1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
|
\chapter{Using SWI-Prolog in your browser (WASM)}
\label{sec:wasm}
\href{https://emscripten.org/}{Emscripten} can compile C and C++ code
to WebAssembly (WASM). WASM runs on a virtual machine that is
provided by almost all modern browsers. This allows for compiling the
SWI-Prolog source to WASM and run it in your browser. We keep
up-to-data instructions for building the WASM version on the
\href{https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650}{wiki}
page.
Currently the WASM version is a fairly comprehensive version of
SWI-Prolog. It contains the core and a good selection of the
\jargon{packages}, including many of the \jargon{foreign packages}.
\section{Loading and initializing Prolog}
\label{sec:wasm-loading}
The WASM SWI-Prolog distribution consists of three files:
\begin{description}
\item[\file{swipl-web.js}] This is the main file that must be loaded
using a \verb$<script>$ element. It defines a global function \const{SWIPL}
that loads the other components and gives access to the SWI-Prolog system.
\item[\file{swipl-web.wasm}]
This is the actual WASM binary containing the compiled C code of the
core, foreign packages and required libraries.
\item[\file{swipl-web.data}]
This data contains a \jargon{file system} that is \jargon{mounted} on
\file{/swipl}. It contains the Prolog startup code and libraries.
\end{description}
Below is the skeleton for getting access to the Prolog system. We
first define the global \arg{Module} object, optionally with
configuration parameters. We use a global variable because some of
the Emscripten configuration parameters require access to the
\arg{Module}. \const{SWIPL} returns a \ctype{Promise} that resolves
when the WASM system is loaded and initialized. This sets
\const{Module.prolog} to an instance of the class \ctype{Prolog} that
provides a high level interface from JavaScript.
\begin{code}
let Prolog;
const Module = {
// Provide options for customization
};
SWIPL(Module).then((module) =>
{ Prolog = Module.prolog;
// Start using Prolog
};
\end{code}
\arg{Module} defines customization properties for the Emscripten module
as well as for Prolog. We highlight the important properties below.
\begin{description}
\termitem{arguments}{}
An \ctype{Array} of \ctype{String} objects that define the commandline
arguments for initializing Prolog. \exam{argv[0]} is \emph{not} part of
this array. Few arguments are useful in this context. The
\cmdlineoption{-q} may be used to suppress the Prolog banner.
\termitem{locateFile}{}
A \ctype{Function} that is used to translate \file{swipl-web.wasm} and
\file{swipl-web.data} into a (relative) URL. Default is to find these
resources in the same directory of the server. For example, to load
\file{swipl-web.wasm} and \file{swipl-web.data} from \file{/wasm} use
\begin{code}
var Module = {
...,
locateFile: (file) => '/wasm/' + file
}
\end{code}
\termitem{on_output}{}
A \ctype{Function} that is called when Prolog writes to
\const{user_output} or \const{user_input}. It is passed two arguments: a
\ctype{String} containing the text to emit and one of the constant
strings \const{"stdout"} or \const{"stderr"} to indicate the output
stream. This uses the Emscripten \const{Module.FS.init} option to rebind
the output and error streams, providing behaviour that is similar to the
Emscripten properties \const{print} and \const{printErr}. However, our
passed string contains the newline character and the handler is called
when Prolog \jargon{flushes} the output. Normally the callback should
insert a \verb$<span>$ element that has (at least) the following style:
\begin{code}
.stderr, .stdout {
white-space: pre-wrap;
font-family: monospace;
overflow-wrap: anywhere;
}
\end{code}
Here is a simple implementation of print(), assuming the document has
a \verb$<div id="output">$ node.
\begin{code}
function print(line, cls)
{ const output = document.getElementById("output");
const node = document.createElement('span');
node.className = cls;
node.textContent = line;
output.appendChild(node);
};
\end{code}
\end{description}
\subsection{Loading Prolog files}
\label{sec:wasm-consult}
The WASM build ships with the Prolog library and thus Prolog libraries
can be loaded as normal using use_module/1, etc., for example, we can
include the \const{lists} library using this directive. Note that the
normal \jargon{autoloading} of library code works in the WASM version.
\begin{code}
:- use_module(library(lists)).
