1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
|
\documentclass[11pt]{article}
\usepackage{times}
\usepackage{pl}
\usepackage{plpage}
\usepackage{alltt}
\usepackage{html}
\usepackage{verbatim}
\sloppy
\makeindex
\onefile
\htmloutput{.} % Output directory
\htmlmainfile{semweb} % Main document file
\bodycolor{white} % Page colour
\renewcommand{\runningtitle}{SWI-Prolog Semantic Web Library (version 3)}
\newcommand{\elem}[1]{{\tt\string<#1\string>}}
\begin{document}
\title{SWI-Prolog Semantic Web Library 3.0}
\author{Jan Wielemaker \\
University of Amsterdam/VU University Amsterdam \\
The Netherlands \\
E-mail: \email{J.Wielemaker@vu.nl}}
\maketitle
\begin{abstract}
This document describes the SWI-Prolog \jargon{semweb} package. The core
of this package is an efficient main-memory based RDF store that is
tightly connected to Prolog. Additional libraries provide reading and
writing RDF/XML and Turtle data, caching loaded RDF documents and
persistent storage. This package is the core of a ready-to-run platform
for developing Semantic Web applications named
\href{http://cliopatria.swi-prolog.org}{ClioPatria}, which is distributed
separately. The SWI-Prolog RDF store is among the most memory efficient
main-memory stores for
RDF\footnote{\url{http://cliopatria.swi-prolog.org/help/source/doc/home/vnc/prolog/src/ClioPatria/web/help/memusage.txt}}
Version~3 of the RDF library enhances concurrent use of the library by
allowing for lock-free reading and writing using short-held locks. It
provides Prolog compatible \jargon{logical update view} on the triple
store and isolation using \jargon{transactions} and \jargon{snapshots}.
This version of the library provides near real-time modification and
querying of RDF graphs, making it particularly interesting for handling
streaming RDF and graph manipulation tasks.
\end{abstract}
\vfill
\pagebreak
\tableofcontents
\newpage
\section{Introduction}
\label{sec:semweb-intro}
The core of the SWI-Prolog package \file{semweb} is an efficient
main-memory RDF store written in C that is tightly integrated with
Prolog. It provides a fully logical predicate rdf/3 to query the RDF
store efficiently by using multiple (currently 9) indexes. In addition,
SWI-Prolog provides libraries for reading and writing XML/RDF and Turtle
and a library that provides persistency using a combination of efficient
binary snapshots and journals.
Below, we describe a few usage scenarios that guides the current design
of this Prolog-based RDF store.
\paragraph{Application prototyping platform}
Bundled with \href{http://cliopatria.swi-prolog.org}{ClioPatria}, the
store is an efficient platform for prototyping a wide range of semantic
web applications. Prolog, connected to the main-memory based store is a
productive platform for writing application logic that can be made
available through the SPARQL endpoint of ClioPatria, using an
application specific API (typically based on JSON or XML) or as an HTML
based end-user application. Prolog is more versatile than SPARQL, allows
composing of the logic from small building blocks and does not suffer
from the \jargon{Object-relational impedance mismatch}.
\paragraph{Data integration}
The SWI-Prolog store is optimized for entailment on the
\const{rdfs:subPropertyOf} relation. The \const{rdfs:subPropertyOf}
relation is crucial for integrating data from multiple sources while
preserving the original richness of the sources because integration can
be achieved by defining the native properties as sub-properties of
properties from a unifying schema such as Dublin Core.
\paragraph{Dynamic data}
This RDF store is one of the few stores that is primarily based on
\jargon{backward reasoning}. The big advantage of backward reasoning is
that it can much easier deal with changes to the database because it
does not have to take care of propagating the consequences. Backward
reasoning reduces storage requirements. The price is more reasoning
during querying. In many scenarios the extra reasoning using a main
memory will outperform the fetching the precomputed results from
external storage.
\paragraph{Prototyping reasoning systems}
Reasoning systems, not necessarily limited to entailment reasoning, can
be prototyped efficiently on the Prolog based store. This includes
`what-if' reasoning, which is supported by \jargon{snapshot} and
\jargon{transaction} isolation. These features, together with the
concurrent loading capabilities, make the platform well equiped to
collect relevant data from large external stores for intensive
reasoning. Finally, the
\href{http://www.swi-prolog.org/pldoc/package/tipc.html}{TIPC} package
can be used to create networks of cooperating RDF based agents.
\paragraph{Streaming RDF}
Transactions, snapshots, concurrent modifications and the database
monitoring facilities (see rdf_monitor/2) make the platform well suited
for prototyping systems that deal with streaming RDF data.
\section{Scalability}
\label{sec:semweb-scalability}
Depending on the OS and further application restrictions, the SWI-Prolog
RDF stores scales to about 15~million triples on 32-bit hardware. On
64-bit hardware, the scalability is limited by the amount of physical
memory, allowing for approximately 4~million triples per gigabyte. The
other limiting factor for practical use is the time required to load
data and/or restore the database from the persistent file backup.
