1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
:- module(macros,
[ macro_position/1, % -Position
% private
expand_macros/5, % +M, +In, -Out, +P0, -P
include_macros/3, % +M,+Macro,-Expanded
op(10, fx, #)
]).
:- use_module(library(terms)).
:- use_module(library(error)).
:- use_module(library(lists)).
/** <module> Macro expansion
This library defines a macro expansion mechanism that operates on
arbitrary terms. Unlike term_expansion/2 and goal_expansion/2, a term is
explicitly designed for expansion using the term `#(Macro)`. Macros are
first of all intended to deal with compile time constants. They can also
be used to construct terms at compile time.
## Defining and using macros {#macros-define-and-use}
Macros are defined for the current module using one of the three
constructs below.
#define(Macro, Replacement).
#define(Macro, Replacement) :- Code.
#import(ModuleFile).
`Macro` is a _callable term_, not being define(_,_), or import(_).
`Replacement` is an arbitrary Prolog term. `Code` is a Prolog _body
term_ that _must_ succeed and can be used to dynamically generate (parts
of) `Replacement`.
The `#import(ModuleFile)` definition makes all macros from the given
module available for expansion in the module it appears. Normally this
shall be appear after local macro definitions.
A macro is called using the term `#(Macro)`. `#` is defined as a
low-priority (10) prefix operator to allow for `#Macro`. Macros can
appear at the following places:
- An entire sentence (clause)
- Any argument of a compound. This implies also the head and body of
a clause.
- Anywhere in a list, including as the tail of a list
- As a value for a dict key or as a dict key name.
Macros can __not__ appear as name of a compound or tag of a dict. A term
`#Macro` appearing in one of the allowed places __must__ have a matching
macro defined, i.e., `#Macro` is __always__ expanded. An error is
emitted if the expansion fails. Macro expansion is applied recursively
and thus, macros may be passed to macro arguments and macro expansion
may use other macros.
Macros are matched to terms using _Single Sided Unification_ (SSU),
implemented using `Head => Body` rules. This implies that the matching
never instantiates variables in the term that is being expanded.
Below are some examples. The first line defines the macro and the
indented line after show example usage of the macro.
```
#define(max_width, 100).
W < #max_width
#define(calc(Expr), Value) :- Value is Expr.
fact(#calc(#max_width*2)).
#define(pt(X,Y), point{x:X, y:Y}).
reply_json(json{type:polygon,
points:[#pt(0,0), #pt(0,5), #pt(5,0)]}).
```
Macro expansion expands terms `#(Callable)`. If the argument to the
#-term is not a `callable`, the #-term is not modified. This notably
allows for `#(Var)` as used by library(clpfd) to indicate that a
variable is constraint to be an (clp(fd)) integer.
## Implementation details {#macros-implementation}
A macro `#define(Macro, Expanded) :- Body.` is, after some basic sanity
checks, translated into a rule
'$macro'(Macro, Var), Body => Var = Expanded.
The `#import(File)` is translated into `:- use_module(File, [])` and a
_link clause_ that links the macro expansion from the module defined in
`File` to the current module.
Macro expansion is realised by creating a clause for term_expansion/2 in
the current module. This clause results from expanding the first
`#define` or `#import` definition. Thus, if macros are defined before
any other local definition for term_expansion/2 it is executed as the
first step. The macro expansion fails if no macros were encounted in the
term, allowing other term_expansion rules local to the module to take
effect. In other words, a term holding macros is not subject to any
other term expansion local to the module. It is subject to term
expansion defined in module `user` and `system` that is performed after
the local expansion is completed.
## Predicates {#macros-predicates}
*/
define_macro((#define(From, To)), Clauses) =>
valid_macro(From),
Clause0 = ('$macro'(From, Expansion) => Expansion = To),
prepare_module(Clause0, Clauses).
define_macro((#define(From, To) :- Cond), Clauses) =>
valid_macro(From),
Clause0 = ('$macro'(From, Expansion), Cond => Expansion = To),
prepare_module(Clause0, Clauses).
define_macro((#import(File)), Clauses) =>
use_module(File, []),
source_file_property(File, module(M)),
Clause0 = ('$macro'(Macro, Expansion), include_macros(M, Macro, Expansion)
=> true),
prepare_module(Clause0, Clauses).
define_macro(_, _) =>
fail.
valid_macro(Macro), reserved_macro(Macro) =>
domain_error(macro, Macro).
valid_macro(Macro), callable(Macro) =>
true.
valid_macro(_Macro) =>
fail.
reserved_macro(define(_,_)) => true.
reserved_macro(import(_)) => true.
reserved_macro(_) => fail.
