File: yall.pl

package info (click to toggle)
swi-prolog 9.2.9%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 84,456 kB
  • sloc: ansic: 401,705; perl: 374,799; lisp: 9,080; cpp: 8,920; java: 5,525; sh: 3,282; javascript: 2,690; python: 2,655; ruby: 1,594; yacc: 845; makefile: 440; xml: 317; sed: 12; sql: 6
file content (574 lines) | stat: -rw-r--r-- 19,510 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/*  Part of SWI-Prolog

    Author:        Paulo Moura
    E-mail:        J.Wielemaker@vu.nl
    WWW:           http://www.swi-prolog.org
    Copyright (c)  2015, Paulo Moura, Kyndi Inc., VU University Amsterdam
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:

    1. Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.

    2. Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in
       the documentation and/or other materials provided with the
       distribution.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGE.
*/

:- module(yall,
          [ (>>)/2, (>>)/3, (>>)/4, (>>)/5, (>>)/6, (>>)/7, (>>)/8, (>>)/9,
            (/)/2, (/)/3, (/)/4, (/)/5, (/)/6, (/)/7, (/)/8, (/)/9,

            lambda_calls/2,                     % +LambdaExt, -Goal
            lambda_calls/3,                     % +Lambda, +Args, -Goal
            is_lambda/1                         % @Term
          ]).
:- autoload(library(error),
	    [ instantiation_error/1,
	      must_be/2,
	      domain_error/2,
	      type_error/2
	    ]).
:- autoload(library(lists),[append/3]).


:- meta_predicate
    '>>'(?, 0),
    '>>'(?, :, ?),
    '>>'(?, :, ?, ?),
    '>>'(?, :, ?, ?, ?),
    '>>'(?, :, ?, ?, ?, ?),
    '>>'(?, :, ?, ?, ?, ?, ?),
    '>>'(?, :, ?, ?, ?, ?, ?, ?),
    '>>'(?, :, ?, ?, ?, ?, ?, ?, ?).

:- meta_predicate
    '/'(?, 0),
    '/'(?, 1, ?),
    '/'(?, 2, ?, ?),
    '/'(?, 3, ?, ?, ?),
    '/'(?, 4, ?, ?, ?, ?),
    '/'(?, 5, ?, ?, ?, ?, ?),
    '/'(?, 6, ?, ?, ?, ?, ?, ?),
    '/'(?, 7, ?, ?, ?, ?, ?, ?, ?).

/** <module> Lambda expressions

Prolog realizes _high-order_ programming  with   meta-calling.  The core
predicate of this is call/1, which simply   calls its argument. This can
be used to define higher-order predicates  such as ignore/1 or forall/2.
The call/N construct calls a _closure_  with N-1 _additional arguments_.
This is used to define  higher-order predicates  such as the maplist/2-5
family or foldl/4-7.

The _closure_ concept used here is   somewhat different from the closure
concept from functional programming. The latter   is  a function that is
always evaluated in the context that  existed at function creation time.
Here, a closure is a term of arity _0  =< L =< K_. The term's functor is
the name of a predicate of arity _K_ and the term's _L_ arguments (where
_L_ could be 0) correspond to _L_  leftmost arguments of said predicate,
bound  to  parameter  values.   For    example,   a   closure  involving
atom_concat/3  might  be  the  term  atom_concat(prefix).  In  order  of
increasing _L_, one would have increasingly  more complete closures that
could be passed to call/3, all giving the same result:

```
call(atom_concat,prefix,suffix,R).
call(atom_concat(prefix),suffix,R).
call(atom_concat(prefix,suffix),R).
call(atom_concat(prefix,suffix,R)).
```

The problem with higher order predicates  based   on  call/N is that the
additional arguments are always  added  to   the  end  of  the closure's
argument list. This often requires defining trivial helper predicates to
get the argument order right. For example, if   you want to add a common
postfix    to    a    list    of    atoms     you    need    to    apply
atom_concat(In,Postfix,Out),                                         but
maplist(atom_concat(Postfix),ListIn,ListOut)                       calls
atom_concat(Postfix,In,Out). This is where library(yall) comes in, where
the module name, _yall_, stands for _Yet Another Lambda Library_.