Performance depends highly on hardware, concurrent performance and
whether or not the data is spread over multiple (named) graphs that can
be loaded in parallel. Restoring over 20~million triples per minute is
feasible on medium hardware (Intel i7/{2600} running Ubuntu 12.10).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RDF API %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Two RDF APIs}
\label{sec:semweb-rdfapi}
The current `semweb' package provides two sets of interface predicates.
The original set is described in \secref{semweb-rdf-db}. The new API is
described in \secref{semweb-rdf11}. The original API was designed when
RDF was not yet standardised and did not yet support data types and
language indicators. The new API is designed from the RDF 1.1
specification, introducing consistent naming and access to literals
using the \jargon{value space}. The new API is currently defined on top
of the old API, so both APIs can be mixed in a single application.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RDF11 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{library(semweb/rdf11): The RDF database}
\label{sec:semweb-rdf11}
\InputIfFileExists{rdf11}{}{}
\InputIfFileExists{rdf11containers}{}{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RDF_DB %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{library(semweb/rdf_db): The RDF database}
\label{sec:semweb-rdf-db}
\InputIfFileExists{rdfdb}{}{}
\subsection{Monitoring the database} \label{sec:rdfmonitor}
The predicate rdf_monitor/2 allows registrations of call-backs with the
RDF store. These call-backs are typically used to keep other databases
in sync with the RDF store. For example,
\pllib{library(semweb/rdf_persistency)} monitors the RDF store for
maintaining a persistent copy in a set of files and
\pllib{library(semweb/rdf_litindex)} uses added and deleted literal
values to maintain a fulltext index of literals.
\begin{description}
\predicate{rdf_monitor}{2}{:Goal, +Mask}
\arg{Goal} is called for modifications of the database. It is called
with a single argument that describes the modification. Defined
events are:
\begin{description}
\termitem{assert}{+S, +P, +O, +DB}
A triple has been asserted.
\termitem{retract}{+S, +P, +O, +DB}
A triple has been deleted.
\termitem{update}{+S, +P, +O, +DB, +Action}
A triple has been updated.
\termitem{new_literal}{+Literal}
A new literal has been created. \arg{Literal} is the argument of
\term{literal}{Arg} of the triple's object. This event is introduced
in version 2.5.0 of this library.
\termitem{old_literal}{+Literal}
The literal \arg{Literal} is no longer used by any triple.
\termitem{transaction}{+BeginOrEnd, +Id}
Mark begin or end of the \emph{commit} of a transaction started by
rdf_transaction/2. \arg{BeginOrEnd} is \term{begin}{Nesting} or
\term{end}{Nesting}. \arg{Nesting} expresses the nesting level of
transactions, starting at `0' for a toplevel transaction. \arg{Id} is
the second argument of rdf_transaction/2. The following transaction Ids
are pre-defined by the library:
\begin{description}
\termitem{parse}{Id}
A file is loaded using rdf_load/2. \arg{Id} is one of \term{file}{Path}
or \term{stream}{Stream}.
\termitem{unload}{DB}
All triples with source \arg{DB} are being unloaded using rdf_unload/1.
\termitem{reset}{}
Issued by rdf_reset_db/0.
\end{description}
\termitem{load}{+BeginOrEnd, +Spec}
Mark begin or end of rdf_load_db/1 or load through rdf_load/2 from
a cached file. \arg{Spec} is currently defined as \term{file}{Path}.
\termitem{rehash}{+BeginOrEnd}
Marks begin/end of a re-hash due to required re-indexing or garbage
collection.
\end{description}
\arg{Mask} is a list of events this monitor is interested in. Default
(empty list) is to report all events. Otherwise each element is of the
form +Event or -Event to include or exclude monitoring for certain
events. The event-names are the functor names of the events described
above. The special name \const{all} refers to all events and
\term{assert}{load} to assert events originating from rdf_load_db/1. As
loading triples using rdf_load_db/1 is very fast, monitoring this at the
triple level may seriously harm performance.
This predicate is intended to maintain derived data, such as a journal,
information for \emph{undo}, additional indexing in literals, etc. There
is no way to remove registered monitors. If this is required one should
register a monitor that maintains a dynamic list of subscribers like the
XPCE broadcast library. A second subscription of the same hook predicate
only re-assignes the mask.
The monitor hooks are called in the order of registration and in the
same thread that issued the database manipulation. To process all
changes in one thread they should be send to a thread message queue. For
all updating events, the monitor is called while the calling thread has
a write lock on the RDF store. This implies that these events are
processed strickly synchronous, even if modifications originate from
multiple threads. In particular, the \const{transaction} \emph{begin},
\ldots{} \emph{updates} \ldots{} \emph{end} sequence is never
interleaved with other events. Same for \const{load} and \const{parse}.
\end{description}
\subsection{Issues with rdf_db} \label{sec:rdfissues}
This RDF low-level module has been created after two year experimenting
with a plain Prolog based module and a brief evaluation of a second
generation pure Prolog implementation. The aim was to be able to handle
upto about 5 million triples on standard (notebook) hardware and deal
efficiently with \const{subPropertyOf} which was identified as a crucial
feature of RDFS to realise fusion of different data-sets.
