1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
|
/* Part of SWI-Prolog
Author: Jeffrey Rosenwald and Jan Wielemaker
E-mail: jeffrose@acm.org
WWW: http://www.swi-prolog.org
Copyright (c) 2012-2013, Jeffrey Rosenwald
2018-2020, CWI Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(udp_broadcast,
[ udp_broadcast_initialize/2, % +IPAddress, +Options
udp_broadcast_close/1, % +Scope
udp_peer_add/2, % +Scope, +IP
udp_peer_del/2, % +Scope, ?IP
udp_peer/2 % +Scope, -IP
]).
:- autoload(library(apply),[maplist/2,maplist/3]).
:- autoload(library(backcomp),[thread_at_exit/1]).
:- autoload(library(broadcast),
[broadcast_request/1,broadcast/1,listening/3,listen/3]).
:- autoload(library(debug),[debug/3]).
:- autoload(library(error),
[must_be/2,syntax_error/1,domain_error/2,existence_error/2]).
:- autoload(library(option),[option/3]).
:- autoload(library(socket),
[ tcp_close_socket/1,
udp_socket/1,
tcp_bind/2,
tcp_getopt/2,
tcp_setopt/2,
udp_receive/4,
udp_send/4
]).
% :- debug(udp(broadcast)).
/** <module> A UDP broadcast proxy
SWI-Prolog's broadcast library provides a means that may be used to
facilitate publish and subscribe communication regimes between anonymous
members of a community of interest. The members of the community are
however, necessarily limited to a single instance of Prolog. The UDP
broadcast library removes that restriction. With this library loaded,
any member on your local IP subnetwork that also has this library loaded
may hear and respond to your broadcasts.
This library support three styles of networking as described below. Each
of these networks have their own advantages and disadvantages. Please
study the literature to understand the consequences.
$ broadcast :
Broadcast messages are sent to the LAN subnet. The broadcast
implementation uses two UDP ports: a public to address the whole
group and a private one to address a specific node. Broadcasting
is generally a good choice if the subnet is small and traffic is
low.
$ unicast :
Unicast sends copies of packages to known peers. Unicast networks
can easily be routed. The unicast version uses a single UDP port
per node. Unicast is generally a good choice for a small party,
in particular if the peers are in different networks.
$ multicast :
Multicast is like broadcast, but it can be configured to
work accross networks and may work more efficiently on VLAN networks.
Like the broadcast setup, two UDP ports are used. Multicasting can
in general deliver the most efficient LAN and WAN networks, but
requires properly configured routing between the peers.
After initialization and, in the case of a _unicast_ network managing
the set of peers, communication happens through broadcast/1,
broadcast_request/1 and listen/1,2,3.
A broadcast/1 or broadcast_request/1 of the shape udp(Scope, Term) or
udp(Scope, Term, TimeOut) is forwarded over the UDP network to all peers
that joined the same `Scope`. To prevent the potential for feedback
loops, only the plain `Term` is broadcasted locally. The timeout is
optional. It specifies the amount to time to wait for replies to arrive
in response to a broadcast_request/1. The default period is 0.250
seconds. The timeout is ignored for broadcasts.
An example of three separate processes cooperating in the same _scope_
called `peers`:
==
Process A:
?- listen(number(X), between(1, 5, X)).
true.
?-
Process B:
?- listen(number(X), between(7, 9, X)).
true.
?-
Process C:
?- findall(X, broadcast_request(udp(peers, number(X))), Xs).
Xs = [1, 2, 3, 4, 5, 7, 8, 9].
?-
==
It is also possible to carry on a private dialog with a single
responder. To do this, you supply a compound of the form, Term:PortId,
to a UDP scoped broadcast/1 or broadcast_request/1, where PortId is the
ip-address and port-id of the intended listener. If you supply an
unbound variable, PortId, to broadcast_request, it will be unified with
the address of the listener that responds to Term. You may send a
directed broadcast to a specific member by simply providing this address
in a similarly structured compound to a UDP scoped broadcast/1. The
message is sent via unicast to that member only by way of the member's
broadcast listener. It is received by the listener just as any other
broadcast would be. The listener does not know the difference.