\end{code}
When Prolog is in \jargon{asynchronous} mode, i.e., called through
\cfuncref{Prolog.forEach}{}, we can also load code from a \jargon{URL}.
For example, we can load the \const{CHAT80} demo program directly from
\href{https://github.com/JanWielemaker/chat80}{GitHub}
using\footnote{The \chr{\}c continues the quoted atom from the next
line after removing leading white space.}
\begin{code}
?- consult('https://raw.githubusercontent.com/JanWielemaker/\c
chat80/master/prolog/chat80.pl').
\end{code}
Larger files can be loaded as \fileext{qlf} files. See \secref{qlf} and
qcompile/2. Notably we can create a single qlf file from an application
using the \term{include}{user} option. Below we create a \fileext{qlf}
file from \href{https://github.com/JanWielemaker/chat80}{CHAT80}. The
resulting \file{chat80.qlf} can be loaded from a URL using consult/1 as
above.
\begin{code}
?- qcompile('chat80.pl', [include(user)]).
\end{code}
There are three ways to load Prolog code from JavaScript: (1) loading
from a string, (2) loading from \verb$<script>$ elements and (3) loading
from URL. Note that all the loading methods return a \ctype{Promise}
that is resolved when loading the data is completed.
\begin{description}
\cfunction{Promise}{Prolog.load_string}{String, Id}
Load Prolog code from \arg{String}, pretending it was loaded from the
file \arg{Id}. The \arg{Id} is optional. When omitted it generates
\verb$/string/1$, \verb$/string/2$, \ldots.
\cfunction{Promise}{Prolog.load_scripts}{}
Load all scripts from the current docement that have their \const{type}
set to \const{text/prolog}. The file reference for the loaded script
is \exam{/script/Id}, where \arg{Id} is derived from (1) the
\const{id} of the script, (2) the \const{name} of the script or (3)
being the nth Prolog script in the document. When resolved, the promise
returns an array with the names of the loaded scripts.
\cfunction{Promise}{Prolog.consult}{...Sources}
Load the given \arg{Sources}. Each source is either a file from the
local file system, e.g., \exam{library(lists)} or a URL. The sources are
downloaded and processed sequentially. This uses
\cfuncref{Prolog.forEach}{} calling load_files/1. The returned
\ctype{Promise} returns 1 on success.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Calling Prolog from JavaScript}
\label{sec:wasm-calling}
The \ctype{Prolog} class provides several methods for calling Prolog
from JavaScript.
\begin{description}
\cfunction{Boolean}{Prolog.call}{Goal}
Processes a Prolog goal represented as a \ctype{String} and returns
\const{true} or \const{false}. This simple calling pattern is intended
for trivial goals such as setting a Prolog flag. For example, the call
below limits the Prolog stacks to 10Mb.
\begin{code}
Prolog.call("set_prolog_flag(stack_limit, 10 000 000)");
\end{code}
\cfunction{Query}{Prolog.query}{Goal}
\nodescription
\cfunction{Query}{Prolog.query}{Goal, Input}
Create a Prolog query from a \ctype{String}, optionally binding Prolog
variables embedded in \arg{Goal} from properties of the \ctype{Object}
\arg{Input}. The returned object is an instance of class \ctype{Query}.
This instance can be used as a JavaScript \jargon{iterator}. The value
returned in each iteration is an \ctype{Object} with properties for each
variable in \arg{Goal} that is not in \arg{Input} and does not start
with an underscore. For example, we can iterate over the members of
a list like below. Further details on class \ctype{Query} are
provided in \secref{wasm-query}. The translation of data between
Prolog and JavaScript is described in \secref{wasm-data-conversion}.
\begin{code}
for(let r of Prolog.query("member(Elem,List)",
{List: ["aap", "noot", "mies"]}))
{ console.log(r.Elem);
}
\end{code}
This interface is also practical for calling (fast) Prolog predicates to
compute a single answer from an input using the \cfuncref{Query.once}{}
method. Assuming a Prolog predicate \nopredref{fib}{2} that computes the
nth \jargon{Fibonacci} number, we can call this using the code below.
