1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
|
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#ifdef EXPENSIVE_CHECKS
#include <random> // for std::mt19937
#endif
namespace llvm {
// Only used by compiler if both template types are the same. Useful when
// using SFINAE to test for the existence of member functions.
template <typename T, T> struct SameType;
namespace detail {
template <typename RangeT>
using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
template <typename RangeT>
using ValueOfRange = typename std::remove_reference<decltype(
*std::begin(std::declval<RangeT &>()))>::type;
} // end namespace detail
//===----------------------------------------------------------------------===//
// Extra additions to <type_traits>
//===----------------------------------------------------------------------===//
template <typename T>
struct negation : std::integral_constant<bool, !bool(T::value)> {};
template <typename...> struct conjunction : std::true_type {};
template <typename B1> struct conjunction<B1> : B1 {};
template <typename B1, typename... Bn>
struct conjunction<B1, Bn...>
: std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
//===----------------------------------------------------------------------===//
// Extra additions to <functional>
//===----------------------------------------------------------------------===//
template <class Ty> struct identity {
using argument_type = Ty;
Ty &operator()(Ty &self) const {
return self;
}
const Ty &operator()(const Ty &self) const {
return self;
}
};
template <class Ty> struct less_ptr {
bool operator()(const Ty* left, const Ty* right) const {
return *left < *right;
}
};
template <class Ty> struct greater_ptr {
bool operator()(const Ty* left, const Ty* right) const {
return *right < *left;
}
};
/// An efficient, type-erasing, non-owning reference to a callable. This is
/// intended for use as the type of a function parameter that is not used
/// after the function in question returns.
///
/// This class does not own the callable, so it is not in general safe to store
/// a function_ref.
template<typename Fn> class function_ref;
template<typename Ret, typename ...Params>
class function_ref<Ret(Params...)> {
Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
intptr_t callable;
template<typename Callable>
static Ret callback_fn(intptr_t callable, Params ...params) {
return (*reinterpret_cast<Callable*>(callable))(
std::forward<Params>(params)...);
}
public:
function_ref() = default;
function_ref(std::nullptr_t) {}
template <typename Callable>
function_ref(Callable &&callable,
typename std::enable_if<
!std::is_same<typename std::remove_reference<Callable>::type,
function_ref>::value>::type * = nullptr)
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
callable(reinterpret_cast<intptr_t>(&callable)) {}
Ret operator()(Params ...params) const {
return callback(callable, std::forward<Params>(params)...);
}
operator bool() const { return callback; }
};
// deleter - Very very very simple method that is used to invoke operator
// delete on something. It is used like this:
//
// for_each(V.begin(), B.end(), deleter<Interval>);
template <class T>
inline void deleter(T *Ptr) {
delete Ptr;
}
//===----------------------------------------------------------------------===//
// Extra additions to <iterator>
//===----------------------------------------------------------------------===//
namespace adl_detail {
using std::begin;
template <typename ContainerTy>
auto adl_begin(ContainerTy &&container)
-> decltype(begin(std::forward<ContainerTy>(container))) {
return begin(std::forward<ContainerTy>(container));
}
using std::end;
template <typename ContainerTy>
auto adl_end(ContainerTy &&container)
-> decltype(end(std::forward<ContainerTy>(container))) {
return end(std::forward<ContainerTy>(container));
}
using std::swap;
template <typename T>
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
std::declval<T>()))) {
swap(std::forward<T>(lhs), std::forward<T>(rhs));
}
} // end namespace adl_detail
template <typename ContainerTy>
auto adl_begin(ContainerTy &&container)
-> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
return adl_detail::adl_begin(std::forward<ContainerTy>(container));
}
template <typename ContainerTy>
auto adl_end(ContainerTy &&container)
-> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
return adl_detail::adl_end(std::forward<ContainerTy>(container));
}
template <typename T>
void adl_swap(T &&lhs, T &&rhs) noexcept(
noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
}
// mapped_iterator - This is a simple iterator adapter that causes a function to
// be applied whenever operator* is invoked on the iterator.
