File: ineq_r.pl

package info (click to toggle)
swi-prolog 9.0.4%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 82,408 kB
  • sloc: ansic: 387,503; perl: 359,326; cpp: 6,613; lisp: 6,247; java: 5,540; sh: 3,147; javascript: 2,668; python: 1,900; ruby: 1,594; yacc: 845; makefile: 428; xml: 317; sed: 12; sql: 6
file content (1384 lines) | stat: -rw-r--r-- 41,537 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
/*

    Part of CLP(R) (Constraint Logic Programming over Reals)

    Author:        Leslie De Koninck
    E-mail:        Leslie.DeKoninck@cs.kuleuven.be
    WWW:           http://www.swi-prolog.org
		   http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
    Copyright (C): 2004, K.U. Leuven and
		   1992-1995, Austrian Research Institute for
		              Artificial Intelligence (OFAI),
			      Vienna, Austria

    This software is part of Leslie De Koninck's master thesis, supervised
    by Bart Demoen and daily advisor Tom Schrijvers.  It is based on CLP(Q,R)
    by Christian Holzbaur for SICStus Prolog and distributed under the
    license details below with permission from all mentioned authors.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2
    of the License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

    As a special exception, if you link this library with other files,
    compiled with a Free Software compiler, to produce an executable, this
    library does not by itself cause the resulting executable to be covered
    by the GNU General Public License. This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/


:- module(ineq_r,
	[
	    ineq/4,
	    ineq_one/4,
	    ineq_one_n_n_0/1,
	    ineq_one_n_p_0/1,
	    ineq_one_s_n_0/1,
	    ineq_one_s_p_0/1
	]).
:- use_module(bv_r,
	[
	    backsubst/3,
	    backsubst_delta/4,
	    basis_add/2,
	    dec_step/2,
	    deref/2,
	    determine_active_dec/1,
	    determine_active_inc/1,
	    export_binding/1,
	    get_or_add_class/2,
	    inc_step/2,
	    lb/3,
	    pivot_a/4,
	    rcbl_status/6,
	    reconsider/1,
	    same_class/2,
	    solve/1,
	    ub/3,
	    unconstrained/4,
	    var_intern/3,
	    var_with_def_intern/4
	]).
:- use_module(store_r,
	[
	    add_linear_11/3,
	    add_linear_ff/5,
	    normalize_scalar/2
	]).

% ineq(H,I,Nf,Strictness)
%
% Solves the inequality Nf < 0 or Nf =< 0 where Nf is in normal form
% and H and I are the homogene and inhomogene parts of Nf.

ineq([],I,_,Strictness) :- ineq_ground(Strictness,I).
ineq([v(K,[X^1])|Tail],I,Lin,Strictness) :-
	ineq_cases(Tail,I,Lin,Strictness,X,K).

ineq_cases([],I,_,Strictness,X,K) :-	% K*X + I < 0 or K*X + I =< 0
	ineq_one(Strictness,X,K,I).
ineq_cases([_|_],_,Lin,Strictness,_,_) :-
	deref(Lin,Lind),	% Id+Hd =< 0
	Lind = [Inhom,_|Hom],
	ineq_more(Hom,Inhom,Lind,Strictness).

% ineq_ground(Strictness,I)
%
% Checks whether a grounded inequality I < 0 or I =< 0 is satisfied.

ineq_ground(strict,I) :- I < -1.0e-10.		% I < 0
ineq_ground(nonstrict,I) :- I < 1.0e-10.	% I =< 0

% ineq_one(Strictness,X,K,I)
%
% Solves the inequality K*X + I < 0 or K*X + I =< 0

ineq_one(strict,X,K,I) :-
	(   K > 1.0e-10 % K > 0.0
	->  (   I >= -1.0e-10, % I =:= 0.0
		I =< 1.0e-10
	    ->  ineq_one_s_p_0(X)	% K*X < 0, K > 0 => X < 0
	    ;   Inhom is I/K,
		ineq_one_s_p_i(X,Inhom)	% K*X + I < 0, K > 0 => X + I/K < 0
	    )
	;   (   I >= -1.0e-10, % I =:= 0.0
		I =< 1.0e-10
	    ->  ineq_one_s_n_0(X)	% K*X < 0, K < 0 => -X < 0
	    ;   Inhom is -I/K,
		ineq_one_s_n_i(X,Inhom)	% K*X + I < 0, K < 0 => -X - I/K < 0
	    )
	).
ineq_one(nonstrict,X,K,I) :-
	(   K > 1.0e-10 % K > 0.0
	->  (   I >= -1.0e-10,	% I =:= 0
		I =< 1.0e-10
	    ->  ineq_one_n_p_0(X)	% K*X =< 0, K > 0 => X =< 0
	    ;   Inhom is I/K,
		ineq_one_n_p_i(X,Inhom)	% K*X + I =< 0, K > 0 => X + I/K =< 0
	    )
	;   (   I >= -1.0e-10,	% I =:= 0
		I =< 1.0e-10
	    ->  ineq_one_n_n_0(X)	% K*X =< 0, K < 0 => -X =< 0
	    ;   Inhom is -I/K,
		ineq_one_n_n_i(X,Inhom)	% K*X + I =< 0, K < 0 => -X - I/K =< 0
	    )
	).

% --------------------------- strict ----------------------------

% ineq_one_s_p_0(X)
%
% Solves the inequality X < 0

ineq_one_s_p_0(X) :-
	get_attr(X,clpqr_itf,Att),
	arg(4,Att,lin([Ix,_|OrdX])),
	!, % old variable, this is deref
	(   \+ arg(1,Att,clpr)
	->  throw(error(permission_error('mix CLP(Q) variables with',
		'CLP(R) variables:',X),context(_)))
	;   ineq_one_old_s_p_0(OrdX,X,Ix)
	).
ineq_one_s_p_0(X) :-	% new variable, nothing depends on it
	var_intern(t_u(0.0),X,1). % put a strict inactive upperbound on the variable

% ineq_one_s_n_0(X)
%
% Solves the inequality X > 0

ineq_one_s_n_0(X) :-
	get_attr(X,clpqr_itf,Att),
	arg(4,Att,lin([Ix,_|OrdX])),
	!,
	(   \+ arg(1,Att,clpr)
	->  throw(error(permission_error('mix CLP(Q) variables with',
		'CLP(R) variables:',X),context(_)))
	;   ineq_one_old_s_n_0(OrdX,X,Ix)
	).
ineq_one_s_n_0(X) :-
	var_intern(t_l(0.0),X,2). % puts a strict inactive lowerbound on the variable

