File: ugraphs.pl

package info (click to toggle)
swi-prolog 9.0.4%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 82,408 kB
  • sloc: ansic: 387,503; perl: 359,326; cpp: 6,613; lisp: 6,247; java: 5,540; sh: 3,147; javascript: 2,668; python: 1,900; ruby: 1,594; yacc: 845; makefile: 428; xml: 317; sed: 12; sql: 6
file content (627 lines) | stat: -rw-r--r-- 20,518 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*  Part of SWI-Prolog

    Author:        R.A.O'Keefe, Vitor Santos Costa, Jan Wielemaker
    E-mail:        J.Wielemaker@vu.nl
    WWW:           http://www.swi-prolog.org
    Copyright (c)  1984-2021, VU University Amsterdam
                              CWI, Amsterdam
                              SWI-Prolog Solutions .b.v
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:

    1. Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.

    2. Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in
       the documentation and/or other materials provided with the
       distribution.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGE.
*/

:- module(ugraphs,
          [ add_edges/3,                % +Graph, +Edges, -NewGraph
            add_vertices/3,             % +Graph, +Vertices, -NewGraph
            complement/2,               % +Graph, -NewGraph
            compose/3,                  % +LeftGraph, +RightGraph, -NewGraph
            del_edges/3,                % +Graph, +Edges, -NewGraph
            del_vertices/3,             % +Graph, +Vertices, -NewGraph
            edges/2,                    % +Graph, -Edges
            neighbors/3,                % +Vertex, +Graph, -Vertices
            neighbours/3,               % +Vertex, +Graph, -Vertices
            reachable/3,                % +Vertex, +Graph, -Vertices
            top_sort/2,                 % +Graph, -Sort
            top_sort/3,                 % +Graph, -Sort0, -Sort
            transitive_closure/2,       % +Graph, -Closure
            transpose_ugraph/2,         % +Graph, -NewGraph
            vertices/2,                 % +Graph, -Vertices
            vertices_edges_to_ugraph/3, % +Vertices, +Edges, -Graph
            ugraph_union/3,             % +Graph1, +Graph2, -Graph
            connect_ugraph/3            % +Graph1, -Start, -Graph
          ]).

/** <module> Graph manipulation library

The S-representation of a graph is  a list of (vertex-neighbours) pairs,
where the pairs are in standard order   (as produced by keysort) and the
neighbours of each vertex are also  in   standard  order (as produced by
sort). This form is convenient for many calculations.

A   new   UGraph   from    raw    data     can    be    created    using
vertices_edges_to_ugraph/3.

Adapted to support some of  the   functionality  of  the SICStus ugraphs
library by Vitor Santos Costa.

Ported from YAP 5.0.1 to SWI-Prolog by Jan Wielemaker.

@author R.A.O'Keefe
@author Vitor Santos Costa
@author Jan Wielemaker
@license BSD-2 or Artistic 2.0
*/

:- autoload(library(lists),[append/3]).
:- autoload(library(ordsets),
	    [ord_subtract/3,ord_union/3,ord_add_element/3,ord_union/4]).
:- autoload(library(error), [instantiation_error/1]).

%!  vertices(+Graph, -Vertices)
%
%   Unify Vertices with all vertices appearing in Graph. Example:
%
%       ?- vertices([1-[3,5],2-[4],3-[],4-[5],5-[]], L).
%       L = [1, 2, 3, 4, 5]

vertices([], []) :- !.
vertices([Vertex-_|Graph], [Vertex|Vertices]) :-
    vertices(Graph, Vertices).


%!  vertices_edges_to_ugraph(+Vertices, +Edges, -UGraph) is det.
%
%   Create a UGraph from Vertices and edges.   Given  a graph with a
%   set of Vertices and a set of   Edges,  Graph must unify with the
%   corresponding S-representation. Note that   the vertices without
%   edges will appear in Vertices but not  in Edges. Moreover, it is
%   sufficient for a vertice to appear in Edges.
%
%   ==
%   ?- vertices_edges_to_ugraph([],[1-3,2-4,4-5,1-5], L).
%   L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[]]
%   ==
%
%   In this case all  vertices  are   defined  implicitly.  The next
%   example shows three unconnected vertices:
%
%   ==
%   ?- vertices_edges_to_ugraph([6,7,8],[1-3,2-4,4-5,1-5], L).
%   L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[], 6-[], 7-[], 8-[]]
%   ==

vertices_edges_to_ugraph(Vertices, Edges, Graph) :-
    sort(Edges, EdgeSet),
    p_to_s_vertices(EdgeSet, IVertexBag),
    append(Vertices, IVertexBag, VertexBag),
    sort(VertexBag, VertexSet),
    p_to_s_group(VertexSet, EdgeSet, Graph).