For example, in order to discover who responded with a particular value:
==
Host B Process 1:
?- listen(number(X), between(1, 5, X)).
true.
?-
Host A Process 1:
?- listen(number(X), between(7, 9, X)).
true.
?-
Host A Process 2:
?- listen(number(X), between(1, 5, X)).
true.
?- bagof(X, broadcast_request(udp(peers,number(X):From,1)), Xs).
From = ip(192, 168, 1, 103):34855,
Xs = [7, 8, 9] ;
From = ip(192, 168, 1, 103):56331,
Xs = [1, 2, 3, 4, 5] ;
From = ip(192, 168, 1, 104):3217,
Xs = [1, 2, 3, 4, 5].
==
All incomming trafic is handled by a single thread with the alias
`udp_inbound_proxy`. This thread also performs the internal dispatching
using broadcast/1 and broadcast_request/1. Future versions may provide
for handling these requests in separate threads.
## Caveats {#udp-broadcase-caveats}
While the implementation is mostly transparent, there are some important
and subtle differences that must be taken into consideration:
* UDP broadcast requires an initialization step in order to
launch the broadcast listener proxy. See
udp_broadcast_initialize/2.
* Prolog's broadcast_request/1 is nondet. It sends the request,
then evaluates the replies synchronously, backtracking as needed
until a satisfactory reply is received. The remaining potential
replies are not evaluated. With UDP, all peers will send all
answers to the query. The receiver may however stop listening.
* A UDP broadcast/1 is completely asynchronous.
* A UDP broadcast_request/1 is partially synchronous. A
broadcast_request/1 is sent, then the sender balks for a period of
time (default: 250 ms) while the replies are collected. Any reply
that is received after this period is silently discarded. A
optional second argument is provided so that a sender may specify
more (or less) time for replies.
* Replies are presented to the user as a choice point on arrival,
until the broadcast request timer finally expires. This
allows traffic to propagate through the system faster and provides
the requestor with the opportunity to terminate a broadcast request
early if desired, by simply cutting choice points.
* Please beware that broadcast request transactions remain active
and resources consumed until broadcast_request finally fails on
backtracking, an uncaught exception occurs, or until choice points
are cut. Failure to properly manage this will likely result in
chronic exhaustion of UDP sockets.
* If a listener is connected to a generator that always succeeds
(e.g. a random number generator), then the broadcast request will
never terminate and trouble is bound to ensue.
* broadcast_request/1 with =|udp_subnet|= scope is _not_ reentrant.
If a listener performs a broadcast_request/1 with UDP scope
recursively, then disaster looms certain. This caveat does not apply
to a UDP scoped broadcast/1, which can safely be performed from a
listener context.
* UDP broadcast's capacity is not infinite. While it can tolerate
substantial bursts of activity, it is designed for short bursts of
small messages. Unlike TIPC, UDP is unreliable and has no QOS
protections. Congestion is likely to cause trouble in the form of
non-Byzantine failure. That is, late, lost (e.g. infinitely late),
or duplicate datagrams. Caveat emptor.
* A UDP broadcast_request/1 term that is grounded is considered to
be a broadcast only. No replies are collected unless the there is at
least one unbound variable to unify.
* A UDP broadcast/1 always succeeds, even if there are no
listeners.
* A UDP broadcast_request/1 that receives no replies will fail.
* Replies may be coming from many different places in the network
(or none at all). No ordering of replies is implied.
* Prolog terms are sent to others after first converting them to
atoms using term_string/3. Serialization does not deal with cycles,
attributes or sharing. The hook udp_term_string_hook/3 may be
defined to change the message serialization and support different
message formats and/or encryption.
* The broadcast model is based on anonymity and a presumption of
trust--a perfect recipe for compromise. UDP is an Internet protocol.
A UDP broadcast listener exposes a public port, which is
static and shared by all listeners, and a private port, which is
semi-static and unique to the listener instance. Both can be seen
from off-cluster nodes and networks. Usage of this module exposes
the node and consequently, the cluster to significant security
risks. So have a care when designing your application. You must talk
only to those who share and contribute to your concerns using a
carefully prescribed protocol.
* UDP broadcast categorically and silently ignores all message
traffic originating from or terminating on nodes that are not
members of the local subnet. This security measure only keeps honest
people honest!