% ineq_one_s_p_i(X,I)
%
% Solves the inequality X < -I

ineq_one_s_p_i(X,I) :-
	get_attr(X,clpqr_itf,Att),
	arg(4,Att,lin([Ix,_|OrdX])),
	!,
	(   \+ arg(1,Att,clpr)
	->  throw(error(permission_error('mix CLP(Q) variables with',
		'CLP(R) variables:',X),context(_)))
	;   ineq_one_old_s_p_i(OrdX,I,X,Ix)
	).
ineq_one_s_p_i(X,I) :-
	Bound is -I,
	var_intern(t_u(Bound),X,1). % puts a strict inactive upperbound on the variable

% ineq_one_s_n_i(X,I)
%
% Solves the inequality X > I

ineq_one_s_n_i(X,I) :-
	get_attr(X,clpqr_itf,Att),
	arg(4,Att,lin([Ix,_|OrdX])),
	!,
	(   \+ arg(1,Att,clpr)
	->  throw(error(permission_error('mix CLP(Q) variables with',
		'CLP(R) variables:',X),context(_)))
	;   ineq_one_old_s_n_i(OrdX,I,X,Ix)
	).
ineq_one_s_n_i(X,I) :- var_intern(t_l(I),X,2). % puts a strict inactive lowerbound on the variable

% ineq_one_old_s_p_0(Hom,X,Inhom)
%
% Solves the inequality X < 0 where X has linear equation Hom + Inhom

ineq_one_old_s_p_0([],_,Ix) :- Ix < -1.0e-10. % X = I: Ix < 0
ineq_one_old_s_p_0([l(Y*Ky,_)|Tail],X,Ix) :-
	(   Tail = [] % X = K*Y + I
	->  Bound is -Ix/Ky,
	    update_indep(strict,Y,Ky,Bound)	% X < 0, X = K*Y + I => Y < -I/K or Y > -I/K (depending on K)
	;   Tail = [_|_]
	->  get_attr(X,clpqr_itf,Att),
	    arg(2,Att,type(Type)),
	    arg(3,Att,strictness(Old)),
	    arg(4,Att,lin(Lin)),
	    udus(Type,X,Lin,0.0,Old)	% update strict upperbound
	).

% ineq_one_old_s_p_0(Hom,X,Inhom)
%
% Solves the inequality X > 0 where X has linear equation Hom + Inhom

ineq_one_old_s_n_0([],_,Ix) :- Ix > 1.0e-10. % X = I: Ix > 0
ineq_one_old_s_n_0([l(Y*Ky,_)|Tail], X, Ix) :-
	(   Tail = []	% X = K*Y + I
	->  Coeff is -Ky,
	    Bound is Ix/Coeff,
	    update_indep(strict,Y,Coeff,Bound)
	;   Tail = [_|_]
	->  get_attr(X,clpqr_itf,Att),
	    arg(2,Att,type(Type)),
	    arg(3,Att,strictness(Old)),
	    arg(4,Att,lin(Lin)),
	    udls(Type,X,Lin,0.0,Old)	% update strict lowerbound
	).

% ineq_one_old_s_p_i(Hom,C,X,Inhom)
%
% Solves the inequality X + C < 0 where X has linear equation Hom + Inhom

ineq_one_old_s_p_i([],I,_,Ix) :- Ix + I < -1.0e-10. % X = I
ineq_one_old_s_p_i([l(Y*Ky,_)|Tail],I,X,Ix) :-
	(   Tail = []	% X = K*Y + I
	->  Bound is -(Ix + I)/Ky,
	    update_indep(strict,Y,Ky,Bound)
	;   Tail = [_|_]
	->  Bound is -I,
	    get_attr(X,clpqr_itf,Att),
	    arg(2,Att,type(Type)),
	    arg(3,Att,strictness(Old)),
	    arg(4,Att,lin(Lin)),
	    udus(Type,X,Lin,Bound,Old)	% update strict upperbound
	).

% ineq_one_old_s_n_i(Hom,C,X,Inhom)
%
% Solves the inequality X  - C > 0 where X has linear equation Hom + Inhom

ineq_one_old_s_n_i([],I,_,Ix) :- -Ix + I < -1.0e-10. % X = I
ineq_one_old_s_n_i([l(Y*Ky,_)|Tail],I,X,Ix) :-
	(   Tail = []	% X = K*Y + I
	->  Coeff is -Ky,
	    Bound is (Ix - I)/Coeff,
	    update_indep(strict,Y,Coeff,Bound)
	;   Tail = [_|_]
	->  get_attr(X,clpqr_itf,Att),
	    arg(2,Att,type(Type)),
	    arg(3,Att,strictness(Old)),
	    arg(4,Att,lin(Lin)),
	    udls(Type,X,Lin,I,Old)	% update strict lowerbound
	).

% -------------------------- nonstrict --------------------------

% ineq_one_n_p_0(X)
%
% Solves the inequality X =< 0

ineq_one_n_p_0(X) :-
	get_attr(X,clpqr_itf,Att),
	arg(4,Att,lin([Ix,_|OrdX])),
	!,	% old variable, this is deref
	(   \+ arg(1,Att,clpr)
	->  throw(error(permission_error('mix CLP(Q) variables with',
		'CLP(R) variables:',X),context(_)))
	;   ineq_one_old_n_p_0(OrdX,X,Ix)
	).
ineq_one_n_p_0(X) :-	% new variable, nothing depends on it
	var_intern(t_u(0.0),X,0).	% nonstrict upperbound

% ineq_one_n_n_0(X)
%
% Solves the inequality X >= 0

ineq_one_n_n_0(X) :-
	get_attr(X,clpqr_itf,Att),
	arg(4,Att,lin([Ix,_|OrdX])),
	!,
	(   \+ arg(1,Att,clpr)
	->  throw(error(permission_error('mix CLP(Q) variables with',
		'CLP(R) variables:',X),context(_)))
	;   ineq_one_old_n_n_0(OrdX,X,Ix)
	).
ineq_one_n_n_0(X) :-
	var_intern(t_l(0.0),X,0).	% nonstrict lowerbound

