1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*
* Created on 18 Ïêô 2004
*/
package fr.onagui.alignment.method;
/**
* @author Giorgos Stoilos
*
* This class implements the string matching method proposed in the paper
* "A String Metric For Ontology Alignment", published in ISWC 2005
*
*/
public class I_Sub{
public static double score( String st1 , String st2 ){
if( (st1 == null) || (st2 == null) ){
return -1;
}
String s1 = st1.toLowerCase();
String s2 = st2.toLowerCase();
s1 = normalizeString( s1 , '.' );
s2 = normalizeString( s2 , '.' );
s1 = normalizeString( s1 , '_' );
s2 = normalizeString( s2 , '_' );
s1 = normalizeString( s1 , ' ' );
s2 = normalizeString( s2 , ' ' );
int l1 = s1.length(); // length of s
int l2 = s2.length(); // length of t
int L1 = l1;
int L2 = l2;
if ((L1 == 0) && (L2 == 0))
return 1;
if ((L1 == 0) || (L2 == 0))
return -1;
double common = 0;
int best = 2;
int max = Math.min(l1, l2); // the maximal length of a subs
while( s1.length() >0 && s2.length() >0 && best !=0 ){
best = 0; // the best subs length so far
l1 = s1.length(); // length of s
l2 = s2.length(); // length of t
int i = 0; // iterates through s1
int j = 0; // iterates through s2
int startS2 = 0;
int endS2 = 0;
int startS1 = 0;
int endS1 = 0;
int p=0;
for( i = 0; (i < l1) && (l1 - i > best); i++) {
j = 0;
while (l2 - j > best) {
int k = i;
for(;(j < l2) && (s1.charAt(k) != s2.charAt(j)); j++);
//System.out.println( s1.charAt( k ) + " " + s2.charAt( j ) );
if (j != l2) { // we have found a starting point
//System.out.println( "j: " + j );
p = j;
for (j++, k++;
(j < l2) && (k < l1) && (s1.charAt(k) == s2.charAt(j));
j++, k++);
if( k-i > best){
best = k-i;
startS1 = i;
endS1 = k;
startS2 = p;
endS2 = j;
}
//best = Math.max(best, k - i);
}
}
}
//Vector v = new Vector();
//if( startS1 != endS1 )
// System.out.println( s1.substring( startS1 , endS1 ) );
char[] newString = new char[ s1.length() - (endS1 - startS1) ];
j=0;
for( i=0 ;i<s1.length() ; i++ ){
if( i>=startS1 && i< endS1 )
continue;
newString[j++] = s1.charAt( i );
}
s1 = new String( newString );
newString = new char[ s2.length() - ( endS2 - startS2 ) ];
j=0;
for( i=0 ;i<s2.length() ; i++ ){
if( i>=startS2 && i< endS2 )
continue;
newString[j++] = s2.charAt( i );
}
s2 = new String( newString );
//if( (startS1 < 1 || startS1 > 2 )
// || (startS2 < 1 || startS2 > 2) && startS1 != startS2 )
// best--;
if( best > 2 )
common += best;
else
best = 0;
//System.out.println( s1 + ":" + s2 );
//System.out.println( "StartS1 : " + startS1 + " EndS1: " + endS1 );
//System.out.println( "StartS2 : " + startS2 + " EndS2: " + endS2 );
}
double commonality = 0;
double scaledCommon = (double)(2*common)/(L1+L2);
commonality = scaledCommon;
double winklerImprovement = winklerImprovement( st1 , st2 , commonality );
double dissimilarity = 0;
double rest1 = L1 - common;
double rest2 = L2 - common;
double unmatchedS1 = Math.max( rest1 , 0 );
double unmatchedS2 = Math.max( rest2 , 0 );
unmatchedS1 = rest1/L1;
unmatchedS2 = rest2/L2;
/**
* Hamacher Product
*/
double suma = unmatchedS1 + unmatchedS2;
double product = unmatchedS1 * unmatchedS2;
double p = 0.6; //For 1 it coincides with the algebraic product
if( (suma-product) == 0 )
dissimilarity = 0;
else
dissimilarity = (product)/(p+(1-p)*(suma-product));
return commonality - dissimilarity + winklerImprovement;
}
private static double winklerImprovement( String s1 , String s2 , double commonality ){
int i;
//int n = Math.min( 4 , Math.min( s1.length() , s2.length() ) );
int n = Math.min( s1.length() , s2.length() );
for( i=0 ; i<n ; i++ )
if( s1.charAt( i ) != s2.charAt( i ) )
break;
double commonPrefixLength = Math.min( 4 , i );
//double commonPrefixLength = i;
double winkler = commonPrefixLength*0.1*(1-commonality);
return winkler;
}
// /* (non-Javadoc)
// * @see com.wcohen.ss.AbstractStringDistance#explainScore(com.wcohen.ss.api.StringWrapper, com.wcohen.ss.api.StringWrapper)
// */
// public String explainScore(String s, String t) {
// return null;
// }
public static String normalizeString( String str , char remo ){
StringBuffer strBuf = new StringBuffer();
int j=0;
for( int i=0 ; i<str.length() ; i++ ){
if( str.charAt( i ) != remo )
strBuf.append( str.charAt( i ) );
}
return strBuf.toString();
}
public static void main(String[] args) {
System.out.println("Test de la mesure ISub");
String[][] allTest = new String[][] {
{ "store", "spore"},
{ "numPages", "numberOfPages"},
{ "DosageDuFacteurV", "MesureDuFacteurV"},
{ "DosageDuFacteurV", "DosageDuFacteurX"},
{ "DosageDuFacteurV", "MesureDuFacteurX"},
{ "SyndromeDeKawasaki", "MaladieDeKawasaki"}
};
for(String[] oneTest : allTest) {
System.out.println("\nTest: "+oneTest[0]+ " VS "+oneTest[1]);
double score = I_Sub.score(oneTest[0], oneTest[1]);
System.out.println("\t->Resultat: "+score);
}
}
}
|