%!  add_vertices(+Graph, +Vertices, -NewGraph)
%
%   Unify NewGraph with a new  graph  obtained   by  adding  the list of
%   Vertices to Graph. Example:
%
%   ```
%   ?- add_vertices([1-[3,5],2-[]], [0,1,2,9], NG).
%   NG = [0-[], 1-[3,5], 2-[], 9-[]]
%   ```

add_vertices(Graph, Vertices, NewGraph) :-
    msort(Vertices, V1),
    add_vertices_to_s_graph(V1, Graph, NewGraph).

add_vertices_to_s_graph(L, [], NL) :-
    !,
    add_empty_vertices(L, NL).
add_vertices_to_s_graph([], L, L) :- !.
add_vertices_to_s_graph([V1|VL], [V-Edges|G], NGL) :-
    compare(Res, V1, V),
    add_vertices_to_s_graph(Res, V1, VL, V, Edges, G, NGL).

add_vertices_to_s_graph(=, _, VL, V, Edges, G, [V-Edges|NGL]) :-
    add_vertices_to_s_graph(VL, G, NGL).
add_vertices_to_s_graph(<, V1, VL, V, Edges, G, [V1-[]|NGL]) :-
    add_vertices_to_s_graph(VL, [V-Edges|G], NGL).
add_vertices_to_s_graph(>, V1, VL, V, Edges, G, [V-Edges|NGL]) :-
    add_vertices_to_s_graph([V1|VL], G, NGL).

add_empty_vertices([], []).
add_empty_vertices([V|G], [V-[]|NG]) :-
    add_empty_vertices(G, NG).

%!  del_vertices(+Graph, +Vertices, -NewGraph) is det.
%
%   Unify NewGraph with a new graph obtained by deleting the list of
%   Vertices and all the edges that start from  or go to a vertex in
%   Vertices to the Graph. Example:
%
%   ==
%   ?- del_vertices([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[2,6],8-[]],
%                   [2,1],
%                   NL).
%   NL = [3-[],4-[5],5-[],6-[],7-[6],8-[]]
%   ==
%
%   @compat Upto 5.6.48 the argument order was (+Vertices, +Graph,
%   -NewGraph). Both YAP and SWI-Prolog have changed the argument
%   order for compatibility with recent SICStus as well as
%   consistency with del_edges/3.

del_vertices(Graph, Vertices, NewGraph) :-
    sort(Vertices, V1),             % JW: was msort
    (   V1 = []
    ->  Graph = NewGraph
    ;   del_vertices(Graph, V1, V1, NewGraph)
    ).

del_vertices(G, [], V1, NG) :-
    !,
    del_remaining_edges_for_vertices(G, V1, NG).
del_vertices([], _, _, []).
del_vertices([V-Edges|G], [V0|Vs], V1, NG) :-
    compare(Res, V, V0),
    split_on_del_vertices(Res, V,Edges, [V0|Vs], NVs, V1, NG, NGr),
    del_vertices(G, NVs, V1, NGr).

del_remaining_edges_for_vertices([], _, []).
del_remaining_edges_for_vertices([V0-Edges|G], V1, [V0-NEdges|NG]) :-
    ord_subtract(Edges, V1, NEdges),
    del_remaining_edges_for_vertices(G, V1, NG).

split_on_del_vertices(<, V, Edges, Vs, Vs, V1, [V-NEdges|NG], NG) :-
    ord_subtract(Edges, V1, NEdges).
split_on_del_vertices(>, V, Edges, [_|Vs], Vs, V1, [V-NEdges|NG], NG) :-
    ord_subtract(Edges, V1, NEdges).
split_on_del_vertices(=, _, _, [_|Vs], Vs, _, NG, NG).