Note that if the \nopredref{fib}{2} fails or raises an exception the
object returned by \cfuncref{Query.once}{} does not contain the
\const{Out} key and thus our function returns \const{undefined}.
\begin{code}
function fib(in, out)
{ return Prolog.query("fib(In,Out)", {In:in}).once().Out;
}
\end{code}
The \exam{.query()} method is indented for fast queries that do not
require the \jargon{yield} mechanism, i.e., the execution should not
require asynchronous operations and the browser is not responsive
during the execution.
\cfunction{Promise}{Prolog.forEach}{Goal}
\nodescription
\cfunction{Promise}{Prolog.forEach}{Goal, OnAnswer}
\nodescription
\cfunction{Promise}{Prolog.forEach}{Goal, Input}
\nodescription
\cfunction{Promise}{Prolog.forEach}{Goal, Input, OnAnswer}
This method executes \arg{Goal} asynchronously. This implies that
\arg{Goal} may execute asynchronous operations and the browser remains
responsive while executing \arg{Goal}. \arg{Goal} and \arg{Input} are
processed as with \exam{.query()}. For each answer, \arg{OnAnswer} is a
\ctype{Function} that is called with a \ctype{Object} that holds the
bindings for the output arguments of \arg{Goal}.
The returned \ctype{Promise} is resolved when the query completes. The
value passed to the \exam{.then()} method of the \ctype{Promise} is the
number of answers if \arg{OnAnswer} is provided or an \ctype{Array} of
answers if \arg{OnAnswer} is omitted. If \arg{Goal} raises an exception
the \ctype{Promise} is rejected.
Multiple calls to Prolog can be activated at any time. Prolog processes
such queries in \jargon{LIFO} \jargon{(Last In, First Out)} mode. If
queries need to be processed sequentially use JavaScript \const{await}
or the \exam{Promise.finally()} method to wait for completion.
\end{description}
\subsection{The JavaScript class Query}
\label{sec:wasm-query}
The method \cfuncref{Prolog.query}{} returns an instance of the
JavaScript class \ctype{Query} that may be used to explore the
solutions of the query. The \ctype{Query} class implements the
JavaScript \jargon{iterator} protocol.
\begin{description}
\cfunction{Object}{Query.next}{}
Implements the \jargon{iterator} protocol. This returns an object
holding the keys \const{done} and \const{value}. If exception
handling is enabled it returns an object
\{\const{done}:\const{true}, \const{error}:\const{true},
\const{message}:\arg{String}\}.
\cfunction{Object}{Query.once}{}
Close the query after the first answer. Returns the \exam{.value} of the
object returned by \exam{.next()} on success and the complete object on
failure or error. In addition, on a logical result (no error), a field
\const{success} is added with a boolean value. Thus, the return value
may contain these keys:
\begin{description}
\definition{\{Bindings\}}
Query succeeded. Objects holds a key for each output variable. In
addition the \const{success} key is set to \const{true}.
\definition{\{\const{success}:\arg{false}\}}
Query failed. Note that the binding keys all start with an uppercase
letter and this is thus not ambiguous.
\definition{\{\const{error}:true, \const{message}:\arg{String}\}}
Query raised an exception.
\end{description}
\cfunction{Object}{Query.close}{}
Closes the query. This can be used inside the iterator to stop
further enumeration.
\end{description}
\subsection{Translating data between JavaScript and Prolog}
\label{sec:wasm-data-conversion}
JavaScript and Prolog are both dynamically typed languages. The WASM
module defines a faithful translation between JavaScript data and Prolog
data that aims at completeness as well as keeping the data
representation clean in the common cases. We describe the translation
in two descriptions because round tripping does not always result in
the original object.
\subsubsection{Translating JavaScript data to Prolog}
\label{sec:wasm-data-js-to-prolog}
This section describes how data from JavaScript is translated into
Prolog. The interface is primarily designed for passing JavaScript
data as typically used to a natural Prolog representation. In
addition a number of classes are provided to create Prolog specific
data structures such as strings (as opposed to atoms), variables,
compound terms, etc.
\begin{description}
\definition{Number}
Translate to a Prolog integer or floating point number.