The following issues are identified and not solved in suitable manner.
\begin{description}
\item [\const{subPropertyOf} of \const{subPropertyOf}] is not
supported.
\item [Equivalence]
Similar to \const{subPropertyOf}, it is likely to be profitable to
handle resource identity efficient. The current system has no support
for it.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PLUGIN %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Plugin modules for rdf_db}
\label{sec:plugin}
The \pllib{rdf_db} module provides several hooks for extending its
functionality. Database updates can be monitored and acted upon through
the features described in \secref{rdfmonitor}. The predicate rdf_load/2
can be hooked to deal with different formats such as \jargon{rdfturtle},
different input sources (e.g.\ http) and different strategies for
caching results.
\subsection{Hooks into the RDF library}
\label{sec:semweb-hooks}
The hooks below are used to add new RDF file formats and sources from
which to load data to the library. They are used by the modules
described below and distributed with the package. Please examine the
source-code if you want to add new formats or locations.
\begin{description}
\item[\pllib{library(semweb/turtle)}]
Load files in the Turtle format. See \secref{turtle}.
\item[\pllib{library(semweb/rdf_zlib_plugin)}]
Load \program{gzip} compressed files transparently. See
\secref{semweb-zlib}.
\item[\pllib{library(semweb/rdf_http_plugin)}]
Load RDF documents from HTTP servers. See \secref{http}.
\item[\pllib{library(http/http_ssl_plugin)}]
May be combined with \pllib{library(semweb/rdf_http_plugin)} to load
RDF from HTTPS servers.
\item[\pllib{library(semweb/rdf_persistency)}]
Provide persistent backup of the triple store.
\item[\pllib{library(semweb/rdf_cache)}]
Provide caching RDF sources using fast load/safe files to speedup
restarting an application.
\end{description}
\begin{description}
\predicate{rdf_db:rdf_open_hook}{3}{+Input, -Stream, -Format}
Open an input. \arg{Input} is one of \term{file}{+Name},
\term{stream}{+Stream} or \term{url}{Protocol, URL}. If this hook
succeeds, the RDF will be read from Stream using rdf_load_stream/3.
Otherwise the default open functionality for file and stream are
used.
\predicate{rdf_db:rdf_load_stream}{3}{+Format, +Stream, +Options}
Actually load the RDF from \arg{Stream} into the RDF database.
\arg{Format} describes the format and is produced either by
rdf_input_info/3 or rdf_file_type/2.
\predicate{rdf_db:rdf_input_info}{3}{+Input, -Modified, -Format}
Gather information on \arg{Input}. \arg{Modified} is the last
modification time of the source as a POSIX time-stamp (see time_file/2).
\arg{Format} is the RDF format of the file. See rdf_file_type/2 for
details. It is allowed to leave the output variables unbound. Ultimately
the default modified time is `0' and the format is assumed to be
\const{xml}.
\predicate{rdf_db:rdf_file_type}{2}{?Extension, ?Format}
True if \arg{Format} is the default RDF file format for files
with the given extension. \arg{Extension} is lowercase and
without a '.'. E.g.\ \const{owl}. \arg{Format} is either a
built-in format (\const{xml} or \const{triples}) or a format
understood by the rdf_load_stream/3 hook.
\predicate{rdf_db:url_protocol}{1}{?Protocol}
True if \arg{Protocol} is a URL protocol recognised by rdf_load/2.
\end{description}
\subsection{library(semweb/rdf_zlib_plugin): Reading compressed RDF}
\label{sec:semweb-zlib}
\index{gz, format}\index{gzip}\index{compressed data}%
This module uses the \pllib{zlib} library to load compressed files
on the fly. The extension of the file must be \fileext{gz}. The
file format is deduced by the extension after stripping the \fileext{gz}
extension. E.g.\ \exam{rdf_load('file.rdf.gz')}.
\subsection{library(semweb/rdf_http_plugin): Reading RDF from a HTTP server}
\label{sec:http}
\index{xhtml}%
This module allows for \exam{rdf_load('http://...')}. It exploits the
library \pllib{http/http_open.pl}. The format of the URL is determined
from the mime-type returned by the server if this is one of
\const{text/rdf+xml}, \const{application/x-turtle} or
\const{application/turtle}. As RDF mime-types are not yet widely
supported, the plugin uses the extension of the URL if the claimed
mime-type is not one of the above. In addition, it recognises
\const{text/html} and \const{application/xhtml+xml}, scanning
the XML content for embedded RDF.