%!  add_edges(+Graph, +Edges, -NewGraph)
%
%   Unify NewGraph with a new graph obtained by adding the list of Edges
%   to Graph. Example:
%
%   ```
%   ?- add_edges([1-[3,5],2-[4],3-[],4-[5],
%                 5-[],6-[],7-[],8-[]],
%                [1-6,2-3,3-2,5-7,3-2,4-5],
%                NL).
%   NL = [1-[3,5,6], 2-[3,4], 3-[2], 4-[5],
%         5-[7], 6-[], 7-[], 8-[]]
%   ```

add_edges(Graph, Edges, NewGraph) :-
    p_to_s_graph(Edges, G1),
    ugraph_union(Graph, G1, NewGraph).

%!  ugraph_union(+Graph1, +Graph2, -NewGraph)
%
%   NewGraph is the union of Graph1 and Graph2. Example:
%
%   ```
%   ?- ugraph_union([1-[2],2-[3]],[2-[4],3-[1,2,4]],L).
%   L = [1-[2], 2-[3,4], 3-[1,2,4]]
%   ```

ugraph_union(Set1, [], Set1) :- !.
ugraph_union([], Set2, Set2) :- !.
ugraph_union([Head1-E1|Tail1], [Head2-E2|Tail2], Union) :-
    compare(Order, Head1, Head2),
    ugraph_union(Order, Head1-E1, Tail1, Head2-E2, Tail2, Union).

ugraph_union(=, Head-E1, Tail1, _-E2, Tail2, [Head-Es|Union]) :-
    ord_union(E1, E2, Es),
    ugraph_union(Tail1, Tail2, Union).
ugraph_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union]) :-
    ugraph_union(Tail1, [Head2|Tail2], Union).
ugraph_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union]) :-
    ugraph_union([Head1|Tail1], Tail2, Union).

%!  del_edges(+Graph, +Edges, -NewGraph)
%
%   Unify NewGraph with a new graph  obtained   by  removing the list of
%   Edges from Graph. Notice that no vertices are deleted. Example:
%
%   ```
%   ?- del_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]],
%                [1-6,2-3,3-2,5-7,3-2,4-5,1-3],
%                NL).
%   NL = [1-[5],2-[4],3-[],4-[],5-[],6-[],7-[],8-[]]
%   ```

del_edges(Graph, Edges, NewGraph) :-
    p_to_s_graph(Edges, G1),
    graph_subtract(Graph, G1, NewGraph).

%!  graph_subtract(+Set1, +Set2, ?Difference)
%
%   Is based on ord_subtract

graph_subtract(Set1, [], Set1) :- !.
graph_subtract([], _, []).
graph_subtract([Head1-E1|Tail1], [Head2-E2|Tail2], Difference) :-
    compare(Order, Head1, Head2),
    graph_subtract(Order, Head1-E1, Tail1, Head2-E2, Tail2, Difference).

graph_subtract(=, H-E1,     Tail1, _-E2,     Tail2, [H-E|Difference]) :-
    ord_subtract(E1,E2,E),
    graph_subtract(Tail1, Tail2, Difference).
graph_subtract(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :-
    graph_subtract(Tail1, [Head2|Tail2], Difference).
graph_subtract(>, Head1, Tail1, _,     Tail2, Difference) :-
    graph_subtract([Head1|Tail1], Tail2, Difference).

%!  edges(+Graph, -Edges)
%
%   Unify Edges with all edges appearing in Graph. Example:
%
%       ?- edges([1-[3,5],2-[4],3-[],4-[5],5-[]], L).
%       L = [1-3, 1-5, 2-4, 4-5]

edges(Graph, Edges) :-
    s_to_p_graph(Graph, Edges).

p_to_s_graph(P_Graph, S_Graph) :-
    sort(P_Graph, EdgeSet),
    p_to_s_vertices(EdgeSet, VertexBag),
    sort(VertexBag, VertexSet),
    p_to_s_group(VertexSet, EdgeSet, S_Graph).


p_to_s_vertices([], []).
p_to_s_vertices([A-Z|Edges], [A,Z|Vertices]) :-
    p_to_s_vertices(Edges, Vertices).


p_to_s_group([], _, []).
p_to_s_group([Vertex|Vertices], EdgeSet, [Vertex-Neibs|G]) :-
    p_to_s_group(EdgeSet, Vertex, Neibs, RestEdges),
    p_to_s_group(Vertices, RestEdges, G).


p_to_s_group([V1-X|Edges], V2, [X|Neibs], RestEdges) :- V1 == V2,
    !,
    p_to_s_group(Edges, V2, Neibs, RestEdges).
p_to_s_group(Edges, _, [], Edges).



s_to_p_graph([], []) :- !.
s_to_p_graph([Vertex-Neibs|G], P_Graph) :-
    s_to_p_graph(Neibs, Vertex, P_Graph, Rest_P_Graph),
    s_to_p_graph(G, Rest_P_Graph).


s_to_p_graph([], _, P_Graph, P_Graph) :- !.
s_to_p_graph([Neib|Neibs], Vertex, [Vertex-Neib|P], Rest_P) :-
    s_to_p_graph(Neibs, Vertex, P, Rest_P).