% ineq_one_n_p_i(X,I)
%
% Solves the inequality X =< -I

ineq_one_n_p_i(X,I) :-
	get_attr(X,clpqr_itf,Att),
	arg(4,Att,lin([Ix,_|OrdX])),
	!,
	(   \+ arg(1,Att,clpr)
	->  throw(error(permission_error('mix CLP(Q) variables with',
		'CLP(R) variables:',X),context(_)))
	;   ineq_one_old_n_p_i(OrdX,I,X,Ix)
	).
ineq_one_n_p_i(X,I) :-
	Bound is -I,
	var_intern(t_u(Bound),X,0).	% nonstrict upperbound

% ineq_one_n_n_i(X,I)
%
% Solves the inequality X >= I

ineq_one_n_n_i(X,I) :-
	get_attr(X,clpqr_itf,Att),
	arg(4,Att,lin([Ix,_|OrdX])),
	!,
	(   \+ arg(1,Att,clpr)
	->  throw(error(permission_error('mix CLP(Q) variables with',
		'CLP(R) variables:',X),context(_)))
	;   ineq_one_old_n_n_i(OrdX,I,X,Ix)
	).
ineq_one_n_n_i(X,I) :-
	var_intern(t_l(I),X,0).	% nonstrict lowerbound

% ineq_one_old_n_p_0(Hom,X,Inhom)
%
% Solves the inequality X =< 0 where X has linear equation Hom + Inhom

ineq_one_old_n_p_0([],_,Ix) :- Ix < 1.0e-10. % X =I
ineq_one_old_n_p_0([l(Y*Ky,_)|Tail],X,Ix) :-
	(   Tail = []	%  X = K*Y + I
	->  Bound is -Ix/Ky,
	    update_indep(nonstrict,Y,Ky,Bound)
	;   Tail = [_|_]
	->  get_attr(X,clpqr_itf,Att),
	    arg(2,Att,type(Type)),
	    arg(3,Att,strictness(Old)),
	    arg(4,Att,lin(Lin)),
	    udu(Type,X,Lin,0.0,Old)	% update nonstrict upperbound
	).

% ineq_one_old_n_n_0(Hom,X,Inhom)
%
% Solves the inequality X >= 0 where X has linear equation Hom + Inhom

ineq_one_old_n_n_0([],_,Ix) :- Ix > -1.0e-10.	% X = I
ineq_one_old_n_n_0([l(Y*Ky,_)|Tail], X, Ix) :-
	(   Tail = []	% X = K*Y + I
	->  Coeff is -Ky,
	    Bound is Ix/Coeff,
	    update_indep(nonstrict,Y,Coeff,Bound)
	;   Tail = [_|_]
	->  get_attr(X,clpqr_itf,Att),
	    arg(2,Att,type(Type)),
	    arg(3,Att,strictness(Old)),
	    arg(4,Att,lin(Lin)),
	    udl(Type,X,Lin,0.0,Old)	% update nonstrict lowerbound
	).

% ineq_one_old_n_p_i(Hom,C,X,Inhom)
%
% Solves the inequality X  + C =< 0 where X has linear equation Hom + Inhom

ineq_one_old_n_p_i([],I,_,Ix) :- Ix + I < 1.0e-10.	% X = I
ineq_one_old_n_p_i([l(Y*Ky,_)|Tail],I,X,Ix) :-
	(   Tail = []	% X = K*Y + I
	->  Bound is -(Ix + I)/Ky,
	    update_indep(nonstrict,Y,Ky,Bound)
	;   Tail = [_|_]
	->  Bound is -I,
	    get_attr(X,clpqr_itf,Att),
	    arg(2,Att,type(Type)),
	    arg(3,Att,strictness(Old)),
	    arg(4,Att,lin(Lin)),
	    udu(Type,X,Lin,Bound,Old)	% update nonstrict upperbound
	).

% ineq_one_old_n_n_i(Hom,C,X,Inhom)
%
% Solves the inequality X  - C >= 0 where X has linear equation Hom + Inhom

ineq_one_old_n_n_i([],I,_,Ix) :- -Ix + I < 1.0e-10. % X = I
ineq_one_old_n_n_i([l(Y*Ky,_)|Tail],I,X,Ix) :-
	(   Tail = []
	->  Coeff is -Ky,
	    Bound is (Ix - I)/Coeff,
	    update_indep(nonstrict,Y,Coeff,Bound)
	;   Tail = [_|_]
	->  get_attr(X,clpqr_itf,Att),
	    arg(2,Att,type(Type)),
	    arg(3,Att,strictness(Old)),
	    arg(4,Att,lin(Lin)),
	    udl(Type,X,Lin,I,Old)
	).

% ---------------------------------------------------------------

% ineq_more(Hom,Inhom,Lin,Strictness)
%
% Solves the inequality Lin < 0 or Lin =< 0 with Lin = Hom + Inhom

ineq_more([],I,_,Strictness) :- ineq_ground(Strictness,I).	% I < 0 or I =< 0
ineq_more([l(X*K,_)|Tail],Id,Lind,Strictness) :-
	(   Tail = []
	->  % X*K < Id or X*K =< Id
	    % one var: update bound instead of slack introduction
	    get_or_add_class(X,_),	% makes sure X belongs to a class
	    Bound is -Id/K,
	    update_indep(Strictness,X,K,Bound)	% new bound
	;   Tail = [_|_]
	->  ineq_more(Strictness,Lind)
	).