:- multifile
error:has_type/2.
error:has_type(macro, Term) :-
callable(Term),
\+ reserved_macro(Term).
prepare_module(Clause0, Clauses) :-
prolog_load_context(module, M),
( is_prepared_module(M)
-> Clauses = Clause0
; Clauses = [ (:- multifile(('$macro'/2,term_expansion/4))),
(term_expansion(In, PIn, Out, Pout) :-
expand_macros(M, In, Out, PIn, Pout)),
expand_macros,
Clause0
]
).
is_prepared_module(M) :-
current_predicate(M:expand_macros/0),
\+ predicate_property(M:expand_macros, imported_from(_)).
%! include_macros(+M, +Macro, -Expanded) is semidet.
%
% Include macros from another module. This predicate is a helper for
% `#import(File)`. It calls '$macro'/2 in M, but fails silently in
% case Macro is not defined in M as it may be defined in another
% imported macro file or further down in the current file.
include_macros(M, Macro, Expanded) :-
catch(M:'$macro'(Macro, Expanded),
error(existence_error(matching_rule,
M:'$macro'(Macro,_)),_),
fail).
%! expand_macros(+Module, +TermIn, -TermOut, +PosIn, -PosOut) is semidet.
%
% Perform macro expansion on TermIn with layout PosIn to produce
% TermOut with layout PosOut. The transformation is performed if the
% current load context module is Module (see prolog_load_context/2).
%
% This predicate is not intended for direct usage.
expand_macros(M, T0, T, P0, P) :-
prolog_load_context(module, M),
\+ is_define(T0),
expand_macros(M, T0, T, P0, P, _State0, _State),
T \== T0.
is_define(#Macro), reserved_macro(Macro) => true.
is_define((#Macro :- _)), reserved_macro(Macro) => true.
is_define(_) => fail.
:- meta_predicate
foldsubterms_pos(6, +, -, +, -, +, -).
expand_macros(M, T0, T, P0, P, State0, State) :-
foldsubterms_pos(expand_macro(M), T0, T, P0, P, State0, State).
expand_macro(M, #Macro, T, P0, P, State0, State) =>
valid_macro(Macro),
arg_pos(1, P0, P1),
call_macro(M, Macro, Expanded, P1, P2),
expand_macros(M, Expanded, T, P2, P, State0, State).
expand_macro(_, \#(T0), T, P0, P, State0, State) =>
arg_pos(1, P0, P),
T = T0, State = State0.
expand_macro(_, _, _, _, _, _, _) =>
fail.
call_macro(M, Macro, Expanded, P0, P) :-
b_setval('$macro_position', P0),
catch(M:'$macro'(Macro, Expanded),
error(existence_error(matching_rule, _), _),
macro_failed(Macro, P0)),
fix_pos_shape(Macro, Expanded, P0, P),
b_setval('$macro_position', 0).
macro_failed(Macro, TermPos) :-
macro_error_position(TermPos, Pos),
throw(error(existence_error(macro, Macro), Pos)).
macro_error_position(TermPos, Position) :-
macro_position(TermPos, AtMacro),
!,
prolog_load_context(stream, Input),
stream_position_to_position_term(Input, AtMacro, Position).
macro_error_position(_, _).
stream_position_to_position_term(Stream, StreamPos,
stream(Stream, Line, LinePos, CharNo)) :-
stream_position_data(line_count, StreamPos, Line),
stream_position_data(line_position, StreamPos, LinePos),
stream_position_data(char_count, StreamPos, CharNo).
%! macro_position(-Position) is det.
%
% True when Position is the position of the macro. Position is a term
% `File:Line:LinePos`. If `File` is unknown it is unified with `-`. If
% Line and/or LinePos are unknown they are unified with 0. This
% predicate can be used in the body of a macro definition to provide
% the source location. The example below defines `#pp(Var)` to print a
% variable together with the variable name and source location.
%
% ```
% #define(pp(Var), print_message(debug, dump_var(Pos, Name, Var))) :-
% ( var_property(Var, name(Name))
% -> true
% ; Name = 'Var'
% ),
% macro_position(Pos).