\InputIfFileExists{rdfcache.tex}{}{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LITINDEX %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{library(semweb/rdf_litindex): Indexing words in literals}
\label{sec:rdflitindex}
The library \pllib{semweb/rdf_litindex.pl} exploits the primitives
of \secref{rdflitmap} and the NLP package to provide indexing on words
inside literal constants. It also allows for fuzzy matching using
stemming and `sounds-like' based on the \jargon{double metaphone}
algorithm of the NLP package.
\begin{description}
\predicate{rdf_find_literals}{2}{+Spec, -ListOfLiterals}
Find literals (without type or language specification) that satisfy
\arg{Spec}. The required indices are created as needed and kept
up-to-date using hooks registered with rdf_monitor/2. Numerical
indexing is currently limited to integers in the range $\pm 2^30$
($\pm 2^62 on 64-bit platforms$). \arg{Spec} is defined as:
\begin{description}
\termitem{and}{Spec1, Spec2}
Intersection of both specifications.
\termitem{or}{Spec1, Spec2}
Union of both specifications.
\termitem{not}{Spec}
Negation of \arg{Spec}. After translation of the full specification to
\jargon{Disjunctive Normal Form} (DNF), negations are only allowed
inside a conjunction with at least one positive literal.
\termitem{case}{Word}
Matches all literals containing the word \arg{Word}, doing the match
case insensitive and after removing diacritics.
\termitem{stem}{Like}
Matches all literals containing at least one word that has the same stem
as \arg{Like} using the Porter stem algorithm. See NLP package for
details.
\termitem{sounds}{Like}
Matches all literals containing at least one word that `sounds like'
\arg{Like} using the double metaphone algorithm. See NLP package for
details.
\termitem{prefix}{Prefix}
Matches all literals containing at least one word that starts with
Prefix, discarding diacritics and case.
\termitem{between}{Low, High}
Matches all literals containing an integer token in the range
\arg{Low}..\arg{High}, including the boundaries.
\termitem{ge}{Low}
Matches all literals containing an integer token with value
\arg{Low} or higher.
\termitem{le}{High}
Matches all literals containing an integer token with value
\arg{High} or lower.
\termitem{Token}{}
Matches all literals containing the given token. See tokenize_atom/2
of the NLP package for details.
\end{description}
\predicate{rdf_token_expansions}{2}{+Spec, -Expansions}
Uses the same database as rdf_find_literals/2 to find possible
expansions of \arg{Spec}, i.e.\ which words `sound like', `have prefix',
etc. \arg{Spec} is a compound expression as in rdf_find_literals/2.
\arg{Expansions} is unified to a list of terms \term{sounds}{Like,
Words}, \term{stem}{Like, Words} or \term{prefix}{Prefix, Words}. On
compound expressions, only combinations that provide literals are
returned. Below is an example after loading the ULAN%
\footnote{Unified List of Artist Names from the Getty
Foundation.}
database and showing all words that sounds like `rembrandt' and
appear together in a literal with the word `Rijn'. Finding this
result from the 228,710 literals contained in ULAN requires 0.54
milliseconds (AMD 1600+).
\begin{code}
?- rdf_token_expansions(and('Rijn', sounds(rembrandt)), L).
L = [sounds(rembrandt, ['Rambrandt', 'Reimbrant', 'Rembradt',
'Rembrand', 'Rembrandt', 'Rembrandtsz',
'Rembrant', 'Rembrants', 'Rijmbrand'])]
\end{code}
Here is another example, illustrating handling of diacritics:
\begin{quote}\begin{alltt}
?- rdf_token_expansions(case(cafe), L).
L = [case(cafe, [cafe, caf\'e])]
\end{alltt}\end{quote}
\predicate{rdf_tokenize_literal}{2}{+Literal, -Tokens}
Tokenize a literal, returning a list of atoms and integers in the range
$-1073741824 \ldots 1073741823$. As tokenization is in general domain
and task-dependent this predicate first calls the hook
\term{rdf_litindex:tokenization}{Literal, -Tokens}. On failure it
calls tokenize_atom/2 from the NLP package and deletes the following:
atoms of length 1, floats, integers that are out of range and the
english words \const{and}, \const{an}, \const{or}, \const{of},
\const{on}, \const{in}, \const{this} and \const{the}. Deletion first
calls the hook \term{rdf_litindex:exclude_from_index}{token, X}. This
hook is called as follows:
\begin{code}
no_index_token(X) :-
exclude_from_index(token, X), !.
no_index_token(X) :-
...
\end{code}
\end{description}
\subsubsection{Literal maps: Creating additional indices on literals}
\label{sec:rdflitmap}
`Literal maps' provide a relation between literal values, intended to
create additional indexes on literals. The current implementation can
only deal with integers and atoms (string literals). A literal map
maintains an ordered set of \jargon{keys}. The ordering uses the same
rules as described in \secref{rdflitindex}. Each key is associated with
an ordered set of \jargon{values}. Literal map objects can be shared
between threads, using a locking strategy that allows for multiple
concurrent readers.
Typically, this module is used together with rdf_monitor/2 on the
channals \const{new_literal} and \const{old_literal} to maintain an
index of words that appear in a literal. Further abstraction using
Porter stemming or Metaphone can be used to create additional search
indices. These can map either directly to the literal values, or
indirectly to the plain word-map. The SWI-Prolog NLP package provides
complimentary building blocks, such as a tokenizer, Porter stem and
Double Metaphone.
\begin{description}
\predicate{rdf_new_literal_map}{1}{-Map}
Create a new literal map, returning an opaque handle.