% ineq_more(Strictness,Lin)
%
% Solves the inequality Lin < 0 or Lin =< 0

ineq_more(strict,Lind) :-
	(   unconstrained(Lind,U,K,Rest)
	->  % never fails, no implied value
	    % Lind < 0 => Rest < -K*U where U has no bounds
	    var_intern(t_l(0.0),S,2),	% create slack variable S
	    get_attr(S,clpqr_itf,AttS),
	    arg(5,AttS,order(OrdS)),
	    Ki is -1.0/K,
	    add_linear_ff(Rest,Ki,[0.0,0.0,l(S*1.0,OrdS)],Ki,LinU),	% U = (-1/K)*Rest + (-1/K)*S
	    LinU = [_,_|Hu],
	    get_or_add_class(U,Class),
	    same_class(Hu,Class),	% put all variables of new lin. eq. of U in the same class
	    get_attr(U,clpqr_itf,AttU),
	    arg(5,AttU,order(OrdU)),
	    arg(6,AttU,class(ClassU)),
	    backsubst(ClassU,OrdU,LinU)	% substitute U by new lin. eq. everywhere in the class
	;   var_with_def_intern(t_u(0.0),S,Lind,1),	% Lind < 0 => Lind = S with S < 0
	    basis_add(S,_),			% adds S to the basis
	    determine_active_dec(Lind),		% activate bounds
	    reconsider(S)			% reconsider basis
	).
ineq_more(nonstrict,Lind) :-
	(   unconstrained(Lind,U,K,Rest)
	->  % never fails, no implied value
	    % Lind =< 0 => Rest =< -K*U where U has no bounds
	    var_intern(t_l(0.0),S,0),	% create slack variable S
	    Ki is -1.0/K,
	    get_attr(S,clpqr_itf,AttS),
	    arg(5,AttS,order(OrdS)),
	    add_linear_ff(Rest,Ki,[0.0,0.0,l(S*1.0,OrdS)],Ki,LinU),	% U = (-1K)*Rest + (-1/K)*S
	    LinU = [_,_|Hu],
	    get_or_add_class(U,Class),
	    same_class(Hu,Class),	% put all variables of new lin. eq of U in the same class
	    get_attr(U,clpqr_itf,AttU),
	    arg(5,AttU,order(OrdU)),
	    arg(6,AttU,class(ClassU)),
	    backsubst(ClassU,OrdU,LinU)	% substitute U by new lin. eq. everywhere in the class
	;   % all variables are constrained
	    var_with_def_intern(t_u(0.0),S,Lind,0),	% Lind =< 0 => Lind = S with S =< 0
	    basis_add(S,_),				% adds S to the basis
	    determine_active_dec(Lind),
	    reconsider(S)
	).


% update_indep(Strictness,X,K,Bound)
%
% Updates the bound of independent variable X where X < Bound or X =< Bound
% or X > Bound or X >= Bound, depending on Strictness and K.

update_indep(strict,X,K,Bound) :-
	get_attr(X,clpqr_itf,Att),
	arg(2,Att,type(Type)),
	arg(3,Att,strictness(Old)),
	arg(4,Att,lin(Lin)),
	(   K < -1.0e-10
	->  uils(Type,X,Lin,Bound,Old)	% update independent lowerbound strict
	;   uius(Type,X,Lin,Bound,Old)	% update independent upperbound strict
	).
update_indep(nonstrict,X,K,Bound) :-
	get_attr(X,clpqr_itf,Att),
	arg(2,Att,type(Type)),
	arg(3,Att,strictness(Old)),
	arg(4,Att,lin(Lin)),
	(   K < -1.0e-10
	->  uil(Type,X,Lin,Bound,Old)	% update independent lowerbound nonstrict
	;   uiu(Type,X,Lin,Bound,Old)	% update independent upperbound nonstrict
	).


% ---------------------------------------------------------------------------------------

%
% Update a bound on a var xi
%
%   a) independent variable
%
%	a1) update inactive bound: done
%
%	a2) update active bound:
%	    Determine [lu]b including most constraining row R
%	      If we are within: done
%	    else pivot(R,xi) and introduce bound via (b)
%
%	a3) introduce a bound on an unconstrained var:
%	    All vars that depend on xi are unconstrained (invariant) ->
%	      the bound cannot invalidate any Lhs
%
%   b) dependent variable
%
%	repair upper or lower (maybe just swap with an unconstrained var from Rhs)
%

%
% Sign = 1,0,-1 means inside,at,outside
%

% Read following predicates as update (dependent/independent) (lowerbound/upperbound) (strict)

% udl(Type,X,Lin,Bound,Strict)
%
% Updates lower bound of dependent variable X with linear equation
% Lin that had type Type and strictness Strict, to the new non-strict
% bound Bound.

udl(t_none,X,Lin,Bound,_Sold) :-
	get_attr(X,clpqr_itf,AttX),
	arg(5,AttX,order(Ord)),
	setarg(2,AttX,type(t_l(Bound))),
	setarg(3,AttX,strictness(0)),
	(   unconstrained(Lin,Uc,Kuc,Rest)
	->  % X = Lin => -1/K*Rest + 1/K*X = U where U has no bounds
	    Ki is -1.0/Kuc,
	    add_linear_ff(Rest,Ki,[0.0,0.0,l(X* -1.0,Ord)],Ki,LinU),
	    get_attr(Uc,clpqr_itf,AttU),
	    arg(5,AttU,order(OrdU)),
	    arg(6,AttU,class(Class)),
	    backsubst(Class,OrdU,LinU)
	;   % no unconstrained variables in Lin: make X part of basis and reconsider
	    basis_add(X,_),
	    determine_active_inc(Lin),
	    reconsider(X)
	).
udl(t_l(L),X,Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true	% new bound is smaller than old one: keep old
	;   TestBL > 1.0e-10
	->  % new bound is larger than old one: use new and reconsider basis
	    Strict is Sold /\ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_l(Bound))),
	    setarg(3,Att,strictness(Strict)),
	    reconsider_lower(X,Lin,Bound)	% makes sure that Lin still satisfies lowerbound Bound
	;   true	% new bound is equal to old one, new one is nonstrict: keep old
	).

udl(t_u(U),X,Lin,Bound,_Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  fail	% new bound is larger than upperbound: fail
	;   TestUB > 1.0e-10
	->  % new bound is smaller than upperbound: add new and reconsider basis
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_lu(Bound,U))),
	    reconsider_lower(X,Lin,Bound)	% makes sure that Lin still satisfies lowerbound Bound
	;   solve_bound(Lin,Bound)	% new bound is equal to upperbound: solve
	).
udl(t_lu(L,U),X,Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true	% smaller than lowerbound: keep
	;   TestBL > 1.0e-10
	->  % larger than lowerbound: check upperbound
	    TestUB is U - Bound,
	    (   TestUB < -1.0e-10
	    ->  fail	% larger than upperbound: fail
	    ;   TestUB > 1.0e-10
	    ->  % smaller than upperbound: use new and reconsider basis
		Strict is Sold /\ 1,
		get_attr(X,clpqr_itf,Att),
		setarg(2,Att,type(t_lu(Bound,U))),
		setarg(3,Att,strictness(Strict)),
		reconsider_lower(X,Lin,Bound)
	    ;   % equal to upperbound: if strictness matches => solve
		Sold /\ 1 =:= 0,
		solve_bound(Lin,Bound)
	    )
	;   true	% equal to lowerbound and nonstrict: keep
	).