The library allows us to write a   lambda expression that _wraps around_
the (possibly complex) goal to call:

```
?- maplist([In,Out]>>atom_concat(In,'_p',Out), [a,b], ListOut).
ListOut = [a_p, b_p].
```

A bracy list `{...}` specifies which  variables are _shared_ between the
wrapped goal and the surrounding context. This   allows  us to write the
code below. Without the `{Postfix}` a fresh  variable would be passed to
atom_concat/3.

```
add_postfix(Postfix, ListIn, ListOut) :-
    maplist({Postfix}/[In,Out]>>atom_concat(In,Postfix,Out),
            ListIn, ListOut).
```

This introduces the second application area   of lambda expressions: the
ability to confine variables to the called goal's context. This features
shines when combined with bagof/3 or setof/3   where one normally has to
list those variables whose bindings one is _not_ interested in using the
`Var^Goal` construct (marking `Var`  as   existentially  quantified  and
confining it to the called goal's context). Lambda expressions allow you
to do the converse: specify the variables  which one _is_ interested in.
These variables are common to the  context   of  the called goal and the
surrounding context.

Lambda expressions use the syntax below

```
{...}/[...]>>Goal.
```

The `{...}` optional part is used   for  lambda-free variables (the ones
shared between contexts). The order of   variables doesn't matter, hence
the `{...}` set notation.

The  `[...]`  optional  part  lists lambda  parameters.  Here, order  of
variables matters, hence the list notation.

As `/` and `>>` are standard infix operators, no new operators are added
by this library. An advantage of this syntax is that we can simply unify
a lambda expression with `{Free}/[Parameters]>>Lambda` to access each of
its components. Spaces in  the  lambda   expression  are  not  a problem
although the goal may need to be   written between '()'s. Goals that are
qualified by a module prefix also need to be wrapped inside parentheses.

Combined  with  library(apply_macros),  library(yall)    allows  writing
one-liners for many list operations that   have  the same performance as
hand-written code.

This     module     implements     [Logtalk's     lambda     expressions
syntax](https://logtalk.org/manuals/refman/grammar.html#lambda-expressions).


The development of this module was sponsored by Kyndi, Inc.

@tbd    Extend optimization support
@author Paulo Moura and Jan Wielemaker
*/

%!  >>(+Parameters, +Lambda).
%!  >>(+Parameters, +Lambda, ?A1).
%!  >>(+Parameters, +Lambda, ?A1, ?A2).
%!  >>(+Parameters, +Lambda, ?A1, ?A2, ?A3).
%!  >>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4).
%!  >>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5).
%!  >>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6).
%!  >>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7).
%
%   Calls a copy of Lambda. This  is similar to call(Lambda,A1,...),
%   but arguments are reordered according to the list Parameters:
%
%     - The first length(Parameters) arguments from A1, ... are
%       unified with (a copy of) Parameters, which _may_ share
%       them with variables in Lambda.
%     - Possible excess arguments are passed by position.
%
%   @arg    Parameters is either a plain list of parameters or a term
%           `{Free}/List`. `Free` represents variables that are
%           shared between the context and the Lambda term.  This
%           is needed for compiling Lambda expressions.