%!  transitive_closure(+Graph, -Closure)
%
%   Generate the graph Closure  as  the   transitive  closure  of Graph.
%   Example:
%
%   ```
%   ?- transitive_closure([1-[2,3],2-[4,5],4-[6]],L).
%   L = [1-[2,3,4,5,6], 2-[4,5,6], 4-[6]]
%   ```

transitive_closure(Graph, Closure) :-
    warshall(Graph, Graph, Closure).

warshall([], Closure, Closure) :- !.
warshall([V-_|G], E, Closure) :-
    memberchk(V-Y, E),      %  Y := E(v)
    warshall(E, V, Y, NewE),
    warshall(G, NewE, Closure).


warshall([X-Neibs|G], V, Y, [X-NewNeibs|NewG]) :-
    memberchk(V, Neibs),
    !,
    ord_union(Neibs, Y, NewNeibs),
    warshall(G, V, Y, NewG).
warshall([X-Neibs|G], V, Y, [X-Neibs|NewG]) :-
    !,
    warshall(G, V, Y, NewG).
warshall([], _, _, []).

%!  transpose_ugraph(Graph, NewGraph) is det.
%
%   Unify NewGraph with a new graph obtained from Graph by replacing
%   all edges of the form V1-V2 by edges of the form V2-V1. The cost
%   is O(|V|*log(|V|)). Notice that an undirected   graph is its own
%   transpose. Example:
%
%     ==
%     ?- transpose([1-[3,5],2-[4],3-[],4-[5],
%                   5-[],6-[],7-[],8-[]], NL).
%     NL = [1-[],2-[],3-[1],4-[2],5-[1,4],6-[],7-[],8-[]]
%     ==
%
%   @compat  This  predicate  used  to   be  known  as  transpose/2.
%   Following  SICStus  4,  we  reserve    transpose/2   for  matrix
%   transposition    and    renamed    ugraph    transposition    to
%   transpose_ugraph/2.

transpose_ugraph(Graph, NewGraph) :-
    edges(Graph, Edges),
    vertices(Graph, Vertices),
    flip_edges(Edges, TransposedEdges),
    vertices_edges_to_ugraph(Vertices, TransposedEdges, NewGraph).

flip_edges([], []).
flip_edges([Key-Val|Pairs], [Val-Key|Flipped]) :-
    flip_edges(Pairs, Flipped).

%!  compose(+LeftGraph, +RightGraph, -NewGraph)
%
%   Compose NewGraph by connecting the  _drains_   of  LeftGraph  to the
%   _sources_ of RightGraph. Example:
%
%       ?- compose([1-[2],2-[3]],[2-[4],3-[1,2,4]],L).
%       L = [1-[4], 2-[1,2,4], 3-[]]

compose(G1, G2, Composition) :-
    vertices(G1, V1),
    vertices(G2, V2),
    ord_union(V1, V2, V),
    compose(V, G1, G2, Composition).

compose([], _, _, []) :- !.
compose([Vertex|Vertices], [Vertex-Neibs|G1], G2,
        [Vertex-Comp|Composition]) :-
    !,
    compose1(Neibs, G2, [], Comp),
    compose(Vertices, G1, G2, Composition).
compose([Vertex|Vertices], G1, G2, [Vertex-[]|Composition]) :-
    compose(Vertices, G1, G2, Composition).


compose1([V1|Vs1], [V2-N2|G2], SoFar, Comp) :-
    compare(Rel, V1, V2),
    !,
    compose1(Rel, V1, Vs1, V2, N2, G2, SoFar, Comp).
compose1(_, _, Comp, Comp).


compose1(<, _, Vs1, V2, N2, G2, SoFar, Comp) :-
    !,
    compose1(Vs1, [V2-N2|G2], SoFar, Comp).
compose1(>, V1, Vs1, _, _, G2, SoFar, Comp) :-
    !,
    compose1([V1|Vs1], G2, SoFar, Comp).
compose1(=, V1, Vs1, V1, N2, G2, SoFar, Comp) :-
    ord_union(N2, SoFar, Next),
    compose1(Vs1, G2, Next, Comp).