\predicate{rdf_destroy_literal_map}{1}{+Map}
Destroy a literal map. After this call, further use of the \arg{Map}
handle is illegal. Additional synchronisation is needed if maps that
are shared between threads are destroyed to guarantee the handle is
no longer used. In some scenarios rdf_reset_literal_map/1
provides a safe alternative.
\predicate{rdf_reset_literal_map}{1}{+Map}
Delete all content from the literal map.
\predicate{rdf_insert_literal_map}{3}{+Map, +Key, +Value}
Add a relation between \arg{Key} and \arg{Value} to the map. If
this relation already exists no action is performed.
\predicate{rdf_insert_literal_map}{4}{+Map, +Key, +Value, -KeyCount}
As rdf_insert_literal_map/3. In addition, if \arg{Key} is a new key in
\arg{Map}, unify \arg{KeyCount} with the number of keys in \arg{Map}.
This serves two purposes. Derived maps, such as the stem and metaphone
maps need to know about new keys and it avoids additional foreign calls
for doing the progress in \file{rdf_litindex.pl}.
\predicate{rdf_delete_literal_map}{2}{+Map, +Key}
Delete \arg{Key} and all associated values from the map. Succeeds
always.
\predicate{rdf_delete_literal_map}{2}{+Map, +Key, +Value}
Delete the association between \arg{Key} and \arg{Value} from the map.
Succeeds always.
\predicate[det]{rdf_find_literal_map}{3}{+Map, +KeyList, -ValueList}
Unify \arg{ValueList} with an ordered set of values associated to
all keys from \arg{KeyList}. Each key in \arg{KeyList} is either an
atom, an integer or a term \term{not}{Key}. If not-terms are provided,
there must be at least one positive keywords. The negations are tested
after establishing the positive matches.
\predicate{rdf_keys_in_literal_map}{3}{+Map, +Spec, -Answer}
Realises various queries on the key-set:
\begin{description}
\termitem{all}{}
Unify \arg{Answer} with an ordered list of all keys.
\termitem{key}{+Key}
Succeeds if \arg{Key} is a key in the map and unify \arg{Answer}
with the number of values associated with the key. This provides
a fast test of existence without fetching the possibly large associated
value set as with rdf_find_literal_map/3.
\termitem{prefix}{+Prefix}
Unify \arg{Answer} with an ordered set of all keys that have the given
prefix. \arg{Prefix} must be an atom. This call is intended for
auto-completion in user interfaces.
\termitem{ge}{+Min}
Unify \arg{Answer} with all keys that are larger or equal to the
integer \arg{Min}.
\termitem{le}{+Max}
Unify \arg{Answer} with all keys that are smaller or equal to the
integer \arg{Max}.
\termitem{between}{+Min, +Max}
Unify \arg{Answer} with all keys between \arg{Min} and \arg{Max}
(including).
\end{description}
\predicate{rdf_statistics_literal_map}{2}{+Map, +Key(-Arg...)}
Query some statistics of the map. Provides keys are:
\begin{description}
\termitem{size}{-Keys, -Relations}
Unify \arg{Keys} with the total key-count of the index and
\arg{Relation} with the total \arg{Key}-\arg{Value} count.
\end{description}
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PERSISTENCY %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{library(semweb/rdf_persistency): Providing persistent storage}
\label{sec:rdfpersistency}
\index{Persistent store}%
The \pllib{semweb/rdf_persistency} provides reliable persistent storage
for the RDF data. The store uses a directory with files for each source
(see rdf_source/1) present in the database. Each source is represented
by two files, one in binary format (see rdf_save_db/2) representing the
base state and one represented as Prolog terms representing the changes
made since the base state. The latter is called the \jargon{journal}.
\begin{description}
\predicate{rdf_attach_db}{2}{+Directory, +Options}
Attach \arg{Directory} as the persistent database. If \arg{Directory}
does not exist it is created. Otherwise all sources defined in the
directory are loaded into the RDF database. Loading a source means
loading the base state (if any) and replaying the journal (if any). The
current implementation does not synchronise triples that are in the
store before attaching a database. They are not removed from the
database, nor added to the presistent store. Different merging options
may be supported through the \arg{Options} argument later. Currently
defined options are:
\begin{description}
\termitem{concurrency}{+PosInt}
Number of threads used to reload databased and journals from the
files in \arg{Directory}. Default is the number of physical CPUs
determined by the Prolog flag \const{cpu_count} or 1 (one) on
systems where this number is unknown. See also concurrent/3.
\termitem{max_open_journals}{+PosInt}
The library maintains a pool of open journal files. This option
specifies the size of this pool. The default is 10. Raising the
option can make sense if many writes occur on many different named
graphs. The value can be lowered for scenarios where write operations
are very infrequent.
\termitem{silent}{Boolean}
If \const{true}, supress loading messages from rdf_attach_db/2.