@author Jeffrey Rosenwald (JeffRose@acm.org), Jan Wielemaker
@license BSD-2
@see tipc.pl
*/
:- multifile
udp_term_string_hook/3, % +Scope, ?Term, ?String
udp_unicast_join_hook/3, % +Scope, +From, +Data
black_list/1. % +Term
:- meta_predicate
safely(0),
safely_det(0).
safely(Predicate) :-
Err = error(_,_),
catch(Predicate, Err,
print_message_fail(Err)).
safely_det(Predicate) :-
Err = error(_,_),
catch(Predicate, Err,
print_message_fail(Err)),
!.
safely_det(_).
print_message_fail(Term) :-
print_message(error, Term),
fail.
udp_broadcast_address(IPAddress, Subnet, BroadcastAddress) :-
IPAddress = ip(A1, A2, A3, A4),
Subnet = ip(S1, S2, S3, S4),
BroadcastAddress = ip(B1, B2, B3, B4),
B1 is A1 \/ (S1 xor 255),
B2 is A2 \/ (S2 xor 255),
B3 is A3 \/ (S3 xor 255),
B4 is A4 \/ (S4 xor 255).
%! udp_broadcast_service(?Scope, ?Address) is nondet.
%
% provides the UDP broadcast address for a given Scope. At present,
% only one scope is supported, =|udp_subnet|=.
%! udp_scope(?ScopeName, ?ScopeDef)
:- dynamic
udp_scope/2,
udp_scope_peer/2.
:- volatile
udp_scope/2,
udp_scope_peer/2.
%
% Here's a UDP proxy to Prolog's broadcast library
%
% A sender may extend a broadcast to a subnet of a UDP network by
% specifying a =|udp_subnet|= scoping qualifier in his/her broadcast.
% The qualifier has the effect of selecting the appropriate multi-cast
% address for the transmission. Thus, the sender of the message has
% control over the scope of his/her traffic on a per-message basis.
%
% All in-scope listeners receive the broadcast and simply rebroadcast
% the message locally. All broadcast replies, if any, are sent directly
% to the sender via the port-id that was received with the broadcast.
%
% Each listener exposes two UDP ports, a shared public port that is
% bound to a well-known port number and a private port that uniquely
% indentifies the listener. Broadcasts are received on the public port
% and replies are sent on the private port. Directed broadcasts
% (unicasts) are received on the private port and replies are sent on
% the private port.
% Thread 1 listens for directed traffic on the private port.
%
:- dynamic
udp_private_socket/3, % Port, Socket, FileNo
udp_public_socket/4, % Scope, Port, Socket, FileNo
udp_closed/1. % Scope
udp_inbound_proxy(Master) :-
thread_at_exit(inbound_proxy_died),
make_private_socket,
thread_send_message(Master, udp_inbound_ready),
udp_inbound_proxy_loop.
udp_inbound_proxy_loop :-
forall(udp_scope(Scope, ScopeData),
make_public_socket(ScopeData, Scope)),
retractall(udp_closed(_)),
findall(FileNo, udp_socket_file_no(FileNo), FileNos),
catch(dispatch_inbound(FileNos),
E, dispatch_exception(E)),
udp_inbound_proxy_loop.
dispatch_exception(E) :-
E = error(_,_),
!,
print_message(warning, E).
dispatch_exception(_).
%! make_private_socket is det.
%
% Create our private socket. This socket is used for messages that are
% directed to me. Note that we only need this for broadcast networks.
% If we use a unicast network we use our public port to contact this
% specific server.
make_private_socket :-
udp_private_socket(_Port, S, _F),
!,
( ( udp_scope(Scope, broadcast(_,_,_))
; udp_scope(Scope, multicast(_,_))
),
\+ udp_closed(Scope)
-> true
; tcp_close_socket(S),
retractall(udp_private_socket(_,_,_))
).
make_private_socket :-
udp_scope(_, broadcast(_,_,_)),
!,
udp_socket(S),
tcp_bind(S, Port),
tcp_getopt(S, file_no(F)),
tcp_setopt(S, broadcast),
assertz(udp_private_socket(Port, S, F)).
make_private_socket :-
udp_scope(_, multicast(_,_)),
!,
udp_socket(S),
tcp_bind(S, Port),
tcp_getopt(S, file_no(F)),
assertz(udp_private_socket(Port, S, F)).
make_private_socket.