'>>'(Parms, Lambda) :-
    unify_lambda_parameters(Parms, [],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1) :-
    unify_lambda_parameters(Parms, [A1],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2) :-
    unify_lambda_parameters(Parms, [A1,A2],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2, A3) :-
    unify_lambda_parameters(Parms, [A1,A2,A3],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2, A3, A4) :-
    unify_lambda_parameters(Parms, [A1,A2,A3,A4],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2, A3, A4, A5) :-
    unify_lambda_parameters(Parms, [A1,A2,A3,A4,A5],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2, A3, A4, A5, A6) :-
    unify_lambda_parameters(Parms, [A1,A2,A3,A4,A5,A6],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2, A3, A4, A5, A6, A7) :-
    unify_lambda_parameters(Parms, [A1,A2,A3,A4,A5,A6,A7],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

%!  /(+Free, :Lambda).
%!  /(+Free, :Lambda, ?A1).
%!  /(+Free, :Lambda, ?A1, ?A2).
%!  /(+Free, :Lambda, ?A1, ?A2, ?A3).
%!  /(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4).
%!  /(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5).
%!  /(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6).
%!  /(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7).
%
%   Shorthand for `Free/[]>>Lambda`.  This is the same as applying
%   call/N on Lambda, except that only variables appearing in Free
%   are bound by the call.  For example
%
%     ==
%     p(1,a).
%     p(2,b).
%
%     ?- {X}/p(X,Y).
%     X = 1;
%     X = 2.
%     ==
%
%   This can in particularly be combined with bagof/3 and setof/3 to
%   _select_ particular variables to be  concerned rather than using
%   existential quantification (^/2)  to   _exclude_  variables. For
%   example, the two calls below are equivalent.
%
%     ==
%     setof(X, Y^p(X,Y), Xs)
%     setof(X, {X}/p(X,_), Xs)
%     ==


'/'(Free, Lambda) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy).

'/'(Free, Lambda, A1) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1).

'/'(Free, Lambda, A1, A2) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2).

'/'(Free, Lambda, A1, A2, A3) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2, A3).

'/'(Free, Lambda, A1, A2, A3, A4) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2, A3, A4).

'/'(Free, Lambda, A1, A2, A3, A4, A5) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2, A3, A4, A5).

'/'(Free, Lambda, A1, A2, A3, A4, A5, A6) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2, A3, A4, A5, A6).

'/'(Free, Lambda, A1, A2, A3, A4, A5, A6, A7) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2, A3, A4, A5, A6, A7).


%!  unify_lambda_parameters(+ParmsAndFree, +Args, -CallArgs,
%!                          +Lambda, -LambdaCopy) is det.
%
%   @arg ParmsAndFree is the first argumen of `>>`, either a list
%        of parameters or a term `{Free}/Params`.
%   @arg Args is a list of input parameters, args 3.. from `>>`
%   @arg CallArgs are the calling arguments for the Lambda
%        expression.  I.e., we call call(LambdaCopy, CallArgs).

unify_lambda_parameters(Parms, _Args, _ExtraArgs, _Lambda, _LambdaCopy) :-
    var(Parms),
    !,
    instantiation_error(Parms).
unify_lambda_parameters(Free/Parms, Args, ExtraArgs, Lambda, LambdaCopy) :-
    !,
    lambda_free(Free),
    must_be(list, Parms),
    copy_term_nat(Free/Parms>>Lambda, Free/ParmsCopy>>LambdaCopy),
    unify_lambda_parameters_(ParmsCopy, Args, ExtraArgs,
                             Free/Parms>>Lambda).
unify_lambda_parameters(Parms, Args, ExtraArgs, Lambda, LambdaCopy) :-
    must_be(list, Parms),
    copy_term_nat(Parms>>Lambda, ParmsCopy>>LambdaCopy),
    unify_lambda_parameters_(ParmsCopy, Args, ExtraArgs,
                             Parms>>Lambda).

unify_lambda_parameters_([], ExtraArgs, ExtraArgs, _) :- !.
unify_lambda_parameters_([Parm|Parms], [Arg|Args], ExtraArgs, Culprit) :-
    !,
    Parm = Arg,
    unify_lambda_parameters_(Parms, Args, ExtraArgs, Culprit).
unify_lambda_parameters_(_,_,_,Culprit) :-
    domain_error(lambda_parameters, Culprit).

lambda_free(Free) :-
    var(Free),
    !,
    instantiation_error(Free).
lambda_free({_}) :- !.
lambda_free({}) :- !.
lambda_free(Free) :-
    type_error(lambda_free, Free).