% udls(Type,X,Lin,Bound,Strict)
%
% Updates lower bound of dependent variable X with linear equation
% Lin that had type Type and strictness Strict, to the new strict
% bound Bound.

udls(t_none,X,Lin,Bound,_Sold) :-
	get_attr(X,clpqr_itf,AttX),
	arg(5,AttX,order(Ord)),
	setarg(2,AttX,type(t_l(Bound))),
	setarg(3,AttX,strictness(2)),
	(   unconstrained(Lin,Uc,Kuc,Rest)
	->  % X = Lin => U = -1/K*Rest + 1/K*X with U an unconstrained variable
	    Ki is -1.0/Kuc,
	    add_linear_ff(Rest,Ki,[0.0,0.0,l(X* -1.0,Ord)],Ki,LinU),
	    get_attr(Uc,clpqr_itf,AttU),
	    arg(5,AttU,order(OrdU)),
	    arg(6,AttU,class(Class)),
	    backsubst(Class,OrdU,LinU)
	;   % no unconstrained variables: add X to basis and reconsider basis
	    basis_add(X,_),
	    determine_active_inc(Lin),
	    reconsider(X)
	).
udls(t_l(L),X,Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true	% smaller than lowerbound: keep
	;   TestBL > 1.0e-10
	->  % larger than lowerbound: use new and reconsider basis
	    Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_l(Bound))),
	    setarg(3,Att,strictness(Strict)),
	    reconsider_lower(X,Lin,Bound)
	;   % equal to lowerbound: check strictness
	    Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).
udls(t_u(U),X,Lin,Bound,Sold) :-
	U - Bound > 1.0e-10,	% smaller than upperbound: set new bound
	Strict is Sold \/ 2,
	get_attr(X,clpqr_itf,Att),
	setarg(2,Att,type(t_lu(Bound,U))),
	setarg(3,Att,strictness(Strict)),
	reconsider_lower(X,Lin,Bound).
udls(t_lu(L,U),X,Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true	% smaller than lowerbound: keep
	;   TestBL > 1.0e-10
	->  % larger than lowerbound: check upperbound and possibly use new and reconsider basis
	    U - Bound > 1.0e-10,
	    Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_lu(Bound,U))),
	    setarg(3,Att,strictness(Strict)),
	    reconsider_lower(X,Lin,Bound)
	;   % equal to lowerbound: put new strictness
	    Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).

% udu(Type,X,Lin,Bound,Strict)
%
% Updates upper bound of dependent variable X with linear equation
% Lin that had type Type and strictness Strict, to the new non-strict
% bound Bound.

udu(t_none,X,Lin,Bound,_Sold) :-
	get_attr(X,clpqr_itf,AttX),
	arg(5,AttX,order(Ord)),
	setarg(2,AttX,type(t_u(Bound))),
	setarg(3,AttX,strictness(0)),
	(   unconstrained(Lin,Uc,Kuc,Rest)
	->  % X = Lin => U = -1/K*Rest + 1/K*X with U an unconstrained variable
	    Ki is -1.0/Kuc,
	    add_linear_ff(Rest,Ki,[0.0,0.0,l(X* -1.0,Ord)],Ki,LinU),
	    get_attr(Uc,clpqr_itf,AttU),
	    arg(5,AttU,order(OrdU)),
	    arg(6,AttU,class(Class)),
	    backsubst(Class,OrdU,LinU)
	;   % no unconstrained variables: add X to basis and reconsider basis
	    basis_add(X,_),
	    determine_active_dec(Lin),	% try to lower R
	    reconsider(X)
	).
udu(t_u(U),X,Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true	% larger than upperbound: keep
	;   TestUB > 1.0e-10
	->  % smaller than upperbound: update and reconsider basis
	    Strict is Sold /\ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_u(Bound))),
	    setarg(3,Att,strictness(Strict)),
	    reconsider_upper(X,Lin,Bound)
	;   true	% equal to upperbound and nonstrict: keep
	).
udu(t_l(L),X,Lin,Bound,_Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  fail	% smaller than lowerbound: fail
	;   TestBL > 1.0e-10
	->  % larger than lowerbound: use new and reconsider basis
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_lu(L,Bound))),
	    reconsider_upper(X,Lin,Bound)
	;   solve_bound(Lin,Bound)	% equal to lowerbound: solve
	).
udu(t_lu(L,U),X,Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true	% larger than upperbound: keep
	;   TestUB > 1.0e-10
	->  % smaller than upperbound: check lowerbound
	    TestBL is Bound - L,
	    (   TestBL < -1.0e-10
	    ->  fail	% smaller than lowerbound: fail
	    ;   TestBL > 1.0e-10
	    ->  % larger than lowerbound: update and reconsider basis
		Strict is Sold /\ 2,
		get_attr(X,clpqr_itf,Att),
		setarg(2,Att,type(t_lu(L,Bound))),
		setarg(3,Att,strictness(Strict)),
		reconsider_upper(X,Lin,Bound)
	    ;   % equal to lowerbound: check strictness and possibly solve
		Sold /\ 2 =:= 0,
		solve_bound(Lin,Bound)
	    )
	;   true	% equal to upperbound and nonstrict: keep
	).

% udus(Type,X,Lin,Bound,Strict)
%
% Updates upper bound of dependent variable X with linear equation
% Lin that had type Type and strictness Strict, to the new strict
% bound Bound.

udus(t_none,X,Lin,Bound,_Sold) :-
	get_attr(X,clpqr_itf,AttX),
	arg(5,AttX,order(Ord)),
	setarg(2,AttX,type(t_u(Bound))),
	setarg(3,AttX,strictness(1)),
	(   unconstrained(Lin,Uc,Kuc,Rest)
	->   % X = Lin => U = -1/K*Rest + 1/K*X with U an unconstrained variable
	    Ki is -1.0/Kuc,
	    add_linear_ff(Rest,Ki,[0.0,0.0,l(X* -1.0,Ord)],Ki,LinU),
	    get_attr(Uc,clpqr_itf,AttU),
	    arg(5,AttU,order(OrdU)),
	    arg(6,AttU,class(Class)),
	    backsubst(Class,OrdU,LinU)
	;   % no unconstrained variables: add X to basis and reconsider basis
	    basis_add(X,_),
	    determine_active_dec(Lin),
	    reconsider(X)
	).
udus(t_u(U),X,Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true	% larger than upperbound: keep
	;   TestUB > 1.0e-10
	->  % smaller than upperbound: update bound and reconsider basis
	    Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_u(Bound))),
	    setarg(3,Att,strictness(Strict)),
	    reconsider_upper(X,Lin,Bound)
	;   % equal to upperbound: set new strictness
	    Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).
udus(t_l(L),X,Lin,Bound,Sold) :-
	Bound - L > 1.0e-10,	% larger than lowerbound: update and reconsider basis
	Strict is Sold \/ 1,
	get_attr(X,clpqr_itf,Att),
	setarg(2,Att,type(t_lu(L,Bound))),
	setarg(3,Att,strictness(Strict)),
	reconsider_upper(X,Lin,Bound).
udus(t_lu(L,U),X,Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true	% larger than upperbound: keep
	;   TestUB > 1.0e-10
	->  % smaller than upperbound: check lowerbound, possibly update and reconsider basis
	    Bound - L > 1.0e-10,
	    Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_lu(L,Bound))),
	    setarg(3,Att,strictness(Strict)),
	    reconsider_upper(X,Lin,Bound)
	;   % equal to upperbound: update strictness
	    Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).