%! make_public_socket(+ScopeData, +Scope)
%
% Create the public port Scope.
make_public_socket(_, Scope) :-
udp_public_socket(Scope, _Port, S, _),
!,
( udp_closed(Scope)
-> tcp_close_socket(S),
retractall(udp_public_socket(Scope, _, _, _))
; true
).
make_public_socket(broadcast(_SubNet, _Broadcast, Port), Scope) :-
udp_socket(S),
tcp_setopt(S, reuseaddr),
tcp_bind(S, Port),
tcp_getopt(S, file_no(F)),
assertz(udp_public_socket(Scope, Port, S, F)).
make_public_socket(multicast(Group, Port), Scope) :-
udp_socket(S),
tcp_setopt(S, reuseaddr),
tcp_bind(S, Port),
tcp_setopt(S, ip_add_membership(Group)),
tcp_getopt(S, file_no(F)),
assertz(udp_public_socket(Scope, Port, S, F)).
make_public_socket(unicast(Port), Scope) :-
udp_socket(S),
tcp_bind(S, Port),
tcp_getopt(S, file_no(F)),
assertz(udp_public_socket(Scope, Port, S, F)).
udp_socket_file_no(FileNo) :-
udp_private_socket(_,_,FileNo).
udp_socket_file_no(FileNo) :-
udp_public_socket(_,_,_,FileNo).
%! dispatch_inbound(+FileNos)
%
% Dispatch inbound traffic. This loop uses wait_for_input/3 to wait
% for one or more UDP sockets and dispatches the requests using the
% internal broadcast service. For an incomming broadcast _request_ we
% send the reply only to the requester and therefore we must use a
% socket that is not in broadcast mode.
dispatch_inbound(FileNos) :-
debug(udp(broadcast), 'Waiting for ~p', [FileNos]),
wait_for_input(FileNos, Ready, infinite),
debug(udp(broadcast), 'Ready: ~p', [Ready]),
maplist(dispatch_ready, Ready),
dispatch_inbound(FileNos).
dispatch_ready(FileNo) :-
udp_private_socket(_Port, Private, FileNo),
!,
udp_receive(Private, Data, From, [max_message_size(65535)]),
debug(udp(broadcast), 'Inbound on private port', []),
( in_scope(Scope, From),
udp_term_string(Scope, Term, Data) % only accept valid data
-> ld_dispatch(Private, Term, From, Scope)
; true
).
dispatch_ready(FileNo) :-
udp_public_socket(Scope, _PublicPort, Public, FileNo),
!,
udp_receive(Public, Data, From, [max_message_size(65535)]),
debug(udp(broadcast), 'Inbound on public port from ~p for scope ~p',
[From, Scope]),
( in_scope(Scope, From),
udp_term_string(Scope, Term, Data) % only accept valid data
-> ( udp_scope(Scope, unicast(_))
-> ld_dispatch(Public, Term, From, Scope)
; udp_private_socket(_PrivatePort, Private, _FileNo),
ld_dispatch(Private, Term, From, Scope)
)
; udp_scope(Scope, unicast(_)),
udp_term_string(Scope, Term, Data),
unicast_out_of_scope_request(Scope, From, Term)
-> true
; true
).
in_scope(Scope, Address) :-
udp_scope(Scope, ScopeData),
in_scope(ScopeData, Scope, Address),
!.
in_scope(Scope, From) :-
debug(udp(broadcast), 'Out-of-scope ~p datagram from ~p',
[Scope, From]),
fail.
in_scope(broadcast(Subnet, Broadcast, _PublicPort), _Scope, IP:_FromPort) :-
udp_broadcast_address(IP, Subnet, Broadcast).
in_scope(multicast(_Group, _Port), _Scope, _From).
in_scope(unicast(_PublicPort), Scope, IP:_) :-
udp_peer(Scope, IP:_).