\definition{BigInt}
Translate to a Prolog integer.
\definition{String}
Translate to a Prolog atom. Use \exam{new Prolog.String(text)}
to create a Prolog string. See below.
\definition{Boolean}
Translate to one of the Prolog atoms \const{true} or \const{false}.
\definition{undefined}
Translate the Prolog atom \const{undefined}.
\definition{null}
Translate the Prolog atom \const{null}.
\definition{Array}
Translate to a Prolog list.
\definition{Objects holding the key \const{\$t}:\arg{Type}}
Such objects are converted depending on the value for this key.
The interface defines classes to simplify creating such objects.
\begin{description}
\definition{s}
Represent a Prolog string. The key \const{v} holds the text.
May be created using \exam{new Prolog.string(text)}.
May be created using \exam{new Prolog.String(text)}.
\definition{r}
Represent a Prolog \jargon{rational number}. The keys \const{n}
and \const{d} represent the \jargon{numerator} and \jargon{denominator}.
For example, to represent \exam{1r3}, use \{\const{\$t}:"r",
\const{n}:1, \const{d}:3\}.
May be created using \exam{new Prolog.Rational(n, d)}, where \arg{n}
and \arg{d} can be JavaScript numbers or big integers.
\definition{t}
Represent a Prolog \jargon{compound term}. The object should hold
exactly one key whose value is an array that holds the argument values.
For example a term \term{point}{1,2} is constructed using
\{\const{\$t}:"t", \const{point}:[1,2]\}.
May be created using \exam{new Prolog.Compound(functor, args)}
\definition{v}
Represent a variable. If the key \const{v} is present this identifies
the variable. Two variables processed in the same translation with the
same identifier represent the same Prolog variable. If the \const{v}
key is omitted the variable will be unique.
May be created using \exam{new Prolog.Var(id)}.
\definition{l}
Represent a Prolog list. As a JavaScript \ctype{Array} we only need
this typed object to create a \jargon{partial list}. The \const{v}
key contains the ``normal'' elements and the key \const{tail} contains
the tail of the list.
May be created using \exam{new Prolog.List(array, tail)}.
\end{description}
\definition{Object of class \const{Object}}
Plain JavaScript objects are translated into a Prolog \const{dict}.
Note that JavaScript object keys are always strings and (thus) all
dict keys are atoms. This, \{1:"one"\} is translated into
\verb$_{'1': one}$.
\definition{ArrayBuffer}
Instances of \ctype{ArrayBuffer} are translated into a Prolog
string that consists of characters in the range $0\ldots{}255$.
\definition{Objects of a one class not being \const{Object}}
Instances of non-plain JavaScript objects are translated into a
Prolog \jargon{blob}. Such objects are written as \verb$<js_Class(id)>$.
The Prolog interface allows for passing the objects back and calling
methods on them. See \secref{wasm-js-call}.
\end{description}
\subsubsection{Translating Prolog data to JavaScript}
\label{sec:wasm-data-prolog-to-js}
Most of the translation from Prolog data to JavaScript is the reverse of
the translation described in \secref{wasm-data-js-to-prolog}. In some
cases however reverse translation is ambiguous. For example, both
\exam{42} and \exam{42n} (a JavaScript \ctype{BigInt}) translate to a
simple Prolog integer. The other way around, as JavaScript
\ctype{Number} is a float, both Prolog \exam{42} and \exam{42.0}
translate to \exam{42} in JavaScript.
\begin{description}
\definition{Variable}
Translate to a JavaScript \ctype{Prolog.Variable} instance
where the identifier is a unique number of each unique variable.
\definition{Integer}
Translate to a JavaScript \ctype{Number} when possible or
\ctype{BigInt} otherwise. Currently JavaScript \ctype{Number}
can represent integers upto $2^{53}$ precisely.
\definition{Rational}
Translate to a JavaScript \ctype{Prolog.Rational} instance.
\definition{Float}
Translate to a JavaScript \ctype{Number}.