%!  expand_lambda(+Goal, -Head) is semidet.
%
%   True if Goal is a   sufficiently  instantiated Lambda expression
%   that is compiled to the predicate   Head.  The predicate Head is
%   added    to    the    current    compilation    context    using
%   compile_aux_clauses/1.

expand_lambda(Goal, Head) :-
    Goal =.. ['>>', Parms, Lambda| ExtraArgs],
    is_callable(Lambda),
    nonvar(Parms),
    lambda_functor(Parms>>Lambda, Functor),
    (   Parms = Free/ExtraArgs
    ->  is_lambda_free(Free),
        free_to_list(Free, FreeList)
    ;   Parms = ExtraArgs,
        FreeList = []
    ),
    append(FreeList, ExtraArgs, Args),
    Head =.. [Functor|Args],
    compile_aux_clause_if_new(Head, Lambda).
expand_lambda(Goal, Head) :-
    Goal =.. ['/', Free, Closure|ExtraArgs],
    is_lambda_free(Free),
    is_callable(Closure),
    free_to_list(Free, FreeList),
    lambda_functor(Free/Closure, Functor),
    append(FreeList, ExtraArgs, Args),
    Head =.. [Functor|Args],
    Closure =.. [ClosureFunctor|ClosureArgs],
    append(ClosureArgs, ExtraArgs, LambdaArgs),
    Lambda =.. [ClosureFunctor|LambdaArgs],
    compile_aux_clause_if_new(Head, Lambda).

lambda_functor(Term, Functor) :-
    copy_term_nat(Term, Copy),
    variant_sha1(Copy, Functor0),
    atom_concat('__aux_yall_', Functor0, Functor).

free_to_list({}, []).
free_to_list({VarsConj}, Vars) :-
    conjunction_to_list(VarsConj, Vars).

conjunction_to_list(Term, [Term]) :-
    var(Term),
    !.
conjunction_to_list((Term, Conjunction), [Term|Terms]) :-
    !,
    conjunction_to_list(Conjunction, Terms).
conjunction_to_list(Term, [Term]).

compile_aux_clause_if_new(Head, Lambda) :-
    prolog_load_context(module, Context),
    (   predicate_property(Context:Head, defined)
    ->  true
    ;   expand_goal(Lambda, LambdaExpanded),
        compile_aux_clauses([(Head :- LambdaExpanded)])
    ).

lambda_like(Goal) :-
    compound(Goal),
    compound_name_arity(Goal, Name, Arity),
    lambda_functor(Name),
    Arity >= 2.

lambda_functor(>>).
lambda_functor(/).

:- dynamic system:goal_expansion/2.
:- multifile system:goal_expansion/2.

system:goal_expansion(Goal, Head) :-
    lambda_like(Goal),
    prolog_load_context(source, _),
    \+ current_prolog_flag(xref, true),
    expand_lambda(Goal, Head).

%!  is_lambda(@Term) is semidet.
%
%   True if Term is a valid Lambda expression.

is_lambda(Term) :-
    compound(Term),
    compound_name_arguments(Term, Name, Args),
    is_lambda(Name, Args).

is_lambda(>>, [Params,Lambda|_]) :-
    is_lamdba_params(Params),
    is_callable(Lambda).
is_lambda(/, [Free,Lambda|_]) :-
    is_lambda_free(Free),
    is_callable(Lambda).

is_lamdba_params(Var) :-
    var(Var), !, fail.
is_lamdba_params(Free/Params) :-
    !,
    is_lambda_free(Free),
    is_list(Params).
is_lamdba_params(Params) :-
    is_list(Params).

is_lambda_free(Free) :-
    nonvar(Free), !, (Free = {_} -> true ; Free == {}).

is_callable(Term) :-
    strip_module(Term, _, Goal),
    callable(Goal).


