1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% Slim Abdennadher, Thom Fruehwirth, LMU, July 1998
%% Finite (enumeration, list) domain solver over integers
%%
%% * ported to hProlog by Tom Schrijvers, K.U.Leuven
% :- module(listdom,[]).
:- use_module( library(chr)).
:- use_module( library(lists)).
%% for domain constraints
:- op( 700,xfx,'::').
:- op( 600,xfx,'..').
%% for inequality constraints
:- op( 700,xfx,lt).
:- op( 700,xfx,le).
:- op( 700,xfx,ne).
%% for domain constraints
?- op( 700,xfx,'::').
?- op( 600,xfx,'..').
%% for inequality constraints
?- op( 700,xfx,lt).
?- op( 700,xfx,le).
?- op( 700,xfx,ne).
:- constraints (::)/2, (le)/2, (lt)/2, (ne)/2, add/3, mult/3.
%% X::Dom - X must be element of the finite list domain Dom
%% special cases
X::[] <=> fail.
%%X::[Y] <=> X=Y.
%%X::[A|L] <=> ground(X) | (member(X,[A|L]) -> true).
%% intersection of domains for the same variable
X::L1, X::L2 <=> is_list(L1), is_list(L2) |
intersection(L1,L2,L) , X::L.
X::L, X::Min..Max <=> is_list(L) |
remove_lower(Min,L,L1), remove_higher(Max,L1,L2),
X::L2.
%% interaction with inequalities
X le Y, X::L1, Y::L2 ==> is_list(L1),is_list(L2),
min_list(L1,MinX), min_list(L2,MinY), MinX > MinY |
max_list(L2,MaxY), Y::MinX..MaxY.
X le Y, X::L1, Y::L2 ==> is_list(L1),is_list(L2),
max_list(L1,MaxX), max_list(L2,MaxY), MaxX > MaxY |
min_list(L1,MinX), X::MinX..MaxY.
X lt Y, X::L1, Y::L2 ==> is_list(L1), is_list(L2),
max_list(L1,MaxX), max_list(L2,MaxY),
MaxY1 is MaxY - 1, MaxY1 < MaxX |
min_list(L1,MinX), X::MinX..MaxY1.
X lt Y, X::L1, Y::L2 ==> is_list(L1), is_list(L2),
min_list(L1,MinX), min_list(L2,MinY),
MinX1 is MinX + 1, MinX1 > MinY |
max_list(L2,MaxY), Y :: MinX1..MaxY.
X ne Y \ Y::D <=> ground(X), is_list(D), member(X,D) | select(X,D,D1), Y::D1.
Y ne X \ Y::D <=> ground(X), is_list(D), member(X,D) | select(X,D,D1), Y::D1.
Y::D \ X ne Y <=> ground(X), is_list(D), \+ member(X,D) | true.
Y::D \ Y ne X <=> ground(X), is_list(D), \+ member(X,D) | true.
%% interaction with addition
%% no backpropagation yet!
add(X,Y,Z), X::L1, Y::L2 ==> is_list(L1), is_list(L2) |
all_addition(L1,L2,L3), Z::L3.
%% interaction with multiplication
%% no backpropagation yet!
mult(X,Y,Z), X::L1, Y::L2 ==> is_list(L1), is_list(L2) |
all_multiplication(L1,L2,L3), Z::L3.
%% auxiliary predicates =============================================
remove_lower(_,[],L1):- !, L1=[].
remove_lower(Min,[X|L],L1):-
X@<Min,
!,
remove_lower(Min,L,L1).
remove_lower(Min,[X|L],[X|L1]):-
remove_lower(Min,L,L1).
remove_higher(_,[],L1):- !, L1=[].
remove_higher(Max,[X|L],L1):-
X@>Max,
!,
remove_higher(Max,L,L1).
remove_higher(Max,[X|L],[X|L1]):-
remove_higher(Max,L,L1).
intersection([], _, []).
intersection([Head|L1tail], L2, L3) :-
memberchk(Head, L2),
!,
L3 = [Head|L3tail],
intersection(L1tail, L2, L3tail).
intersection([_|L1tail], L2, L3) :-
intersection(L1tail, L2, L3).
all_addition(L1,L2,L3) :-
setof(Z, X^Y^(member(X,L1), member(Y,L2), Z is X + Y), L3).
all_multiplication(L1,L2,L3) :-
setof(Z, X^Y^(member(X,L1), member(Y,L2), Z is X * Y), L3).
%% EXAMPLE ==========================================================
/*
?- X::[1,2,3,4,5,6,7], Y::[2,4,6,7,8,0], Y lt X, X::4..9, X ne Y,
add(X,Y,Z), mult(X,Y,Z).
*/
%% end of handler listdom.pl =================================================
%% ===========================================================================
/*
?- X::[1,2,3,4,5,6,7], Y::[2,4,6,7,8,0], Y lt X, X::4..9, X ne Y,
add(X,Y,Z), mult(X,Y,Z).
Bad call to builtin predicate: _9696 =.. ['add/3__0',AttVar4942,AttVar5155,AttVar6836|_9501] in predicate mknewterm / 3
*/
|