template <typename ItTy, typename FuncTy,
typename FuncReturnTy =
decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
class mapped_iterator
: public iterator_adaptor_base<
mapped_iterator<ItTy, FuncTy>, ItTy,
typename std::iterator_traits<ItTy>::iterator_category,
typename std::remove_reference<FuncReturnTy>::type> {
public:
mapped_iterator(ItTy U, FuncTy F)
: mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
ItTy getCurrent() { return this->I; }
FuncReturnTy operator*() { return F(*this->I); }
private:
FuncTy F;
};
// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
}
/// Helper to determine if type T has a member called rbegin().
template <typename Ty> class has_rbegin_impl {
using yes = char[1];
using no = char[2];
template <typename Inner>
static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
template <typename>
static no& test(...);
public:
static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
};
/// Metafunction to determine if T& or T has a member called rbegin().
template <typename Ty>
struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
};
// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have rbegin()/rend() methods for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
return make_range(C.rbegin(), C.rend());
}
// Returns a std::reverse_iterator wrapped around the given iterator.
template <typename IteratorTy>
std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
return std::reverse_iterator<IteratorTy>(It);
}
// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have begin()/end() methods which return
// bidirectional iterators for this to work.
template <typename ContainerTy>
auto reverse(
ContainerTy &&C,
typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
-> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
llvm::make_reverse_iterator(std::begin(C)))) {
return make_range(llvm::make_reverse_iterator(std::end(C)),
llvm::make_reverse_iterator(std::begin(C)));
}
/// An iterator adaptor that filters the elements of given inner iterators.
///
/// The predicate parameter should be a callable object that accepts the wrapped
/// iterator's reference type and returns a bool. When incrementing or
/// decrementing the iterator, it will call the predicate on each element and
/// skip any where it returns false.
///
/// \code
/// int A[] = { 1, 2, 3, 4 };
/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
/// // R contains { 1, 3 }.
/// \endcode
///
/// Note: filter_iterator_base implements support for forward iteration.
/// filter_iterator_impl exists to provide support for bidirectional iteration,
/// conditional on whether the wrapped iterator supports it.
template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
class filter_iterator_base
: public iterator_adaptor_base<
filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
WrappedIteratorT,
typename std::common_type<
IterTag, typename std::iterator_traits<
WrappedIteratorT>::iterator_category>::type> {
using BaseT = iterator_adaptor_base<
filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
WrappedIteratorT,
typename std::common_type<
IterTag, typename std::iterator_traits<
WrappedIteratorT>::iterator_category>::type>;
protected:
WrappedIteratorT End;
PredicateT Pred;
void findNextValid() {
while (this->I != End && !Pred(*this->I))
BaseT::operator++();
}
// Construct the iterator. The begin iterator needs to know where the end
// is, so that it can properly stop when it gets there. The end iterator only
// needs the predicate to support bidirectional iteration.
filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin), End(End), Pred(Pred) {
findNextValid();
}
public:
using BaseT::operator++;
filter_iterator_base &operator++() {
BaseT::operator++();
findNextValid();
return *this;
}
};
/// Specialization of filter_iterator_base for forward iteration only.
template <typename WrappedIteratorT, typename PredicateT,
typename IterTag = std::forward_iterator_tag>
class filter_iterator_impl
: public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
public:
filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin, End, Pred) {}
};
/// Specialization of filter_iterator_base for bidirectional iteration.
template <typename WrappedIteratorT, typename PredicateT>
class filter_iterator_impl<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag>
: public filter_iterator_base<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag> {
using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
std::bidirectional_iterator_tag>;
void findPrevValid() {
while (!this->Pred(*this->I))
BaseT::operator--();
}
public:
using BaseT::operator--;
filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
PredicateT Pred)
: BaseT(Begin, End, Pred) {}
filter_iterator_impl &operator--() {
BaseT::operator--();
findPrevValid();
return *this;
}
};
namespace detail {
template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
using type = std::forward_iterator_tag;
};
template <> struct fwd_or_bidi_tag_impl<true> {
using type = std::bidirectional_iterator_tag;
};
/// Helper which sets its type member to forward_iterator_tag if the category
/// of \p IterT does not derive from bidirectional_iterator_tag, and to
/// bidirectional_iterator_tag otherwise.