% uiu(Type,X,Lin,Bound,Strict)
%
% Updates upper bound of independent variable X with linear equation
% Lin that had type Type and strictness Strict, to the new non-strict
% bound Bound.

uiu(t_none,X,_Lin,Bound,_) :-	% X had no bounds
	get_attr(X,clpqr_itf,Att),
	setarg(2,Att,type(t_u(Bound))),
	setarg(3,Att,strictness(0)).
uiu(t_u(U),X,_Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true	% larger than upperbound: keep
	;   TestUB > 1.0e-10
	->  % smaller than upperbound: update.
	    Strict is Sold /\ 2,	% update strictness: strictness of lowerbound is kept,
					% strictness of upperbound is set to non-strict
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_u(Bound))),
	    setarg(3,Att,strictness(Strict))
	;   true	% equal to upperbound and nonstrict: keep
	).
uiu(t_l(L),X,Lin,Bound,_Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  fail	% Lowerbound was smaller than new upperbound: fail
	;   TestBL > 1.0e-10
	->   % Upperbound is larger than lowerbound: store new bound
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_lu(L,Bound)))
	;   solve_bound(Lin,Bound) % Lowerbound was equal to new upperbound: solve
	).
uiu(t_L(L),X,Lin,Bound,_Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  fail	% Same as for t_l
	;   TestBL > 1.0e-10
	->  % Same as for t_l (new bound becomes t_Lu)
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_Lu(L,Bound)))
	;   solve_bound(Lin,Bound)	% Same as for t_l
	).
uiu(t_lu(L,U),X,Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true	% Upperbound was smaller than new bound: keep
	;   TestUB > 1.0e-10
	->  TestBL is Bound - L,	% Upperbound was larger than new bound: check lowerbound
	    (   TestBL < -1.0e-10
	    ->	fail	% Lowerbound was larger than new bound: fail
	    ;   TestBL > 1.0e-10
	    ->  % Lowerbound was smaller than new bound: store new bound
		Strict is Sold /\ 2,
		get_attr(X,clpqr_itf,Att),
		setarg(2,Att,type(t_lu(L,Bound))),
		setarg(3,Att,strictness(Strict))
	    ;	% Lowerbound was equal to new bound: solve
		Sold /\ 2 =:= 0,	% Only solve when strictness matches
		solve_bound(Lin,Bound)
	    )
	;   true	% Upperbound was equal to new bound and new bound non-strict: keep
	).
uiu(t_Lu(L,U),X,Lin,Bound,Sold) :-	% See t_lu case
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true
	;   TestUB > 1.0e-10
	->  TestBL is Bound - L,
	    (   TestBL < -1.0e-10
	    ->  fail
	    ;   TestBL > 1.0e-10
	    ->  Strict is Sold /\ 2,
		get_attr(X,clpqr_itf,Att),
		setarg(2,Att,type(t_Lu(L,Bound))),
		setarg(3,Att,strictness(Strict))
	    ;   Sold /\ 2 =:= 0,
		solve_bound(Lin,Bound)
	    )
	;   true
	).
uiu(t_U(U),X,_Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true	% larger than upperbound: keep
	;   TestUB > 1.0e-10
	->  % smaller than active upperbound: check how much active upperbound can be lowered.
	    % if enough, just lower bound, otherwise update the bound, make X dependent and reconsider basis
	    Strict is Sold /\ 2,
	    (   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		lb(ClassX,OrdX,Vlb-Vb-Lb),
		Bound - (Lb + U) < 1.0e-10
	    ->  get_attr(X,clpqr_itf,Att2), % changed?
		setarg(2,Att2,type(t_U(Bound))),
		setarg(3,Att2,strictness(Strict)),
		pivot_a(Vlb,X,Vb,t_u(Bound)),
		reconsider(X)
	    ;   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		setarg(2,Att,type(t_U(Bound))),
		setarg(3,Att,strictness(Strict)),
		Delta is Bound - U,
		backsubst_delta(ClassX,OrdX,X,Delta)
	    )
	;   true	% equal to upperbound and non-strict: keep
	).
uiu(t_lU(L,U),X,Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true	% larger than upperbound: keep
	;   TestUB > 1.0e-10
	->  TestBL is Bound-L,
	    (   TestBL < -1.0e-10
	    ->  fail	% smaller than lowerbound: fail
	    ;   TestBL > 1.0e-10
	    ->  % larger than lowerbound: see t_U case for rest
		Strict is Sold /\ 2,
		(   get_attr(X,clpqr_itf,Att),
		    arg(5,Att,order(OrdX)),
		    arg(6,Att,class(ClassX)),
		    lb(ClassX,OrdX,Vlb-Vb-Lb),
		    Bound - (Lb + U) < 1.0e-10
		->  get_attr(X,clpqr_itf,Att2), % changed?
		    setarg(2,Att2,type(t_lU(L,Bound))),
		    setarg(3,Att2,strictness(Strict)),
		    pivot_a(Vlb,X,Vb,t_lu(L,Bound)),
		    reconsider(X)
		;   get_attr(X,clpqr_itf,Att),
		    arg(5,Att,order(OrdX)),
		    arg(6,Att,class(ClassX)),
		    setarg(2,Att,type(t_lU(L,Bound))),
		    setarg(3,Att,strictness(Strict)),
		    Delta is Bound - U,
		    backsubst_delta(ClassX,OrdX,X,Delta)
		)
	    ;	% equal to lowerbound: check strictness and solve
		Sold /\ 2 =:= 0,
		solve_bound(Lin,Bound)
	    )
	;   true	% equal to upperbound and non-strict: keep
			% smaller than upperbound: check lowerbound
	).

