1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/* Part of SWI-Prolog
Author: Jon Jagger
E-mail: J.R.Jagger@shu.ac.uk
Copyright (c) 1993-2011, Jon Jagger
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(oset,
[ oset_is/1,
oset_union/3,
oset_int/3,
oset_diff/3,
oset_dint/2,
oset_dunion/2,
oset_addel/3,
oset_delel/3,
oset_power/2
]).
:- autoload(library(lists), [reverse/2]).
:- autoload(library(ordsets),
[ is_ordset/1,
ord_union/3,
ord_intersection/3,
ord_subtract/3,
ord_add_element/3,
ord_del_element/3,
ord_union/2,
ord_intersection/2
]).
/** <module> Ordered set manipulation
This library defines set operations on sets represented as ordered
lists. This current library is a thin wrapper around library(ordsets).
Many of the implementations of library(ordsets) originate from the
library.
@author Jon Jagger
@deprecated Use the de-facto library(ordsets)
*/
%! oset_is(@OSet)
%
% check that OSet in correct format (standard order)
%
% @deprecated Use is_ordset/1 from library(ordsets)
oset_is(OSet) :-
is_ordset(OSet).
%! oset_union(+OSet1, +OSet2, -Union)
%
% Union is the union of OSet1 and OSet2.
%
% @deprecated Use ord_union/3 from library(ordsets)
oset_union(OSet1, OSet2, Union) :-
ord_union(OSet1, OSet2, Union).
%! oset_int(+OSet1, +OSet2, -Int)
%
% ordered set intersection
oset_int(Set1, Set2, Intersection) :-
ord_intersection(Set1, Set2, Intersection).
%! oset_diff(+InOSet, +NotInOSet, -Diff)
%
% Ordered set difference
%
% @deprecated Use ord_subtract/3 from library(ordsets)
oset_diff(InOSet, NotInOSet, Diff) :-
ord_subtract(InOSet, NotInOSet, Diff).
%! oset_dunion(+SetofSets, -DUnion)
%
% Distributed union.
%
% @deprecated Use ord_union/2 from library(ordsets)
oset_dunion(SetofSets, DUnion) :-
ord_union(SetofSets, DUnion).
%! oset_dint(+SetofSets, -DInt)
%
% Distributed intersection.
%
% @deprecated Use ord_intersection/2 from library(ordsets)
oset_dint(SetofSets, DInt) :-
ord_intersection(SetofSets, DInt).
%! oset_power(+Set, -PSet)
%
% True when PSet is the powerset of Set. That is, Pset is a set of
% all subsets of Set, where each subset is a proper ordered set.
oset_power(S, PSet) :-
reverse(S, R),
pset(R, [[]], PSet0),
sort(PSet0, PSet).
% The powerset of a set is the powerset of a set of one smaller,
% together with the set of one smaller where each subset is extended
% with the new element. Note that this produces the elements of the set
% in reverse order. Hence the reverse in oset_power/2.
pset([], PSet, PSet).
pset([H|T], PSet0, PSet) :-
happ(PSet0, H, PSet1),
pset(T, PSet1, PSet).
happ([], _, []).
happ([S|Ss], H, [[H|S],S|Rest]) :-
happ(Ss, H, Rest).
%! oset_addel(+Set, +El, -Add)
%
% Ordered set element addition.
%
% @deprecated Use ord_add_element/3 from library(ordsets)
oset_addel(Set1, Element, Set2) :-
ord_add_element(Set1, Element, Set2).
%! oset_delel(+Set, +El, -Del)
%
% Ordered set element deletion.
%
% @deprecated Use ord_del_element/3 from library(ordsets)
oset_delel(Set, Element, NewSet) :-
ord_del_element(Set, Element, NewSet).
|