\definition{Atom}
Translate to a JavaScript \ctype{String}.
\definition{String}
Translate to a JavaScript \ctype{Prolog.String} instance.
\definition{List}
When a \jargon{proper list} create a JavaScript \ctype{Array},
otherwise create a JavaScript \ctype{Prolog.List} instance.
\definition{Compound term}
Create a JavaScript \ctype{Prolog.Compound} instance.
\definition{Dict}
Create a plain JavaScript \ctype{Object} with the same keys. If the
dict has a non-var \jargon{tag}, add a \const{\$tag} property.
\end{description}
\section{Accessing JavaScript from Prolog}
\label{sec:wasm-js-call}
This section describes how we can interact with JavaScript from Prolog.
The interface is captured in a single predicate \predref{:=/2}.
\begin{description}
\infixop{:=}{Left}{Right}
Depending on \arg{Left}, this predicate implements two different
actions. If \arg{Left} is a Prolog variable, it evaluates the expression
\arg{Right} in JavaScript and unifies the result to \arg{Left}. If
\arg{Left} is a term \arg{Obj}[\arg{Key}], where \arg{Key} is an atom,
it accesses a JavaScript \jargon{setter}. The general form of an
expression is \arg{Expression}[\arg{Callable}] or simply \arg{Callable}.
If \arg{Callable} is compound it expresses a function (or method) call.
Otherwise we call JavaScript \cfuncref{eval}{}, except for these
special values:
\begin{description}
\termitem{window}{}
The main browser window itself (\const{undefined} when not in a browser).
\termitem{prolog}{}
The \ctype{Prolog} instance.
\end{description}
Prolog values are translated according to the rules in
\secref{wasm-data-prolog-to-js} and the result is translated back to
Prolog according to the rules in \secref{wasm-data-js-to-prolog}.
Because callables are translated to function calls, object properties or
global variables we need an escape to pass them as data. This is
achieved using the prefix operator \const{#}. Note that lists are passed
as JavaScript arrays rather than calls to the list functor. For
convenience Prolog strings are by default translated to JavaScript
\ctype{String} objects rather than \ctype{Prolog.String} instances.
Below are some examples:
\begin{code}
?- Res := myfunc([1,2,3]).
?- Max := 'Math'.max(10, 20).
?- Out := document.getElementById('output').
?- Par := document.createElement(p),
Par.textContent := #Text.
?- Par.textContent := "aap" + " " + "noot".
\end{code}
Some JavaScript expressions are not implemented as functions. The
following ``functions'' are handled directly by the implementation.
\begin{description}
\termitem{instanceof}{}
Returns the name of the class to which the object belongs.
Same as \exam{Obj.constructor.name}.
\termitem{instanceof}{ClassName}
Returns a \ctype{Boolean} indicating whether the object is an
instance of \arg{ClassName}. Note that the class name must be
an atom and as JavaScript class names normally start with a
capital, the names dypically need to be quoted using \emph{single}
quotes. For example:
\begin{code}
?- W := window, T := W.instanceof('Window').
W = <js_Window>(1),
T = true.
\end{code}
\termitem{-}{Any}
Numerical negation
\termitem{!}{Any}
Logical negation.
\termitem{+}{Any, Any}
\nodescription
\termitem{-}{Any, Any}
\nodescription
\termitem{*}{Any, Any}
\nodescription
\termitem{/}{Any, Any}
\nodescription
\termitem{&}{Any, Any}
\nodescription
\termitem{|}{Any, Any}
\termitem{&&}{Any, Any}
\nodescription
\termitem{||}{Any, Any}
Binary operators. Note that some are not defined as Prolog operators and
thus one must write e.g. \verb$A := &&(true,false)$. \verb$||$ is not
a Prolog atom, so logical disjunction gets \verb$A := '||'(false,false)$.
\end{description}
\predicate[semidet]{is_object}{1}{@Term}
True if \arg{Term} is a reference to a JavaScript object.