% uius(Type,X,Lin,Bound,Strict)
%
% Updates upper bound of independent variable X with linear equation
% Lin that had type Type and strictness Strict, to the new strict
% bound Bound. (see also uiu/5)

uius(t_none,X,_Lin,Bound,_Sold) :-
	get_attr(X,clpqr_itf,Att),
	setarg(2,Att,type(t_u(Bound))),
	setarg(3,Att,strictness(1)).
uius(t_u(U),X,_Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true
	;   TestUB > 1.0e-10
	->  Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_u(Bound))),
	    setarg(3,Att,strictness(Strict))
	;   Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).
uius(t_l(L),X,_Lin,Bound,Sold) :-
	Bound - L > 1.0e-10,
	Strict is Sold \/ 1,
	get_attr(X,clpqr_itf,Att),
	setarg(2,Att,type(t_lu(L,Bound))),
	setarg(3,Att,strictness(Strict)).
uius(t_L(L),X,_Lin,Bound,Sold) :-
	Bound - L > 1.0e-10,
	Strict is Sold \/ 1,
	get_attr(X,clpqr_itf,Att),
	setarg(2,Att,type(t_Lu(L,Bound))),
	setarg(3,Att,strictness(Strict)).
uius(t_lu(L,U),X,_Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true
	;   TestUB > 1.0e-10
	->  Bound - L > 1.0e-10,
	    Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_lu(L,Bound))),
	    setarg(3,Att,strictness(Strict))
	;   Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).
uius(t_Lu(L,U),X,_Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true
	;   TestUB > 1.0e-10
	->  Bound - L > 1.0e-10,
	    Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_Lu(L,Bound))),
	    setarg(3,Att,strictness(Strict))
	;   Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).
uius(t_U(U),X,_Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true
	;   TestUB > 1.0e-10
	->  Strict is Sold \/ 1,
	    (   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		lb(ClassX,OrdX,Vlb-Vb-Lb),
		Bound - (Lb + U) < 1.0e-10
	    ->  get_attr(X,clpqr_itf,Att2), % changed?
		setarg(2,Att2,type(t_U(Bound))),
		setarg(3,Att2,strictness(Strict)),
		pivot_a(Vlb,X,Vb,t_u(Bound)),
		reconsider(X)
	    ;   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		setarg(2,Att,type(t_U(Bound))),
		setarg(3,Att,strictness(Strict)),
		Delta is Bound - U,
		backsubst_delta(ClassX,OrdX,X,Delta)
	    )
	;   Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).
uius(t_lU(L,U),X,_Lin,Bound,Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  true
	;   TestUB > 1.0e-10
	->  Bound - L > 1.0e-10,
	    Strict is Sold \/ 1,
	    (   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		lb(ClassX,OrdX,Vlb-Vb-Lb),
		Bound - (Lb + U) < 1.0e-10
	    ->  get_attr(X,clpqr_itf,Att2), % changed?
		setarg(2,Att2,type(t_lU(L,Bound))),
		setarg(3,Att2,strictness(Strict)),
		pivot_a(Vlb,X,Vb,t_lu(L,Bound)),
		reconsider(X)
	    ;	get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		setarg(2,Att,type(t_lU(L,Bound))),
		setarg(3,Att,strictness(Strict)),
		Delta is Bound - U,
		backsubst_delta(ClassX,OrdX,X,Delta)
	    )
	;   Strict is Sold \/ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).

% uil(Type,X,Lin,Bound,Strict)
%
% Updates lower bound of independent variable X with linear equation
% Lin that had type Type and strictness Strict, to the new non-strict
% bound Bound. (see also uiu/5)


uil(t_none,X,_Lin,Bound,_Sold) :-
	get_attr(X,clpqr_itf,Att),
	setarg(2,Att,type(t_l(Bound))),
	setarg(3,Att,strictness(0)).
uil(t_l(L),X,_Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true
	;   TestBL > 1.0e-10
	->  Strict is Sold /\ 1,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_l(Bound))),
	    setarg(3,Att,strictness(Strict))
	;   true
	).
uil(t_u(U),X,Lin,Bound,_Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  fail
	;   TestUB > 1.0e-10
	->  get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_lu(Bound,U)))
	;   solve_bound(Lin,Bound)
	).
uil(t_U(U),X,Lin,Bound,_Sold) :-
	TestUB is U - Bound,
	(   TestUB < -1.0e-10
	->  fail
	;   TestUB > 1.0e-10
	->  get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_lU(Bound,U)))
	;   solve_bound(Lin,Bound)
	).
uil(t_lu(L,U),X,Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true
	;   TestBL > 1.0e-10
	->  TestUB is U - Bound,
	    (   TestUB < -1.0e-10
	    ->  fail
	    ;   TestUB > 1.0e-10
	    ->  Strict is Sold /\ 1,
		get_attr(X,clpqr_itf,Att),
		setarg(2,Att,type(t_lu(Bound,U))),
		setarg(3,Att,strictness(Strict))
	    ;   Sold /\ 1 =:= 0,
		solve_bound(Lin,Bound)
	    )
	;   true
	).
uil(t_lU(L,U),X,Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true
	;   TestBL > 1.0e-10
	->  TestUB is U - Bound,
	    (   TestUB < -1.0e-10
	    ->  fail
	    ;   TestUB > 1.0e-10
	    ->  Strict is Sold /\ 1,
		get_attr(X,clpqr_itf,Att),
		setarg(2,Att,type(t_lU(Bound,U))),
		setarg(3,Att,strictness(Strict))
	    ;   Sold /\ 1 =:= 0,
		solve_bound(Lin,Bound)
	    )
	;   true
	).
uil(t_L(L),X,_Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true
	;   TestBL > 1.0e-10
	->  Strict is Sold /\ 1,
	    (   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		ub(ClassX,OrdX,Vub-Vb-Ub),
		Bound - (Ub + L) > -1.0e-10
	    ->  get_attr(X,clpqr_itf,Att2), % changed?
		setarg(2,Att2,type(t_L(Bound))),
		setarg(3,Att2,strictness(Strict)),
		pivot_a(Vub,X,Vb,t_l(Bound)),
		reconsider(X)
	    ;   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		setarg(2,Att,type(t_L(Bound))),
		setarg(3,Att,strictness(Strict)),
		Delta is Bound - L,
		backsubst_delta(ClassX,OrdX,X,Delta)
	    )
	;   true
	).
uil(t_Lu(L,U),X,Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true
	;   TestBL > 1.0e-10
	->  TestUB is U - Bound,
	    (   TestUB < -1.0e-10
	    ->  fail
	    ;   TestUB > 1.0e-10
	    ->  Strict is Sold /\ 1,
		(   get_attr(X,clpqr_itf,Att),
		    arg(5,Att,order(OrdX)),
		    arg(6,Att,class(ClassX)),
		    ub(ClassX,OrdX,Vub-Vb-Ub),
		    Bound - (Ub + L) > -1.0e-10
		->  get_attr(X,clpqr_itf,Att2), % changed?
		    setarg(2,Att2,t_Lu(Bound,U)),
		    setarg(3,Att2,strictness(Strict)),
		    pivot_a(Vub,X,Vb,t_lu(Bound,U)),
		    reconsider(X)
		;   get_attr(X,clpqr_itf,Att),
		    arg(5,Att,order(OrdX)),
		    arg(6,Att,class(ClassX)),
		    setarg(2,Att,type(t_Lu(Bound,U))),
		    setarg(3,Att,strictness(Strict)),
		    Delta is Bound - L,
		    backsubst_delta(ClassX,OrdX,X,Delta)
		)
	    ;	Sold /\ 1 =:= 0,
		solve_bound(Lin,Bound)
	    )
	;   true
	).

