File: assoc.pl

package info (click to toggle)
swi-prolog 9.2.9%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 84,456 kB
  • sloc: ansic: 401,705; perl: 374,799; lisp: 9,080; cpp: 8,920; java: 5,525; sh: 3,282; javascript: 2,690; python: 2,655; ruby: 1,594; yacc: 845; makefile: 440; xml: 317; sed: 12; sql: 6
file content (522 lines) | stat: -rw-r--r-- 18,327 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/*  Part of SWI-Prolog

    Author:        R.A.O'Keefe, L.Damas, V.S.Costa, Glenn Burgess,
                   Jiri Spitz and Jan Wielemaker
    E-mail:        J.Wielemaker@vu.nl
    WWW:           http://www.swi-prolog.org
    Copyright (c)  2004-2018, various people and institutions
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:

    1. Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.

    2. Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in
       the documentation and/or other materials provided with the
       distribution.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGE.
*/

:- module(assoc,
          [ empty_assoc/1,              % -Assoc
            is_assoc/1,                 % +Assoc
            assoc_to_list/2,            % +Assoc, -Pairs
            assoc_to_keys/2,            % +Assoc, -List
            assoc_to_values/2,          % +Assoc, -List
            gen_assoc/3,                % ?Key, +Assoc, ?Value
            get_assoc/3,                % +Key, +Assoc, ?Value
            get_assoc/5,                % +Key, +Assoc0, ?Val0, ?Assoc, ?Val
            list_to_assoc/2,            % +List, ?Assoc
            map_assoc/2,                % :Goal, +Assoc
            map_assoc/3,                % :Goal, +Assoc0, ?Assoc
            max_assoc/3,                % +Assoc, ?Key, ?Value
            min_assoc/3,                % +Assoc, ?Key, ?Value
            ord_list_to_assoc/2,        % +List, ?Assoc
            put_assoc/4,                % +Key, +Assoc0, +Value, ?Assoc
            del_assoc/4,                % +Key, +Assoc0, ?Value, ?Assoc
            del_min_assoc/4,            % +Assoc0, ?Key, ?Value, ?Assoc
            del_max_assoc/4             % +Assoc0, ?Key, ?Value, ?Assoc
          ]).
:- autoload(library(error),[must_be/2,domain_error/2]).


/** <module> Binary associations

Assocs are Key-Value associations implemented as  a balanced binary tree
(AVL tree).

__Warning: instantiation of keys__

AVL  trees  depend  on    the   Prolog   _standard  order  of  terms_ to
organize the keys as a (balanced)  binary   tree.  This implies that any
term may be used as a key. The   tree may produce wrong results, such as
not being able to find a key, if  the ordering of keys changes after the
key has been inserted into the tree.   The user is responsible to ensure
that variables used as keys or appearing in  a term used as key that may
affect ordering are not  unified,  with   the  exception  of unification
against new fresh variables. For this   reason,  _ground_ terms are safe
keys. When using non-ground terms, either make sure the variables appear
in places that do not affect the   standard order relative to other keys
in the tree or make sure to not unify against these variables as long as
the tree is being used.

@see            library(pairs), library(rbtrees)
@author         R.A.O'Keefe, L.Damas, V.S.Costa and Jan Wielemaker
*/

:- meta_predicate
    map_assoc(1, ?),
    map_assoc(2, ?, ?).

%!  empty_assoc(?Assoc) is semidet.
%
%   Is true if Assoc is the empty association list.

empty_assoc(t).

%!  assoc_to_list(+Assoc, -Pairs) is det.
%
%   Translate Assoc to a list Pairs  of   Key-Value  pairs.  The keys in
%   Pairs are sorted in ascending order.

assoc_to_list(Assoc, List) :-
    assoc_to_list(Assoc, List, []).

assoc_to_list(t(Key,Val,_,L,R), List, Rest) :-
    assoc_to_list(L, List, [Key-Val|More]),
    assoc_to_list(R, More, Rest).
assoc_to_list(t, List, List).


%!  assoc_to_keys(+Assoc, -Keys) is det.
%
%   True if Keys is the list of keys   in  Assoc. The keys are sorted in
%   ascending order.

assoc_to_keys(Assoc, List) :-
    assoc_to_keys(Assoc, List, []).

assoc_to_keys(t(Key,_,_,L,R), List, Rest) :-
    assoc_to_keys(L, List, [Key|More]),
    assoc_to_keys(R, More, Rest).
assoc_to_keys(t, List, List).


