal, Bag) :-
ordered_term_variables(Goal, GVars),
ordered_term_variables(By+Template, UVars),
ord_subtract(GVars, UVars, ExVars),
bagof(Template, ExVars^Goal, Bag).
|