\termitem{log_nested_transactions}{Boolean}
If \const{true}, nested \emph{log} transactions are added to the journal
information. By default (\const{false}), no log-term is added for nested
transactions.
\end{description}
The database is locked against concurrent access using a file
\file{lock} in \arg{Directory}. An attempt to attach to a locked
database raises a \const{permission_error} exception. The error
context contains a term \term{rdf_locked}{Args}, where args is
a list containing \term{time}{Stamp} and \term{pid}{PID}. The
error can be caught by the application. Otherwise it prints:
\begin{code}
ERROR: No permission to lock rdf_db `/home/jan/src/pl/packages/semweb/DB'
ERROR: locked at Wed Jun 27 15:37:35 2007 by process id 1748
\end{code}
\predicate{rdf_detach_db}{0}{}
Detaches the persistent store. No triples are removed from the RDF
triple store.
\predicate{rdf_current_db}{1}{-Directory}
Unify \arg{Directory} with the current database directory. Fails if no
persistent database is attached.
\predicate{rdf_persistency}{2}{+DB, +Bool}
Change presistency of named database (4th argument of rdf/4). By default
all databases are presistent. Using \const{false}, the journal and
snapshot for the database are deleted and further changes to triples
associated with \arg{DB} are not recorded. If \arg{Bool} is \const{true}
a snapshot is created for the current state and further modifications
are monitored. Switching persistency does not affect the triples in the
in-memory RDF database.
\predicate{rdf_flush_journals}{1}{+Options}
Flush dirty journals. With the option \term{min_size}{KB} only journals
larger than \arg{KB} Kbytes are merged with the base state. Flushing a
journal takes the following steps, ensuring a stable state can be
recovered at any moment.
\begin{enumerate}
\item Save the current database in a new file using the
extension \fileext{new}.
\item On success, delete the journal
\item On success, atomically move the \fileext{new} file
over the base state.
\end{enumerate}
Note that journals are \emph{not} merged automatically for two reasons.
First of all, some applications may decide never to merge as the journal
contains a complete \jargon{changelog} of the database. Second, merging
large databases can be slow and the application may wish to schedule
such actions at quiet times or scheduled maintenance periods.
\end{description}
\subsubsection{Enriching the journals}
\label{sec:enrich}
The above predicates suffice for most applications. The predicates in
this section provide access to the journal files and the base state
files and are intented to provide additional services, such as reasoning
about the journals, loaded files, etc.%
\footnote{A library \pllib{rdf_history} is under development
exploiting these features supporting wiki style editing
of RDF.}
Using \term{rdf_transaction}{Goal, log(Message)}, we can add additional
records to enrich the journal of affected databases with \arg{Term} and
some additional bookkeeping information. Such a transaction adds a term
\term{begin}{Id, Nest, Time, Message} before the change operations on
each affected database and \term{end}{Id, Nest, Affected} after the
change operations. Here is an example call and content of the journal
file \file{mydb.jrn}. A full explanation of the terms that appear in
the journal is in the description of rdf_journal_file/2.
\begin{code}
?- rdf_transaction(rdf_assert(s,p,o,mydb), log(by(jan))).
\end{code}
\begin{code}
start([time(1183540570)]).
begin(1, 0, 1183540570.36, by(jan)).
assert(s, p, o).
end(1, 0, []).
end([time(1183540578)]).
\end{code}
Using \term{rdf_transaction}{Goal, log(Message, DB)}, where \arg{DB} is
an atom denoting a (possibly empty) named graph, the system guarantees
that a non-empty transaction will leave a possibly empty transaction
record in DB. This feature assumes named graphs are named after the user
making the changes. If a user action does not affect the user's graph,
such as deleting a triple from another graph, we still find record of
all actions performed by some user in the journal of that user.
\begin{description}
\predicate{rdf_journal_file}{2}{?DB, ?JournalFile} True if
\arg{File} is the absolute file name of an existing named graph
\arg{DB}. A journal file contains a sequence of Prolog terms of the
following format.%
\footnote{Future versions of this library may use an XML
based language neutral format.}
\begin{description}
\termitem{start}{Attributes}
Journal has been opened. Currently \arg{Attributes} contains a
term \term{time}{Stamp}.
\termitem{end}{Attributes}
Journal was closed. Currently \arg{Attributes} contains a
term \term{time}{Stamp}.
\termitem{assert}{Subject, Predicate, Object}
A triple \{Subject, Predicate, Object\} was added to the database.
\termitem{assert}{Subject, Predicate, Object, Line}
A triple \{Subject, Predicate, Object\} was added to the database
with given \arg{Line} context.
\termitem{retract}{Subject, Predicate, Object}
A triple \{Subject, Predicate, Object\} was deleted from the database.
Note that an rdf_retractall/3 call can retract multiple triples. Each
of them have a record in the journal. This allows for `undo'.
\termitem{retract}{Subject, Predicate, Object, Line}
Same as above, for a triple with associated line info.
\termitem{update}{Subject, Predicate, Object, Action}
See rdf_update/4.