%!  lambda_calls(+LambdaExpression, -Goal) is det.
%!  lambda_calls(+LambdaExpression, +ExtraArgs, -Goal) is det.
%
%   Goal  is  the   goal   called   if    call/N   is   applied   to
%   LambdaExpression, where ExtraArgs are   the additional arguments
%   to call/N. ExtraArgs can be an  integer   or  a list of concrete
%   arguments. This predicate is used for cross-referencing and code
%   highlighting.

lambda_calls(LambdaExtended, Goal) :-
    compound(LambdaExtended),
    compound_name_arguments(LambdaExtended, Name, [A1,A2|Extra]),
    lambda_functor(Name),
    compound_name_arguments(Lambda, Name, [A1,A2]),
    lambda_calls(Lambda, Extra, Goal).

lambda_calls(Lambda, Extra, Goal) :-
    integer(Extra),
    !,
    length(ExtraVars, Extra),
    lambda_calls_(Lambda, ExtraVars, Goal).
lambda_calls(Lambda, Extra, Goal) :-
    must_be(list, Extra),
    lambda_calls_(Lambda, Extra, Goal).

lambda_calls_(Params>>Lambda, Args, Goal) :-
    unify_lambda_parameters(Params, Args, ExtraArgs, Lambda, LambdaCopy),
    extend(LambdaCopy, ExtraArgs, Goal).
lambda_calls_(Free/Lambda, ExtraArgs, Goal) :-
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    extend(LambdaCopy, ExtraArgs, Goal).

extend(Var, _, _) :-
    var(Var),
    !,
    instantiation_error(Var).
extend(Cyclic, _, _) :-
    cyclic_term(Cyclic),
    !,
    type_error(acyclic_term, Cyclic).
extend(M:Goal0, Extra, M:Goal) :-
    !,
    extend(Goal0, Extra, Goal).
extend(Goal0, Extra, Goal) :-
    atom(Goal0),
    !,
    Goal =.. [Goal0|Extra].
extend(Goal0, Extra, Goal) :-
    compound(Goal0),
    !,
    compound_name_arguments(Goal0, Name, Args0),
    append(Args0, Extra, Args),
    compound_name_arguments(Goal, Name, Args).


                 /*******************************
                 *     SYNTAX HIGHLIGHTING      *
                 *******************************/

:- multifile prolog_colour:goal_colours/2.

yall_colours(Lambda, built_in-[classify,body(Goal)|ArgSpecs]) :-
    catch(lambda_calls(Lambda, Goal), _, fail),
    Lambda =.. [>>,_,_|Args],
    classify_extra(Args, ArgSpecs).

classify_extra([], []).
classify_extra([_|T0], [classify|T]) :-
    classify_extra(T0, T).

prolog_colour:goal_colours(Goal, Spec) :-
    lambda_like(Goal),
    yall_colours(Goal, Spec).


                 /*******************************
                 *          XREF SUPPORT        *
                 *******************************/

:- multifile prolog:called_by/4.

prolog:called_by(Lambda, yall, _, [Goal]) :-
    lambda_like(Lambda),
    catch(lambda_calls(Lambda, Goal), _, fail).


                 /*******************************
                 *        SANDBOX SUPPORT       *
                 *******************************/

:- multifile
    sandbox:safe_meta_predicate/1,
    sandbox:safe_meta/2.

sandbox:safe_meta_predicate(yall:(/)/2).
sandbox:safe_meta_predicate(yall:(/)/3).
sandbox:safe_meta_predicate(yall:(/)/4).
sandbox:safe_meta_predicate(yall:(/)/5).
sandbox:safe_meta_predicate(yall:(/)/6).
sandbox:safe_meta_predicate(yall:(/)/7).

sandbox:safe_meta(yall:Lambda, [Goal]) :-
    compound(Lambda),
    compound_name_arity(Lambda, >>, Arity),
    Arity >= 2,
    lambda_calls(Lambda, Goal).