%! ld_dispatch(+PrivateSocket, +Term, +From, +Scope)
%
% Locally dispatch Term received from From. If it concerns a broadcast
% request, send the replies to PrivateSocket to From. The multifile
% hook black_list/1 can be used to ignore certain messages.
ld_dispatch(_S, Term, From, _Scope) :-
debug(udp(broadcast), 'ld_dispatch(~p) from ~p', [Term, From]),
fail.
ld_dispatch(_S, Term, _From, _Scope) :-
blacklisted(Term), !.
ld_dispatch(S, request(Key, Term), From, Scope) :-
!,
forall(safely(broadcast_request(Term)),
safely((udp_term_string(Scope, reply(Key,Term), Message),
udp_send(S, Message, From, [])))).
ld_dispatch(_S, send(Term), _From, _Scope) :-
!,
safely_det(broadcast(Term)).
ld_dispatch(_S, reply(Key, Term), From, _Scope) :-
( reply_queue(Key, Queue)
-> safely(thread_send_message(Queue, Term:From))
; true
).
blacklisted(send(Term)) :- black_list(Term).
blacklisted(request(_,Term)) :- black_list(Term).
blacklisted(reply(_,Term)) :- black_list(Term).
%! reload_udp_proxy
%
% Update the UDP relaying proxy service. The proxy consists of three
% forwarding mechanisms:
%
% - Listen on our _scope_. If any messages are received, hand them
% to udp_broadcast/3 to be broadcasted to _scope_ or sent to a
% specific recipient.
% - Listen on the _scope_ public port. Incomming messages are
% relayed to the internal broadcast mechanism and replies are sent
% to from our private socket.
% - Listen on our private port and reply using the same port.
reload_udp_proxy :-
reload_outbound_proxy,
reload_inbound_proxy.
reload_outbound_proxy :-
listening(udp_broadcast, udp(_,_), _),
!.
reload_outbound_proxy :-
listen(udp_broadcast, udp(Scope,Message),
udp_broadcast(Message, Scope, 0.25)),
listen(udp_broadcast, udp(Scope,Message,Timeout),
udp_broadcast(Message, Scope, Timeout)),
listen(udp_broadcast, udp_subnet(Message), % backward compatibility
udp_broadcast(Message, subnet, 0.25)),
listen(udp_broadcast, udp_subnet(Message,Timeout),
udp_broadcast(Message, subnet, Timeout)).
reload_inbound_proxy :-
catch(thread_signal(udp_inbound_proxy, throw(udp_reload)),
error(existence_error(thread, _),_),
fail),
!.
reload_inbound_proxy :-
thread_self(Me),
thread_create(udp_inbound_proxy(Me), _,
[ alias(udp_inbound_proxy),
detached(true)
]),
thread_get_message(Me, udp_inbound_ready, [timeout(10)]).
inbound_proxy_died :-
thread_self(Self),
thread_property(Self, status(Status)),
( catch(recreate_proxy(Status), _, fail)
-> print_message(informational,
httpd_restarted_worker(Self))
; done_status_message_level(Status, Level),
print_message(Level,
httpd_stopped_worker(Self, Status))
).
recreate_proxy(exception(Error)) :-
recreate_on_error(Error),
reload_inbound_proxy.
recreate_on_error('$aborted').
recreate_on_error(time_limit_exceeded).
done_status_message_level(true, silent) :- !.
done_status_message_level(exception('$aborted'), silent) :- !.
done_status_message_level(_, informational).
%! udp_broadcast_close(+Scope)
%
% Close a UDP broadcast scope.
udp_broadcast_close(Scope) :-
udp_scope(Scope, _ScopeData),
!,
assert(udp_closed(Scope)),
reload_udp_proxy.
udp_broadcast_close(_).
%! udp_broadcast(+What, +Scope, +TimeOut)
%
% Send a broadcast request to my UDP peers in Scope. What is either of
% the shape `Term:Address` to send Term to a specific address or query
% the address from which term is answered or it is a plain `Term`.