%!  assoc_to_values(+Assoc, -Values) is det.
%
%   True if Values is the list of values in Assoc. Values are ordered in
%   ascending order of the key to which they were associated. Values may
%   contain duplicates.

assoc_to_values(Assoc, List) :-
    assoc_to_values(Assoc, List, []).

assoc_to_values(t(_,Value,_,L,R), List, Rest) :-
    assoc_to_values(L, List, [Value|More]),
    assoc_to_values(R, More, Rest).
assoc_to_values(t, List, List).

%!  is_assoc(+Assoc) is semidet.
%
%   True if Assoc is an association list. This predicate checks that the
%   structure is valid, elements are in order,   and tree is balanced to
%   the extent guaranteed by AVL trees.   I.e., branches of each subtree
%   differ in depth by at most  1.   Does  _not_  validate that keys are
%   sufficiently instantiated to ensure the tree  remains valid if a key
%   is further instantiated.

is_assoc(Assoc) :-
    nonvar(Assoc),
    is_assoc(Assoc, _Min, _Max, _Depth).

is_assoc(t,X,X,0) :- !.
is_assoc(t(K,_,-,t,t),K,K,1) :- !.
is_assoc(t(K,_,>,t,t(RK,_,-,t,t)),K,RK,2) :-
    !, K @< RK.
is_assoc(t(K,_,<,t(LK,_,-,t,t),t),LK,K,2) :-
    !, LK @< K.
is_assoc(t(K,_,B,L,R),Min,Max,Depth) :-
    is_assoc(L,Min,LMax,LDepth),
    is_assoc(R,RMin,Max,RDepth),
    % Ensure Balance matches depth
    compare(Rel,RDepth,LDepth),
    balance(Rel,B),
    % Ensure ordering
    LMax @< K,
    K @< RMin,
    Depth is max(LDepth, RDepth)+1.

balance(=,-).
balance(<,<).
balance(>,>).


%!  gen_assoc(?Key, +Assoc, ?Value) is nondet.
%
%   True if Key-Value is an  association   in  Assoc. Enumerates keys in
%   ascending order on backtracking.
%
%   @see get_assoc/3.

gen_assoc(Key, Assoc, Value) :-
    (   ground(Key)
    ->  get_assoc(Key, Assoc, Value)
    ;   gen_assoc_(Key, Assoc, Value)
    ).

gen_assoc_(Key, t(Key0,Val0,_,L,R), Val) =>
    gen_assoc_(Key, Key0,Val0,L,R, Val).
gen_assoc_(_Key, t, _Val) =>
    fail.

gen_assoc_(Key, _,_,L,_, Val) :-
    gen_assoc_(Key, L, Val).
gen_assoc_(Key, Key,Val0,_,_, Val) :-
    Val = Val0.
gen_assoc_(Key, _,_,_,R, Val) :-
    gen_assoc_(Key, R, Val).


%!  get_assoc(+Key, +Assoc, -Value) is semidet.
%
%   True if Key-Value is an association in Assoc.

:- if(current_predicate('$btree_find_node'/5)).
get_assoc(Key, Tree, Val) :-
    Tree \== t,
    '$btree_find_node'(Key, Tree, 0x010405, Node, =),
    arg(2, Node, Val).
:- else.
get_assoc(Key, t(K,V,_,L,R), Val) =>
    compare(Rel, Key, K),
    get_assoc(Rel, Key, V, L, R, Val).
get_assoc(_, t, _) =>
    fail.

get_assoc(=, _, Val, _, _, Val).
get_assoc(<, Key, _, Tree, _, Val) :-
    get_assoc(Key, Tree, Val).
get_assoc(>, Key, _, _, Tree, Val) :-
    get_assoc(Key, Tree, Val).
:- endif.


%!  get_assoc(+Key, +Assoc0, ?Val0, ?Assoc, ?Val) is semidet.
%
%   True if Key-Val0 is in Assoc0 and Key-Val is in Assoc.

get_assoc(Key, t(K,V,B,L,R), Val, Assoc, NVal) =>
    Assoc = t(K,NV,B,NL,NR),
    compare(Rel, Key, K),
    get_assoc(Rel, Key, V, L, R, Val, NV, NL, NR, NVal).
get_assoc(_Key, t, _Val, _, _) =>
    fail.

get_assoc(=, _, Val, L, R, Val, NVal, L, R, NVal).
get_assoc(<, Key, V, L, R, Val, V, NL, R, NVal) :-
    get_assoc(Key, L, Val, NL, NVal).
get_assoc(>, Key, V, L, R, Val, V, L, NR, NVal) :-
    get_assoc(Key, R, Val, NR, NVal).