% uils(Type,X,Lin,Bound,Strict)
%
% Updates lower bound of independent variable X with linear equation
% Lin that had type Type and strictness Strict, to the new strict
% bound Bound. (see also uiu/5)

uils(t_none,X,_Lin,Bound,_Sold) :-
	get_attr(X,clpqr_itf,Att),
	setarg(2,Att,type(t_l(Bound))),
	setarg(3,Att,strictness(2)).
uils(t_l(L),X,_Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true
	;   TestBL > 1.0e-10
	->  Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_l(Bound))),
	    setarg(3,Att,strictness(Strict))
	;   Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).
uils(t_u(U),X,_Lin,Bound,Sold) :-
	U - Bound > 1.0e-10,
	Strict is Sold \/ 2,
	get_attr(X,clpqr_itf,Att),
	setarg(2,Att,type(t_lu(Bound,U))),
	setarg(3,Att,strictness(Strict)).
uils(t_U(U),X,_Lin,Bound,Sold) :-
	U - Bound > 1.0e-10,
	Strict is Sold \/ 2,
	get_attr(X,clpqr_itf,Att),
	setarg(2,Att,type(t_lU(Bound,U))),
	setarg(3,Att,strictness(Strict)).
uils(t_lu(L,U),X,_Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true
	;   TestBL > 1.0e-10
	->  U - Bound > 1.0e-10,
	    Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_lu(Bound,U))),
	    setarg(3,Att,strictness(Strict))
	;   Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).
uils(t_lU(L,U),X,_Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true
	;   TestBL > 1.0e-10
	->  U - Bound > 1.0e-10,
	    Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(2,Att,type(t_lU(Bound,U))),
	    setarg(3,Att,strictness(Strict))
	;   Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).
uils(t_L(L),X,_Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true
	;   TestBL > 1.0e-10
	->  Strict is Sold \/ 2,
	    (   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		ub(ClassX,OrdX,Vub-Vb-Ub),
		Bound - (Ub + L) > -1.0e-10
	    ->  get_attr(X,clpqr_itf,Att2), % changed?
		setarg(2,Att2,type(t_L(Bound))),
		setarg(3,Att2,strictness(Strict)),
		pivot_a(Vub,X,Vb,t_l(Bound)),
		reconsider(X)
	    ;   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		setarg(2,Att,type(t_L(Bound))),
		setarg(3,Att,strictness(Strict)),
		Delta is Bound - L,
		backsubst_delta(ClassX,OrdX,X,Delta)
	    )
	;   Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).
uils(t_Lu(L,U),X,_Lin,Bound,Sold) :-
	TestBL is Bound - L,
	(   TestBL < -1.0e-10
	->  true
	;   TestBL > 1.0e-10
	->  U - Bound > 1.0e-10,
	    Strict is Sold \/ 2,
	    (   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		ub(ClassX,OrdX,Vub-Vb-Ub),
		Bound - (Ub + L) > -1.0e-10
	    ->  get_attr(X,clpqr_itf,Att2), % changed?
		setarg(2,Att2,type(t_Lu(Bound,U))),
		setarg(3,Att2,strictness(Strict)),
		pivot_a(Vub,X,Vb,t_lu(Bound,U)),
		reconsider(X)
	    ;   get_attr(X,clpqr_itf,Att),
		arg(5,Att,order(OrdX)),
		arg(6,Att,class(ClassX)),
		setarg(2,Att,type(t_Lu(Bound,U))),
		setarg(3,Att,strictness(Strict)),
		Delta is Bound - L,
		backsubst_delta(ClassX,OrdX,X,Delta)
	    )
	;   Strict is Sold \/ 2,
	    get_attr(X,clpqr_itf,Att),
	    setarg(3,Att,strictness(Strict))
	).

% reconsider_upper(X,Lin,U)
%
% Checks if the upperbound of X which is U, satisfies the bounds
% of the variables in Lin: let R be the sum of all the bounds on
% the variables in Lin, and I be the inhomogene part of Lin, then
% upperbound U should be larger or equal to R + I (R may contain
% lowerbounds).
% See also rcb/3 in bv.pl

reconsider_upper(X,[I,R|H],U) :-
	R + I - U > -1.0e-10,	% violation
	!,
	dec_step(H,Status),	% we want to decrement R
	rcbl_status(Status,X,[],Binds,[],u(U)),
	export_binding(Binds).
reconsider_upper( _, _, _).

% reconsider_lower(X,Lin,L)
%
% Checks if the lowerbound of X which is L, satisfies the bounds
% of the variables in Lin: let R be the sum of all the bounds on
% the variables in Lin, and I be the inhomogene part of Lin, then
% lowerbound L should be smaller or equal to R + I (R may contain
% upperbounds).
% See also rcb/3 in bv.pl

reconsider_lower(X,[I,R|H],L) :-
	R + I - L < 1.0e-10,	% violation
	!,
	inc_step(H,Status),	% we want to increment R
	rcbl_status(Status,X,[],Binds,[],l(L)),
	export_binding(Binds).
reconsider_lower(_,_,_).

%
% lin is dereferenced
%

% solve_bound(Lin,Bound)
%
% Solves the linear equation Lin - Bound = 0
% Lin is the linear equation of X, a variable whose bounds have narrowed to value Bound

solve_bound(Lin,Bound) :-
	Bound >= -1.0e-10,
	Bound =< 1.0e-10,
	!,
	solve(Lin).
solve_bound(Lin,Bound) :-
	Nb is -Bound,
	normalize_scalar(Nb,Nbs),
	add_linear_11(Nbs,Lin,Eq),
	solve(Eq).