%!  top_sort(+Graph, -Sorted) is semidet.
%!  top_sort(+Graph, -Sorted, ?Tail) is semidet.
%
%   Sorted is a  topological  sorted  list   of  nodes  in  Graph. A
%   toplogical sort is possible  if  the   graph  is  connected  and
%   acyclic. In the example we show   how  topological sorting works
%   for a linear graph:
%
%   ==
%   ?- top_sort([1-[2], 2-[3], 3-[]], L).
%   L = [1, 2, 3]
%   ==
%
%   The  predicate  top_sort/3  is  a  difference  list  version  of
%   top_sort/2.

top_sort(Graph, Sorted) :-
    vertices_and_zeros(Graph, Vertices, Counts0),
    count_edges(Graph, Vertices, Counts0, Counts1),
    select_zeros(Counts1, Vertices, Zeros),
    top_sort(Zeros, Sorted, Graph, Vertices, Counts1).

top_sort(Graph, Sorted0, Sorted) :-
    vertices_and_zeros(Graph, Vertices, Counts0),
    count_edges(Graph, Vertices, Counts0, Counts1),
    select_zeros(Counts1, Vertices, Zeros),
    top_sort(Zeros, Sorted, Sorted0, Graph, Vertices, Counts1).


vertices_and_zeros([], [], []) :- !.
vertices_and_zeros([Vertex-_|Graph], [Vertex|Vertices], [0|Zeros]) :-
    vertices_and_zeros(Graph, Vertices, Zeros).


count_edges([], _, Counts, Counts) :- !.
count_edges([_-Neibs|Graph], Vertices, Counts0, Counts2) :-
    incr_list(Neibs, Vertices, Counts0, Counts1),
    count_edges(Graph, Vertices, Counts1, Counts2).


incr_list([], _, Counts, Counts) :- !.
incr_list([V1|Neibs], [V2|Vertices], [M|Counts0], [N|Counts1]) :-
    V1 == V2,
    !,
    N is M+1,
    incr_list(Neibs, Vertices, Counts0, Counts1).
incr_list(Neibs, [_|Vertices], [N|Counts0], [N|Counts1]) :-
    incr_list(Neibs, Vertices, Counts0, Counts1).


select_zeros([], [], []) :- !.
select_zeros([0|Counts], [Vertex|Vertices], [Vertex|Zeros]) :-
    !,
    select_zeros(Counts, Vertices, Zeros).
select_zeros([_|Counts], [_|Vertices], Zeros) :-
    select_zeros(Counts, Vertices, Zeros).



top_sort([], [], Graph, _, Counts) :-
    !,
    vertices_and_zeros(Graph, _, Counts).
top_sort([Zero|Zeros], [Zero|Sorted], Graph, Vertices, Counts1) :-
    graph_memberchk(Zero-Neibs, Graph),
    decr_list(Neibs, Vertices, Counts1, Counts2, Zeros, NewZeros),
    top_sort(NewZeros, Sorted, Graph, Vertices, Counts2).

top_sort([], Sorted0, Sorted0, Graph, _, Counts) :-
    !,
    vertices_and_zeros(Graph, _, Counts).
top_sort([Zero|Zeros], [Zero|Sorted], Sorted0, Graph, Vertices, Counts1) :-
    graph_memberchk(Zero-Neibs, Graph),
    decr_list(Neibs, Vertices, Counts1, Counts2, Zeros, NewZeros),
    top_sort(NewZeros, Sorted, Sorted0, Graph, Vertices, Counts2).

graph_memberchk(Element1-Edges, [Element2-Edges2|_]) :-
    Element1 == Element2,
    !,
    Edges = Edges2.
graph_memberchk(Element, [_|Rest]) :-
    graph_memberchk(Element, Rest).


decr_list([], _, Counts, Counts, Zeros, Zeros) :- !.
decr_list([V1|Neibs], [V2|Vertices], [1|Counts1], [0|Counts2], Zi, Zo) :-
    V1 == V2,
    !,
    decr_list(Neibs, Vertices, Counts1, Counts2, [V2|Zi], Zo).
decr_list([V1|Neibs], [V2|Vertices], [N|Counts1], [M|Counts2], Zi, Zo) :-
    V1 == V2,
    !,
    M is N-1,
    decr_list(Neibs, Vertices, Counts1, Counts2, Zi, Zo).
decr_list(Neibs, [_|Vertices], [N|Counts1], [N|Counts2], Zi, Zo) :-
    decr_list(Neibs, Vertices, Counts1, Counts2, Zi, Zo).