\termitem{begin}{Id, Nest, Time, Message}
Added before the changes in each database affected by a transaction
with transaction identifier \term{log}{Message}. \arg{Id} is an
integer counting the logged transactions to this database. Numbers
are increasing and designed for binary search within the journal file.
\arg{Nest} is the nesting level, where `0' is a toplevel transaction.
\arg{Time} is a time-stamp, currently using float notation with two
fractional digits. \arg{Message} is the term provided by the user
as argument of the \term{log}{Message} transaction.
\termitem{end}{Id, Nest, Others}
Added after the changes in each database affected by a transaction with
transaction identifier \term{log}{Message}. \arg{Id} and \arg{Nest}
match the begin-term. \arg{Others} gives a list of other databases
affected by this transaction and the \arg{Id} of these records. The
terms in this list have the format \arg{DB}:\arg{Id}.
\end{description}
\predicate{rdf_db_to_file}{2}{?DB, ?FileBase}
Convert between \arg{DB} (see rdf_source/1) and file base-file used
for storing information on this database. The full file is located
in the directory described by rdf_current_db/1 and has the extension
\fileext{trp} for the base state and \fileext{jrn} for the journal.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TURTLE %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\input{turtle.tex}
\input{rdfntriples.tex}
\InputIfFileExists{rdfa.tex}{}{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RDFS %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{library(semweb/rdfs): RDFS related queries}
\label{sec:rdfs}
\index{RDF-Schema}%
The \pllib{semweb/rdfs} library adds interpretation of the triple store
in terms of concepts from RDF-Schema (RDFS). There are two ways to
provide support for more high level languages in RDF. One is to view
such languages as a set of \jargon{entailment rules}. In this model the
rdfs library would provide a predicate \predref{rdfs}{3} providing the
same functionality as rdf/3 on union of the raw graph and triples that
can be derived by applying the RDFS entailment rules.
Alternatively, RDFS provides a view on the RDF store in terms of
individuals, classes, properties, etc., and we can provide predicates
that query the database with this view in mind. This is the approach
taken in the \pllib{semweb/rdfs.p}l library, providing calls like
\term{rdfs_individual_of}{?Resource, ?Class}.%
\footnote{The SeRQL language is based on querying the deductive
closure of the triple set. The SWI-Prolog SeRQL
library provides \jargon{entailment modules} that
take the approach outlined above.}
\subsection{Hierarchy and class-individual relations}
\label{sec:semweb-rdfs-classes}
The predicates in this section explore the \const{rdfs:subPropertyOf},
\const{rdfs:subClassOf} and \const{rdf:type} relations. Note that the
most fundamental of these, \const{rdfs:subPropertyOf}, is also used
by rdf_has/[3,4].
\begin{description}
\predicate{rdfs_subproperty_of}{2}{?SubProperty, ?Property}
True if \arg{SubProperty} is equal to \arg{Property} or \arg{Property}
can be reached from \arg{SubProperty} following the
\const{rdfs:subPropertyOf} relation. It can be used to test as well as
generate sub-properties or super-properties. Note that the commonly used
semantics of this predicate is wired into rdf_has/[3,4].%
\bug{The current implementation cannot deal with
cycles}.%
\bug{The current implementation cannot deal with predicates
that are an \const{rdfs:subPropertyOf} of
\const{rdfs:subPropertyOf}, such as
\const{owl:samePropertyAs}.}
\predicate{rdfs_subclass_of}{2}{?SubClass, ?Class}
True if \arg{SubClass} is equal to \arg{Class} or \arg{Class}
can be reached from \arg{SubClass} following the
\const{rdfs:subClassOf} relation. It can be used to test as
well as generate sub-classes or super-classes.%
\bug{The current implementation cannot deal with
cycles}.
\predicate{rdfs_class_property}{2}{+Class, ?Property}
True if the domain of \arg{Property} includes \arg{Class}. Used to
generate all properties that apply to a class.
\predicate{rdfs_individual_of}{2}{?Resource, ?Class}
True if \arg{Resource} is an indivisual of \arg{Class}. This implies
\arg{Resource} has an \const{rdf:type} property that refers to
\arg{Class} or a sub-class thereof. Can be used to test, generate
classes \arg{Resource} belongs to or generate individuals described
by \arg{Class}.
\end{description}
\subsection{Collections and Containers}
\label{sec:semweb-rdfs-containers}
\index{parseType,Collection}%
\index{Collection,parseType}%
The RDF construct \const{rdf:parseType}=\const{Collection} constructs
a list using the \const{rdf:first} and \const{rdf:next} relations.
\begin{description}
\predicate{rdfs_member}{2}{?Resource, +Set}
Test or generate the members of \arg{Set}. \arg{Set} is either an
individual of \const{rdf:List} or \const{rdfs:Container}.
\predicate{rdfs_list_to_prolog_list}{2}{+Set, -List}
Convert \arg{Set}, which must be an individual of \const{rdf:List} into
a Prolog list of objects.
\predicate{rdfs_assert_list}{2}{+List, -Resource}
Equivalent to rdfs_assert_list/3 using \arg{DB} = \const{user}.