%
% :- multifile prolog:message//1.
% prolog:message(dump_var(Pos,Name,Var)) -->
% [ url(Pos), ': ',
% ansi([fg(magenta),bold], '~w', [Name]), ' = ',
% ansi(code, '~p', [Var])
% ].
% ```
macro_position(File:Line:LinePos) :-
prolog_load_context(file, File),
!,
( b_getval('$macro_position', TermPos),
macro_position(TermPos, StreamPos)
-> stream_position_data(line_count, StreamPos, Line),
stream_position_data(line_position, StreamPos, LinePos)
; Line = 0,
LinePos = 0
).
macro_position((-):0:0).
macro_position(TermPos, AtMacro) :-
compound(TermPos),
arg(1, TermPos, MacroStartCharCount),
integer(MacroStartCharCount),
prolog_load_context(stream, Input),
stream_property(Input, reposition(true)),
stream_property(Input, position(Here)),
prolog_load_context(term_position, ClauseStart),
stream_position_data(char_count, ClauseStart, ClauseStartCharCount),
MacroStartCharCount >= ClauseStartCharCount,
$,
set_stream_position(Input, ClauseStart),
Skip is MacroStartCharCount - ClauseStartCharCount,
forall(between(1, Skip, _), get_char(Input, _)),
stream_property(Input, position(AtMacro)),
set_stream_position(Input, Here).
%! fix_pos_shape(+TermIn, +TermOut, +PosIn, -PosOut) is det.
%
% Fixup PosIn to be a position term that is compatible to Term.
%
% @bug This predicate is largely unimplemented.
fix_pos_shape(_, _, P0, _), var(P0) =>
true.
fix_pos_shape(_, V, P0, P),
atomic(V),
compound(P0), compound_name_arity(P0, _, Arity), Arity >= 2 =>
P = F-T,
arg(1, P0, F),
arg(2, P0, T).
fix_pos_shape(_, _, P0, P) =>
P = P0.
%! foldsubterms_pos(:Goal, +TermIn, -TermOut, +PosIn, -PosOut,
%! +State0, -State) is det.
%
% As foldsubterms/5, but also transforms the layout term. This
% predicate may later be moved to e.g. library(prolog_code) to make it
% publically available.
foldsubterms_pos(Goal, Term1, Term2, P1, P2, State0, State) :-
call(Goal, Term1, Term2, P1, P2, State0, State),
!.
foldsubterms_pos(Goal, Term1, Term2, P1, P2, State0, State) :-
is_dict(Term1),
!,
pos_parts(dict, P1, P2, VPos1, VPos2),
dict_pairs(Term1, Tag, Pairs1),
fold_dict_pairs(Pairs1, Pairs2, VPos1, VPos2, Goal, State0, State),
dict_pairs(Term2, Tag, Pairs2).
foldsubterms_pos(Goal, Term1, Term2, P1, P2, State0, State) :-
nonvar(Term1), Term1 = [_|_], % [] is not a list
!,
pos_parts(list, P1, P2, list(Elms1,Tail1), list(Elms2,Tail2)),
fold_list(Term1, Term2, Elms1, Elms2, Tail1, Tail2, Goal, State0, State).
foldsubterms_pos(Goal, Term1, Term2, P1, P2, State0, State) :-
compound(Term1),
!,
pos_parts(compound, P1, P2, ArgPos1, ArgPos2),
same_functor(Term1, Term2, Arity),
foldsubterms_(1, Arity, Goal, Term1, Term2, ArgPos1, ArgPos2, State0, State).
foldsubterms_pos(_, Term, Term, P, P, State, State).
:- det(fold_dict_pairs/7).
fold_dict_pairs([], [], KVPos, KVPos, _, State, State).
fold_dict_pairs([K0-V0|T0], [K-V|T1], KVPos0, KVPos, Goal, State0, State) :-
( nonvar(KVPos0),
selectchk(key_value_position(F,T,SF,ST,K0,KP0,VP0), KVPos0,
key_value_position(F,T,SF,ST,K, KP, VP), KVPos1)
-> true
; true
),
foldsubterms_pos(Goal, K0, K, KP0, KP, State0, State1),
foldsubterms_pos(Goal, V0, V, VP0, VP, State1, State2),
fold_dict_pairs(T0, T1, KVPos1, KVPos, Goal, State2, State).