\predicate[semidet]{is_object}{2}{@Term, ?Class}
True when \arg{Term} is an instance of \arg{Class}. If \arg{Class}
is unbound it is unified with the name of the \jargon{constructor},
otherwise a JavaScript \exam{Term instanceof Class} is executed.
\predicate{js_script}{2}{+String, +Options}
Evaluate \arg{String} as JavaScript. This is designed to cooperate
with string \jargon{quasi quotations}, so we can write e.g.,
\begin{code}
:- use_module(library(strings)).
:- js_script({|string||
function myfunc(a)
...
|}).
\end{code}
The implementation uses \predref{=:}{2}, calling the JavaScript
function eval().
\predicate{fetch}{3}{+URL, +Type, -Data}
Wrapper around JavaScript fetch(), conversion of the \ctype{Response}
object and waiting for the \ctype{Promise}. Type is an atom or string
that is used as method on the \ctype{Response} object. Examples are
\const{text}, \const{json}, \const{html} or \const{blob}. The
\const{blob} type returns the \arg{Data} as a string of \jargon{bytes},
i.e., character codes in the range $0\ldots{}255$.
\end{description}
\subsubsection{Asynchronous access to JavaScript from Prolog}
\label{sec:wasm-js-async-call}
While \secref{wasm-js-call} describes synchronous calls from Prolog to
JavaScript, we also need asynchronous calling to implement sleep/1, wait
for user input, downloading documents from the web, etc. Asynchronous
calling is achieved by \jargon{yielding} from the Prolog virtual
machine. This can only be done when Prolog is told to expect that the VM
may yield. This is implemented by \exam{Prolog.forEach()} as described
in \secref{wasm-calling}.
\begin{description}
\predicate[det]{await}{2}{+Promise, -Result}
Yield the Prolog VM, returning control back to JavaScript. When this is
called from Prolog invoked using \exam{Prolog.forEach()}, execution of
await/2 completes when the \arg{Promise} resolves and \arg{Result} is
unified with the value passed to the \exam{Promise.then()} method. As an
exception to the normal conversion rules, if the result is a single
\ctype{String}, it is returned as a Prolog string rather than an atom.
When the \arg{Promise} is rejected await/2 throws an exception. Note
that await/2 allows, for example, downloading a URL from Prolog:
\begin{code}
?- FP := fetch("test.pl"), await(FP, Response),
TP := Response.text(), await(TP, T).
FP = <js_Promise>(4),
Response = <js_Response>(5),
TP = <js_Promise>(6),
T = "% :- debug(js) ...".
\end{code}
Calls to await/2 may be asynchronously aborted by calling
\exam{Prolog.abort()} if \arg{Promise} implements \exam{.abort()}.
See \secref{wasm-promise-abort} for implementing such a promise.
\predicate[semidet]{is_async}{0}{}
True when we can call await/2 in the current state. This implies Prolog has
been called from JavaScript code that is prepared to deal with Prolog
yielding and Prolog is not inside a callback from C (WASM).
\end{description}
\subsubsection{JavaScript Promise that can be aborted}
\label{sec:wasm-promise-abort}
A \ctype{Promise} resolves or is rejected. As Prolog waits for a
specific promise on a call to await/2 we may want to abort long
running operations. This may be achieved using the class
\ctype{Prolog.Promise} which extends \ctype{Promise}. To make the
promise abortable the \jargon{executor} function must have an
\const{abort} property. Below is the code for
\exam{Prolog.promise_sleep()} that implements this schema. First we
create the \jargon{executor} and use properties on the function itself
to represent the necessary state information (here, the running timer).
Next, we add an \const{abort} property the clears the timer and runs
the \const{reject} callback of the \ctype{Promise}. Finally we return
an instance of \ctype{Prolog.Promise} which implements \exam{.abort()}.
\begin{code}
promise_sleep(time)
{ const f = function(resolve, reject)
{ f.reject = reject;
f.timer = setTimeout(() =>
{ f.timer = undefined;
resolve(true);
}, time*1000);
};
f.abort = function()
{ if ( f.timer )
{ clearTimeout(f.timer);
f.timer = undefined;
f.reject("abort");
}
}
return new Prolog.Promise(f);
}
\end{code}
|