%
% If `Term` is nonground, it is considered is a _request_ (see
% broadcast_request/1) and the predicate succeeds for each answer
% received within TimeOut seconds. If Term is ground it is considered
% an asynchronous broadcast and udp_broadcast/3 is deterministic.
udp_broadcast(Term:To, Scope, _Timeout) :-
ground(Term), ground(To), % broadcast to single listener
!,
udp_basic_broadcast(send(Term), Scope, single(To)).
udp_broadcast(Term, Scope, _Timeout) :-
ground(Term), % broadcast to all listeners
!,
udp_basic_broadcast(send(Term), Scope, broadcast).
udp_broadcast(Term:To, Scope, Timeout) :-
ground(To), % request to single listener
!,
setup_call_cleanup(
request_queue(Id, Queue),
( udp_basic_broadcast(request(Id, Term), Scope, single(To)),
udp_br_collect_replies(Queue, Timeout, Term:To)
),
destroy_request_queue(Queue)).
udp_broadcast(Term:From, Scope, Timeout) :-
!, % request to all listeners, collect sender
setup_call_cleanup(
request_queue(Id, Queue),
( udp_basic_broadcast(request(Id, Term), Scope, broadcast),
udp_br_collect_replies(Queue, Timeout, Term:From)
),
destroy_request_queue(Queue)).
udp_broadcast(Term, Scope, Timeout) :- % request to all listeners
udp_broadcast(Term:_, Scope, Timeout).
:- dynamic
reply_queue/2.
request_queue(Id, Queue) :-
Id is random(1<<63),
message_queue_create(Queue),
asserta(reply_queue(Id, Queue)).
destroy_request_queue(Queue) :- % leave queue to GC
retractall(reply_queue(_, Queue)).
%! udp_basic_broadcast(+Term, +Dest) is multi.
%
% Create a UDP private socket and use it to send Term to Address. If
% Address is our broadcast address, set the socket in broadcast mode.
%
% This predicate succeeds with a choice point. Committing the choice
% point closes S.
%
% @arg Dest is one of single(Target) or `broadcast`.
udp_basic_broadcast(Term, Scope, Dest) :-
debug(udp(broadcast), 'UDP proxy outbound ~p to ~p', [Term, Dest]),
udp_term_string(Scope, Term, String),
udp_send_message(Dest, String, Scope).
udp_send_message(single(Address), String, Scope) :-
( udp_scope(Scope, unicast(_))
-> udp_public_socket(Scope, _Port, S, _)
; udp_private_socket(_Port, S, _F)
),
safely(udp_send(S, String, Address, [])).
udp_send_message(broadcast, String, Scope) :-
( udp_scope(Scope, unicast(_))
-> udp_public_socket(Scope, _Port, S, _),
forall(udp_peer(Scope, Address),
( debug(udp(broadcast), 'Unicast to ~p', [Address]),
safely(udp_send(S, String, Address, []))))
; udp_scope(Scope, broadcast(_SubNet, Broadcast, Port))
-> udp_private_socket(_PrivatePort, S, _F),
udp_send(S, String, Broadcast:Port, [])
; udp_scope(Scope, multicast(Group, Port))
-> udp_private_socket(_PrivatePort, S, _F),
udp_send(S, String, Group:Port, [])
).
% ! udp_br_collect_replies(+Queue, +TimeOut, -TermAndFrom) is nondet.
%
% Collect replies on Socket for TimeOut seconds. Succeed for each
% received message.
udp_br_collect_replies(Queue, Timeout, Reply) :-
get_time(Start),
Deadline is Start+Timeout,
repeat,
( thread_get_message(Queue, Reply,
[ deadline(Deadline)
])
-> true
; !,
fail
).
%! udp_broadcast_initialize(+IPAddress, +Options) is semidet.
%
% Initialized UDP broadcast bridge. IPAddress is the IP address on the
% network we want to broadcast on. IP addresses are terms ip(A,B,C,D)
% or an atom or string of the format =|A.B.C.D|=. Options processed:
%
% - scope(+ScopeName)
% Name of the scope. Default is `subnet`.
% - subnet_mask(+SubNet)
% Subnet to broadcast on. This uses the same syntax as IPAddress.
% Default classifies the network as class A, B or C depending on
% the the first octet and applies the default mask.
% - port(+Port)
% Public port to use. Default is 20005.