\predicate{rdfs_assert_list}{3}{+List, -Resource, +DB}
If \arg{List} is a list of resources, create an RDF list \arg{Resource}
that reflects these resources. \arg{Resource} and the sublist resources
are generated with rdf_bnode/1. The new triples are associated with the
database \arg{DB}.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LIBRARY %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\InputIfFileExists{rdflib.tex}{}{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PLDOC LIBRARIES %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\InputIfFileExists{sparqlclient.tex}{}{}
\InputIfFileExists{rdfcompare.tex}{}{}
\InputIfFileExists{rdfportray.tex}{}{}
\section{Related packages}
\label{sec:semweb-related-packages}
\index{ClioPatria}\index{SPARQL}%
The core infrastructure for storing and querying RDF is provided by this
package, which is distributed as a core package with SWI-Prolog.
\href{http://cliopatria.swi-prolog.org}{ClioPatria} provides a
comprehensive server infrastructure on top of the \textit{semweb} and
\textit{http} packages. ClioPatria provides a SPARQL~1.1 endpoint,
linked open data (LOD) support, user management, a web interface and an
extension infrastructure for programming (semantic) web applications.
\index{Thea}\index{OWL2}%
\href{http://www.semanticweb.gr/TheaOWLLib/}{Thea} provides access to OWL
ontologies at the level of the abstract syntax. Can interact with
external DL reasoner using DIG.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% VERSION 3 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Version 3 release notes}
\label{sec:semweb-version3}
RDF-DB version 3 is a major redesign of the SWI-Prolog RDF
infrastructure. Nevertheles, version~3 is almost perfectly upward
compatible with version~2. Below are some issues to take into
consideration when upgrading.
Version~2 did not allow for modifications while read operations were in
progress, for example due to an open choice point. As a consequence,
operations that both queried and modified the database had to be wrapped
in a transaction or the modifications had to be buffered as Prolog data
structures. In both cases, the RDF store was not modified during the
query phase. In version~3, modifications are allowed while read
operations are in progress and follow the Prolog \textbf{logical update
view} semantics. This is different from using a transaction in
version~2, where the view for all read operations was frozen at the
start of the transaction. In version~3, every read operation sees the
store frozen at the moment that the operation was started.
We illustrate the difference by writing a forwards entailment rule that
adds a \jargon{sibling} relation. In \textbf{version~2}, we could
perform this operation using one of the following:
\begin{code}
add_siblings_1 :-
findall(S-O,
( rdf(S, f:parent, P),
rdf(O, f:parent, P),
S \== O
),
Pairs),
forall(member(S-O, Pairs), rdf_assert(S,f:sibling,O)).
add_siblings_2 :-
rdf_transaction(
forall(( rdf(S, f:parent, P),
rdf(O, f:parent, P),
S \== O
),
rdf_assert(S, f:sibling, O))).
\end{code}
In \textbf{version~3}, we can write this in the natural Prolog style
below. In itself, this may not seem a big advantage because wrapping
such operations in a transaction is often a good style anyway. The story
changes with more complicated constrol structures that combine
iterations with steps that depend on triples asserted in previous steps.
Such scenarios can be programmed naturally in the current version.
\begin{code}
add_siblings_3 :-
forall(( rdf(S, f:parent, P),
rdf(O, f:parent, P),
S \== O
),
rdf_assert(S, f:sibling, O)).
\end{code}
In version~3, code that combines queries with modification has the same
semantics whether executed inside or outside a transaction. This
property makes reusing such predicates predictable.
\begin{description}
\item [rdf_statistics/2]
Various statistics have been renamed or changed:
\begin{shortlist}
\item \const{sources} is renamed into \const{graphs}
\item \const{triples_by_file} is renamed into
\const{triples_by_graph}
\item \const{gc} has additional arguments
\item \const{core} is removed.
\end{shortlist}
\item [rdf_generation/1]
Generations inside a transaction are represented as
\arg{BaseGeneration}+\arg{TransactionGeneration}, where
\arg{BaseGeneration} is the global generation where the transaction
started and \arg{TransactionGeneration} expresses the generation within
the transaction. Counting generation has changed as well. In particular,
comitting a transaction steps the generation only by one.
\item [rdf_current_ns/1, rdf_register_ns/2, rdf_register_ns/3]
These predicates are renamed into rdf_current_prefix/1,
rdf_register_prefix/2, rdf_register_prefix/3. The old predicates
are still available as deprecated predicates.
\item [rdf_unload/1] now only accepts a source location and
deletes the associated graph using rdf_unload_graph/1.
\end{description}
\section*{Acknowledgements}
This research was supported by the following projects: MIA and
MultimediaN project (www.multimedian.nl) funded through the BSIK
programme of the Dutch Government, the FP-6 project HOPS of the European
Commission, the COMBINE project supported by the ONR Global NICOP grant
N62909-11-1-7060 and the Dutch national program COMMIT.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FOOTER %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\printindex
\end{document}
|