%!  list_to_assoc(+Pairs, -Assoc) is det.
%
%   Create an association from a  list   Pairs  of Key-Value pairs. List
%   must not contain duplicate keys.
%
%   @error domain_error(unique_key_pairs, List) if List contains duplicate keys

list_to_assoc(List, Assoc) :-
    (   List == []
    ->  Assoc = t
    ;   keysort(List, Sorted),
        (  ord_pairs(Sorted)
        -> length(Sorted, N),
           list_to_assoc(N, Sorted, [], _, Assoc)
        ;  domain_error(unique_key_pairs, List)
        )
    ).

list_to_assoc(1, [K-V|More], More, 1, t(K,V,-,t,t)) :- !.
list_to_assoc(2, [K1-V1,K2-V2|More], More, 2, t(K2,V2,<,t(K1,V1,-,t,t),t)) :- !.
list_to_assoc(N, List, More, Depth, t(K,V,Balance,L,R)) :-
    N0 is N - 1,
    RN is N0 div 2,
    Rem is N0 mod 2,
    LN is RN + Rem,
    list_to_assoc(LN, List, [K-V|Upper], LDepth, L),
    list_to_assoc(RN, Upper, More, RDepth, R),
    Depth is LDepth + 1,
    compare(B, RDepth, LDepth), balance(B, Balance).

%!  ord_list_to_assoc(+Pairs, -Assoc) is det.
%
%   Assoc is created from an ordered list  Pairs of Key-Value pairs. The
%   pairs must occur in strictly ascending order of their keys.
%
%   @error domain_error(key_ordered_pairs, List) if pairs are not ordered.

ord_list_to_assoc(Sorted, Assoc) :-
    (   Sorted == []
    ->  Assoc = t
    ;   (  ord_pairs(Sorted)
        -> length(Sorted, N),
           list_to_assoc(N, Sorted, [], _, Assoc)
        ;  domain_error(key_ordered_pairs, Sorted)
        )
    ).

%!  ord_pairs(+Pairs) is semidet
%
%   True if Pairs is a list of Key-Val pairs strictly ordered by key.

ord_pairs([K-_V|Rest]) :-
    ord_pairs(Rest, K).
ord_pairs([], _K).
ord_pairs([K-_V|Rest], K0) :-
    K0 @< K,
    ord_pairs(Rest, K).

%!  map_assoc(:Pred, +Assoc) is semidet.
%
%   True if Pred(Value) is true for all values in Assoc.

map_assoc(Pred, T) :-
    map_assoc_(T, Pred).

map_assoc_(t, _) =>
    true.
map_assoc_(t(_,Val,_,L,R), Pred) =>
    map_assoc_(L, Pred),
    call(Pred, Val),
    map_assoc_(R, Pred).

%!  map_assoc(:Pred, +Assoc0, ?Assoc) is semidet.
%
%   Map corresponding values. True if Assoc  is Assoc0 with Pred applied
%   to all corresponding pairs of of values.

map_assoc(Pred, T0, T) :-
    map_assoc_(T0, Pred, T).

map_assoc_(t, _, Assoc) =>
    Assoc = t.
map_assoc_(t(Key,Val,B,L0,R0), Pred, Assoc) =>
    Assoc = t(Key,Ans,B,L1,R1),
    map_assoc_(L0, Pred, L1),
    call(Pred, Val, Ans),
    map_assoc_(R0, Pred, R1).


%!  max_assoc(+Assoc, -Key, -Value) is semidet.
%
%   True if Key-Value is in Assoc and Key is the largest key.

max_assoc(t(K,V,_,_,R), Key, Val) =>
    max_assoc(R, K, V, Key, Val).
max_assoc(t, _, _) =>
    fail.

max_assoc(t, K, V, K, V).
max_assoc(t(K,V,_,_,R), _, _, Key, Val) :-
    max_assoc(R, K, V, Key, Val).


%!  min_assoc(+Assoc, -Key, -Value) is semidet.
%
%   True if Key-Value is in assoc and Key is the smallest key.

min_assoc(t(K,V,_,L,_), Key, Val) =>
    min_assoc(L, K, V, Key, Val).
min_assoc(t, _, _) =>
    fail.

min_assoc(t, K, V, K, V).
min_assoc(t(K,V,_,L,_), _, _, Key, Val) :-
    min_assoc(L, K, V, Key, Val).