% - method(+Method)
% Method to send a message to multiple peers. One of
% - broadcast
% Use UDP broadcast messages to the LAN. This is the
% default
% - multicast
% Use UDP multicast messages. This can be used on WAN networks,
% provided the intermediate routers understand multicast.
% - unicast
% Send the messages individually to all registered peers.
%
% For compatibility reasons Options may be the subnet mask.
udp_broadcast_initialize(IP, Options) :-
with_mutex(udp_broadcast,
udp_broadcast_initialize_sync(IP, Options)).
udp_broadcast_initialize_sync(IP, Options) :-
nonvar(Options),
Options = ip(_,_,_,_),
!,
udp_broadcast_initialize(IP, [subnet_mask(Options)]).
udp_broadcast_initialize_sync(IP, Options) :-
to_ip4(IP, IPAddress),
option(method(Method), Options, broadcast),
must_be(oneof([broadcast, multicast, unicast]), Method),
udp_broadcast_initialize_sync(Method, IPAddress, Options),
reload_udp_proxy.
udp_broadcast_initialize_sync(broadcast, IPAddress, Options) :-
option(subnet_mask(Subnet), Options, _),
mk_subnet(Subnet, IPAddress, Subnet4),
option(port(Port), Options, 20005),
option(scope(Scope), Options, subnet),
udp_broadcast_address(IPAddress, Subnet4, Broadcast),
udp_broadcast_close(Scope),
assertz(udp_scope(Scope, broadcast(Subnet4, Broadcast, Port))).
udp_broadcast_initialize_sync(unicast, _IPAddress, Options) :-
option(port(Port), Options, 20005),
option(scope(Scope), Options, subnet),
udp_broadcast_close(Scope),
assertz(udp_scope(Scope, unicast(Port))).
udp_broadcast_initialize_sync(multicast, IPAddress, Options) :-
option(port(Port), Options, 20005),
option(scope(Scope), Options, subnet),
udp_broadcast_close(Scope),
multicast_address(IPAddress),
assertz(udp_scope(Scope, multicast(IPAddress, Port))).
to_ip4(Atomic, ip(A,B,C,D)) :-
atomic(Atomic),
!,
( split_string(Atomic, ".", "", Strings),
maplist(number_string, [A,B,C,D], Strings)
-> true
; syntax_error(illegal_ip_address)
).
to_ip4(IP, IP).
mk_subnet(Var, IP, Subnet) :-
var(Var),
!,
( default_subnet(IP, Subnet)
-> true
; domain_error(ip_with_subnet, IP)
).
mk_subnet(Subnet, _, Subnet4) :-
to_ip4(Subnet, Subnet4).
%! default_subnet(+IP, -NetWork)
%
% Determine the default network address from an IP address. This
% classifies the network as class A, B or C.
%
% @see https://docs.oracle.com/cd/E19504-01/802-5753/planning3-78185/index.html
default_subnet(ip(A,_,_,_), ip(A,0,0,0)) :-
between(0,127, A), !.
default_subnet(ip(A,B,_,_), ip(A,B,0,0)) :-
between(128,191, A), !.
default_subnet(ip(A,B,C,_), ip(A,B,C,0)) :-
between(192,223, A), !.
multicast_address(ip(A,_,_,_)) :-
between(224, 239, A),
!.
multicast_address(IP) :-
domain_error(multicast_network, IP).
/*******************************
* UNICAST PEERS *
*******************************/
%! udp_peer_add(+Scope, +Address) is det.
%! udp_peer_del(+Scope, ?Address) is det.
%! udp_peer(?Scope, ?Address) is nondet.
%
% Manage and query the set of known peers for a unicast network.
% Address is either a term IP:Port or a plain IP address. In the
% latter case the default port registered with the scope is used.
%
% @arg Address has canonical form ip(A,B,C,D):Port.
udp_peer_add(Scope, Address) :-
must_be(ground, Address),
peer_address(Address, Scope, Canonical),
( udp_scope_peer(Scope, Canonical)
-> true
; assertz(udp_scope_peer(Scope, Canonical))
).
udp_peer_del(Scope, Address) :-
peer_address(Address, Scope, Canonical),
retractall(udp_scope_peer(Scope, Canonical)).
udp_peer(Scope, IPAddress) :-
udp_scope_peer(Scope, IPAddress).
peer_address(IP:Port, _Scope, IPAddress:Port) :-
!,
to_ip4(IP, IPAddress).
peer_address(IP, Scope, IPAddress:Port) :-
( udp_scope(Scope, unicast(Port))
-> true
; existence_error(udp_scope, Scope)
),
to_ip4(IP, IPAddress).