:- det(fold_list/9).
fold_list(Var0, Var, EP, EP, TP0, TP, Goal, State0, State) :-
var(Var0),
!,
foldsubterms_pos(Goal, Var0, Var, TP0, TP, State0, State).
fold_list([], [], [], [], TP, TP, _, State, State) :-
!.
fold_list([H0|T0], [H|T], [EP0|EPT0], [EP1|EPT1], TP1, TP2, Goal, State0, State) :-
!,
foldsubterms_pos(Goal, H0, H, EP0, EP1, State0, State1),
fold_list(T0, T, EPT0, EPT1, TP1, TP2, Goal, State1, State).
fold_list(T0, T, EP, EP, TP0, TP, Goal, State0, State) :-
foldsubterms_pos(Goal, T0, T, TP0, TP, State0, State).
:- det(foldsubterms_/9).
foldsubterms_(I, Arity, Goal, Term1, Term2, PosIn, PosOut, State0, State) :-
I =< Arity,
!,
( PosIn = [AP1|APT1]
-> PosOut = [AP2|APT2]
; true
),
arg(I, Term1, A1),
arg(I, Term2, A2),
foldsubterms_pos(Goal, A1, A2, AP1, AP2, State0, State1),
I2 is I+1,
foldsubterms_(I2, Arity, Goal, Term1, Term2, APT1, APT2, State1, State).
foldsubterms_(_, _, _, _, _, _, [], State, State).
:- det(pos_parts/5).
pos_parts(_, Var, _, _, _), var(Var) => true.
pos_parts(Type, parentheses_term_position(F,T,In), PosOut, SubIn, SubOut) =>
PosOut = parentheses_term_position(F,T,Out),
pos_parts(Type, In, Out, SubIn, SubOut).
pos_parts(compound, term_position(From, To, FFrom, FTo, SubPos),
PosOut, SubIn, SubOut) =>
PosOut = term_position(From, To, FFrom, FTo, SubOut),
SubIn = SubPos.
pos_parts(compound, brace_term_position(From, To, ArgPos0),
PosOut, SubIn, SubOut) =>
PosOut = brace_term_position(From, To, ArgPos),
SubIn = [ArgPos0],
SubOut = [ArgPos].
pos_parts(list, list_position(From, To, Elms, Tail),
PosOut, SubIn, SubOut) =>
PosOut = list_position(From, To, Elms1, Tail1),
SubIn = list(Elms, Tail),
SubOut = list(Elms1, Tail1).
pos_parts(dict, dict_position(From, To, TagFrom, TagTo, KVPosIn),
PosOut, SubIn, SubOut) =>
PosOut = dict_position(From, To, TagFrom, TagTo, SubOut),
SubIn = KVPosIn.
pos_parts(_, _, _, _, _) =>
true. % mismatch term and pos
arg_pos(_, TermPos, _), var(TermPos) => true.
arg_pos(I, parentheses_term_position(_,_,TP), AP) =>
arg_pos(I, TP, AP).
arg_pos(I, term_position(_,_,_,_,APL), AP) =>
ignore(nth1(I, APL, AP)).
arg_pos(1, brace_term_position(_,_,TPA), AP) =>
AP = TPA.
arg_pos(_,_,_) =>
true.
/*******************************
* REGISTER *
*******************************/
% Hook to deal with #define and #import if this library was loaded into
% this context.
system:term_expansion(In, Out) :-
is_define(In),
prolog_load_context(module, M),
predicate_property(M:expand_macros(_,_,_,_,_), imported_from(macros)),
$,
define_macro(In, Out).
/*******************************
* MESSAGES *
*******************************/
:- multifile prolog:error_message//1.
prolog:error_message(domain_error(macro, Macro)) -->
[ 'Invalid macro: ~p'-[Macro] ].
prolog:error_message(existence_error(macro, Macro)) -->
[ 'Failed to expand macro: ~p'-[Macro] ].
/*******************************
* IDE SUPPORT *
*******************************/
:- multifile prolog_colour:term_colours/2.
prolog_colour:term_colours(#define(_Macro, _Replacement),
expanded - [ expanded - [ classify, classify ]]).
prolog_colour:term_colours((#define(_Macro, _Replacement) :- _Body),
neck(:-) - [ expanded - [ expanded - [ classify, classify ]],
body
]).
prolog_colour:term_colours(#import(_File),
expanded - [ expanded - [ file ]]).
|