%!  put_assoc(+Key, +Assoc0, +Value, -Assoc) is det.
%
%   Assoc is Assoc0, except that Key is  associated with Value. This can
%   be used to insert and change associations.

put_assoc(Key, A0, Value, A) :-
    insert(A0, Key, Value, A, _).

insert(t, Key, Val, Assoc, Changed) =>
    Assoc = t(Key,Val,-,t,t),
    Changed = yes.
insert(t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) =>
    compare(Rel, K, Key),
    insert(Rel, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged).

insert(=, t(Key,_,B,L,R), _, V, t(Key,V,B,L,R), no).
insert(<, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
    insert(L, K, V, NewL, LeftHasChanged),
    adjust(LeftHasChanged, t(Key,Val,B,NewL,R), left, NewTree, WhatHasChanged).
insert(>, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
    insert(R, K, V, NewR, RightHasChanged),
    adjust(RightHasChanged, t(Key,Val,B,L,NewR), right, NewTree, WhatHasChanged).

adjust(no, Oldree, _, Oldree, no).
adjust(yes, t(Key,Val,B0,L,R), LoR, NewTree, WhatHasChanged) :-
    table(B0, LoR, B1, WhatHasChanged, ToBeRebalanced),
    rebalance(ToBeRebalanced, t(Key,Val,B0,L,R), B1, NewTree, _, _).

%     balance  where     balance  whole tree  to be
%     before   inserted  after    increased   rebalanced
table(-      , left    , <      , yes       , no    ) :- !.
table(-      , right   , >      , yes       , no    ) :- !.
table(<      , left    , -      , no        , yes   ) :- !.
table(<      , right   , -      , no        , no    ) :- !.
table(>      , left    , -      , no        , no    ) :- !.
table(>      , right   , -      , no        , yes   ) :- !.

%!  del_min_assoc(+Assoc0, ?Key, ?Val, -Assoc) is semidet.
%
%   True if Key-Value is in Assoc0 and Key is the smallest key. Assoc is
%   Assoc0 with Key-Value removed. Warning: This  will succeed with _no_
%   bindings for Key or Val if Assoc0 is empty.

del_min_assoc(Tree, Key, Val, NewTree) :-
    del_min_assoc(Tree, Key, Val, NewTree, _DepthChanged).

del_min_assoc(t(Key,Val,_B,t,R), Key, Val, R, yes) :- !.
del_min_assoc(t(K,V,B,L,R), Key, Val, NewTree, Changed) :-
    del_min_assoc(L, Key, Val, NewL, LeftChanged),
    deladjust(LeftChanged, t(K,V,B,NewL,R), left, NewTree, Changed).

%!  del_max_assoc(+Assoc0, ?Key, ?Val, -Assoc) is semidet.
%
%   True if Key-Value is in Assoc0 and Key is the greatest key. Assoc is
%   Assoc0 with Key-Value removed. Warning: This  will succeed with _no_
%   bindings for Key or Val if Assoc0 is empty.

del_max_assoc(Tree, Key, Val, NewTree) :-
    del_max_assoc(Tree, Key, Val, NewTree, _DepthChanged).

del_max_assoc(t(Key,Val,_B,L,t), Key, Val, L, yes) :- !.
del_max_assoc(t(K,V,B,L,R), Key, Val, NewTree, Changed) :-
    del_max_assoc(R, Key, Val, NewR, RightChanged),
    deladjust(RightChanged, t(K,V,B,L,NewR), right, NewTree, Changed).

%!  del_assoc(+Key, +Assoc0, ?Value, -Assoc) is semidet.
%
%   True if Key-Value is  in  Assoc0.   Assoc  is  Assoc0 with
%   Key-Value removed.

del_assoc(Key, A0, Value, A) :-
    delete(A0, Key, Value, A, _).

% delete(+Subtree, +SearchedKey, ?SearchedValue, ?SubtreeOut, ?WhatHasChanged)
delete(t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) =>
    compare(Rel, K, Key),
    delete(Rel, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged).
delete(t, _, _, _, _) =>
    fail.