%!  neighbors(+Vertex, +Graph, -Neigbours) is det.
%!  neighbours(+Vertex, +Graph, -Neigbours) is det.
%
%   Neigbours is a sorted list of  the   neighbours  of Vertex in Graph.
%   Example:
%
%   ```
%   ?- neighbours(4,[1-[3,5],2-[4],3-[],
%                    4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL).
%   NL = [1,2,7,5]
%   ```

neighbors(Vertex, Graph, Neig) :-
    neighbours(Vertex, Graph, Neig).

neighbours(V,[V0-Neig|_],Neig) :-
    V == V0,
    !.
neighbours(V,[_|G],Neig) :-
    neighbours(V,G,Neig).


%!  connect_ugraph(+UGraphIn, -Start, -UGraphOut) is det.
%
%   Adds Start as an additional vertex that is connected to all vertices
%   in UGraphIn. This can be used to   create  an topological sort for a
%   not connected graph. Start is before any   vertex in UGraphIn in the
%   standard order of terms.  No vertex in UGraphIn can be a variable.
%
%   Can be used to order a not-connected graph as follows:
%
%   ```
%   top_sort_unconnected(Graph, Vertices) :-
%       (   top_sort(Graph, Vertices)
%       ->  true
%       ;   connect_ugraph(Graph, Start, Connected),
%           top_sort(Connected, Ordered0),
%           Ordered0 = [Start|Vertices]
%       ).
%   ```

connect_ugraph([], 0, []) :- !.
connect_ugraph(Graph, Start, [Start-Vertices|Graph]) :-
    vertices(Graph, Vertices),
    Vertices = [First|_],
    before(First, Start).

%!  before(+Term, -Before) is det.
%
%   Unify Before to a term that comes   before  Term in the standard
%   order of terms.
%
%   @error instantiation_error if Term is unbound.

before(X, _) :-
    var(X),
    !,
    instantiation_error(X).
before(Number, Start) :-
    number(Number),
    !,
    Start is Number - 1.
before(_, 0).


%!  complement(+UGraphIn, -UGraphOut)
%
%   UGraphOut is a ugraph with an  edge   between  all vertices that are
%   _not_ connected in UGraphIn and  all   edges  from UGraphIn removed.
%   Example:
%
%   ```
%   ?- complement([1-[3,5],2-[4],3-[],
%                  4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL).
%   NL = [1-[2,4,6,7,8],2-[1,3,5,6,7,8],3-[1,2,4,5,6,7,8],
%         4-[3,5,6,8],5-[1,2,3,4,6,7,8],6-[1,2,3,4,5,7,8],
%         7-[1,2,3,4,5,6,8],8-[1,2,3,4,5,6,7]]
%   ```
%
%   @tbd Simple two-step algorithm. You could be smarter, I suppose.

complement(G, NG) :-
    vertices(G,Vs),
    complement(G,Vs,NG).

complement([], _, []).
complement([V-Ns|G], Vs, [V-INs|NG]) :-
    ord_add_element(Ns,V,Ns1),
    ord_subtract(Vs,Ns1,INs),
    complement(G, Vs, NG).

%!  reachable(+Vertex, +UGraph, -Vertices)
%
%   True when Vertices is  an  ordered   set  of  vertices  reachable in
%   UGraph, including Vertex.  Example:
%
%       ?- reachable(1,[1-[3,5],2-[4],3-[],4-[5],5-[]],V).
%       V = [1, 3, 5]

reachable(N, G, Rs) :-
    reachable([N], G, [N], Rs).

reachable([], _, Rs, Rs).
reachable([N|Ns], G, Rs0, RsF) :-
    neighbours(N, G, Nei),
    ord_union(Rs0, Nei, Rs1, D),
    append(Ns, D, Nsi),
    reachable(Nsi, G, Rs1, RsF).