/*******************************
* HOOKS *
*******************************/
%! udp_term_string_hook(+Scope, +Term, -String) is det.
%! udp_term_string_hook(+Scope, -Term, +String) is semidet.
%
% Hook for serializing the message Term. The default writes
% =|%prolog\n|=, followed by the Prolog term in quoted notation while
% ignoring operators. This hook may use alternative serialization such
% as fast_term_serialized/2, use library(ssl) to realise encrypted
% messages, etc.
%
% @arg Scope is the scope for which the message is broadcasted. This
% can be used to use different serialization for different scopes.
% @arg Term encapsulates the term broadcasted by the application as
% follows:
%
% - send(ApplTerm)
% Is sent by broadcast(udp(Scope, ApplTerm))
% - request(Id,ApplTerm)
% Is sent by broadcast_request/1, where Id is a unique large
% (64 bit) integer.
% - reply(Id,ApplTerm)
% Is sent to reply on a broadcast_request/1 request that has
% been received. Arguments are the same as above.
%
% @throws The hook may throw udp(invalid_message) to stop processing
% the message.
%! udp_term_string(+Scope, +Term, -String) is det.
%! udp_term_string(+Scope, -Term, +String) is semidet.
%
% Serialize an arbitrary Prolog term as a string. The string is
% prefixed by a magic key to ensure we only accept messages that are
% meant for us.
%
% In mode (+,-), Term is written with the options ignore_ops(true) and
% quoted(true).
%
% This predicate first calls udp_term_string_hook/3.
udp_term_string(Scope, Term, String) :-
catch(udp_term_string_hook(Scope, Term, String), udp(Error), true),
!,
( var(Error)
-> true
; Error == invalid_message
-> fail
; throw(udp(Error))
).
udp_term_string(_Scope, Term, String) :-
( var(String)
-> format(string(String), '%-prolog-\n~W',
[ Term,
[ ignore_ops(true),
quoted(true)
]
])
; sub_string(String, 0, _, _, '%-prolog-\n'),
term_string(Term, String,
[ syntax_errors(quiet)
])
).
%! unicast_out_of_scope_request(+Scope, +From, +Data) is semidet.
%! udp_unicast_join_hook(+Scope, +From, +Data) is semidet.
%
% This multifile hook is called if an UDP package is received on the
% port of the unicast network identified by Scope. From is the origin
% IP and port and Data is the message data that is deserialized as
% defined for the scope (see udp_term_string/3).
%
% This hook is intended to initiate a new node joining the network of
% peers. We could in theory also omit the in-scope test and use a
% normal broadcast to join. Using a different channal however provides
% a basic level of security. A possibe implementation is below. The
% first fragment is a hook added to the server, the second is a
% predicate added to a client and the last initiates the request in
% the client. The excanged term (join(X)) can be used to exchange a
% welcome handshake.
%
%
% ```
% :- multifile udp_broadcast:udp_unicast_join_hook/3.
% udp_broadcast:udp_unicast_join_hook(Scope, From, join(welcome)) :-
% udp_peer_add(Scope, From),
% ```
%
% ```
% join_request(Scope, Address, Reply) :-
% udp_peer_add(Scope, Address),
% broadcast_request(udp(Scope, join(X))).
% ```
%
% ```
% ?- join_request(myscope, "1.2.3.4":10001, Reply).
% Reply = welcome.
% ```
unicast_out_of_scope_request(Scope, From, send(Term)) :-
udp_unicast_join_hook(Scope, From, Term).
unicast_out_of_scope_request(Scope, From, request(Key, Term)) :-
udp_unicast_join_hook(Scope, From, Term),
udp_public_socket(Scope, _Port, Socket, _FileNo),
safely((udp_term_string(Scope, reply(Key,Term), Message),
udp_send(Socket, Message, From, []))).
|