% delete(+KeySide, +Subtree, +SearchedKey, ?SearchedValue, ?SubtreeOut, ?WhatHasChanged)
% KeySide is an operator {<,=,>} indicating which branch should be searched for the key.
% WhatHasChanged {yes,no} indicates whether the NewTree has changed in depth.
delete(=, t(Key,Val,_B,t,R), Key, Val, R, yes) :- !.
delete(=, t(Key,Val,_B,L,t), Key, Val, L, yes) :- !.
delete(=, t(Key,Val,>,L,R), Key, Val, NewTree, WhatHasChanged) :-
    % Rh tree is deeper, so rotate from R to L
    del_min_assoc(R, K, V, NewR, RightHasChanged),
    deladjust(RightHasChanged, t(K,V,>,L,NewR), right, NewTree, WhatHasChanged),
    !.
delete(=, t(Key,Val,B,L,R), Key, Val, NewTree, WhatHasChanged) :-
    % Rh tree is not deeper, so rotate from L to R
    del_max_assoc(L, K, V, NewL, LeftHasChanged),
    deladjust(LeftHasChanged, t(K,V,B,NewL,R), left, NewTree, WhatHasChanged),
    !.

delete(<, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
    delete(L, K, V, NewL, LeftHasChanged),
    deladjust(LeftHasChanged, t(Key,Val,B,NewL,R), left, NewTree, WhatHasChanged).
delete(>, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
    delete(R, K, V, NewR, RightHasChanged),
    deladjust(RightHasChanged, t(Key,Val,B,L,NewR), right, NewTree, WhatHasChanged).

deladjust(no, OldTree, _, OldTree, no).
deladjust(yes, t(Key,Val,B0,L,R), LoR, NewTree, RealChange) :-
    deltable(B0, LoR, B1, WhatHasChanged, ToBeRebalanced),
    rebalance(ToBeRebalanced, t(Key,Val,B0,L,R), B1, NewTree, WhatHasChanged, RealChange).

%     balance  where     balance  whole tree  to be
%     before   deleted   after    changed   rebalanced
deltable(-      , right   , <      , no        , no    ) :- !.
deltable(-      , left    , >      , no        , no    ) :- !.
deltable(<      , right   , -      , yes       , yes   ) :- !.
deltable(<      , left    , -      , yes       , no    ) :- !.
deltable(>      , right   , -      , yes       , no    ) :- !.
deltable(>      , left    , -      , yes       , yes   ) :- !.
% It depends on the tree pattern in avl_geq whether it really decreases.

% Single and double tree rotations - these are common for insert and delete.
/* The patterns (>)-(>), (>)-( <), ( <)-( <) and ( <)-(>) on the LHS
   always change the tree height and these are the only patterns which can
   happen after an insertion. That's the reason why we can use a table only to
   decide the needed changes.

   The patterns (>)-( -) and ( <)-( -) do not change the tree height. After a
   deletion any pattern can occur and so we return yes or no as a flag of a
   height change.  */


rebalance(no, t(K,V,_,L,R), B, t(K,V,B,L,R), Changed, Changed).
rebalance(yes, OldTree, _, NewTree, _, RealChange) :-
    avl_geq(OldTree, NewTree, RealChange).

avl_geq(t(A,VA,>,Alpha,t(B,VB,>,Beta,Gamma)),
        t(B,VB,-,t(A,VA,-,Alpha,Beta),Gamma), yes) :- !.
avl_geq(t(A,VA,>,Alpha,t(B,VB,-,Beta,Gamma)),
        t(B,VB,<,t(A,VA,>,Alpha,Beta),Gamma), no) :- !.
avl_geq(t(B,VB,<,t(A,VA,<,Alpha,Beta),Gamma),
        t(A,VA,-,Alpha,t(B,VB,-,Beta,Gamma)), yes) :- !.
avl_geq(t(B,VB,<,t(A,VA,-,Alpha,Beta),Gamma),
        t(A,VA,>,Alpha,t(B,VB,<,Beta,Gamma)), no) :- !.
avl_geq(t(A,VA,>,Alpha,t(B,VB,<,t(X,VX,B1,Beta,Gamma),Delta)),
        t(X,VX,-,t(A,VA,B2,Alpha,Beta),t(B,VB,B3,Gamma,Delta)), yes) :-
    !,
    table2(B1, B2, B3).
avl_geq(t(B,VB,<,t(A,VA,>,Alpha,t(X,VX,B1,Beta,Gamma)),Delta),
        t(X,VX,-,t(A,VA,B2,Alpha,Beta),t(B,VB,B3,Gamma,Delta)), yes) :-
    !,
    table2(B1, B2, B3).

table2(< ,- ,> ).
table2(> ,< ,- ).
table2(- ,- ,- ).


                 /*******************************
                 *            ERRORS            *
                 *******************************/

:- multifile
    error:has_type/2.

error:has_type(assoc, X) :-
    (   X == t
    ->  true
    ;   compound(X),
        compound_name_arity(X, t, 5)
    ).