template <typename IterT> struct fwd_or_bidi_tag {
using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
std::bidirectional_iterator_tag,
typename std::iterator_traits<IterT>::iterator_category>::value>::type;
};
} // namespace detail
/// Defines filter_iterator to a suitable specialization of
/// filter_iterator_impl, based on the underlying iterator's category.
template <typename WrappedIteratorT, typename PredicateT>
using filter_iterator = filter_iterator_impl<
WrappedIteratorT, PredicateT,
typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
/// Convenience function that takes a range of elements and a predicate,
/// and return a new filter_iterator range.
///
/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
/// lifetime of that temporary is not kept by the returned range object, and the
/// temporary is going to be dropped on the floor after the make_iterator_range
/// full expression that contains this function call.
template <typename RangeT, typename PredicateT>
iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
make_filter_range(RangeT &&Range, PredicateT Pred) {
using FilterIteratorT =
filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
return make_range(
FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
std::end(std::forward<RangeT>(Range)), Pred),
FilterIteratorT(std::end(std::forward<RangeT>(Range)),
std::end(std::forward<RangeT>(Range)), Pred));
}
// forward declarations required by zip_shortest/zip_first
template <typename R, typename UnaryPredicate>
bool all_of(R &&range, UnaryPredicate P);
template <size_t... I> struct index_sequence;
template <class... Ts> struct index_sequence_for;
namespace detail {
using std::declval;
// We have to alias this since inlining the actual type at the usage site
// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
template<typename... Iters> struct ZipTupleType {
using type = std::tuple<decltype(*declval<Iters>())...>;
};
template <typename ZipType, typename... Iters>
using zip_traits = iterator_facade_base<
ZipType, typename std::common_type<std::bidirectional_iterator_tag,
typename std::iterator_traits<
Iters>::iterator_category...>::type,
// ^ TODO: Implement random access methods.
typename ZipTupleType<Iters...>::type,
typename std::iterator_traits<typename std::tuple_element<
0, std::tuple<Iters...>>::type>::difference_type,
// ^ FIXME: This follows boost::make_zip_iterator's assumption that all
// inner iterators have the same difference_type. It would fail if, for
// instance, the second field's difference_type were non-numeric while the
// first is.
typename ZipTupleType<Iters...>::type *,
typename ZipTupleType<Iters...>::type>;
template <typename ZipType, typename... Iters>
struct zip_common : public zip_traits<ZipType, Iters...> {
using Base = zip_traits<ZipType, Iters...>;
using value_type = typename Base::value_type;
std::tuple<Iters...> iterators;
protected:
template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
return value_type(*std::get<Ns>(iterators)...);
}
template <size_t... Ns>
decltype(iterators) tup_inc(index_sequence<Ns...>) const {
return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
}
template <size_t... Ns>
decltype(iterators) tup_dec(index_sequence<Ns...>) const {
return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
}
public:
zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
const value_type operator*() const {
return deref(index_sequence_for<Iters...>{});
}
ZipType &operator++() {
iterators = tup_inc(index_sequence_for<Iters...>{});
return *reinterpret_cast<ZipType *>(this);
}
ZipType &operator--() {
static_assert(Base::IsBidirectional,
"All inner iterators must be at least bidirectional.");
iterators = tup_dec(index_sequence_for<Iters...>{});
return *reinterpret_cast<ZipType *>(this);
}
};
template <typename... Iters>
struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
using Base = zip_common<zip_first<Iters...>, Iters...>;
bool operator==(const zip_first<Iters...> &other) const {
return std::get<0>(this->iterators) == std::get<0>(other.iterators);
}
zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
};
template <typename... Iters>
class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
template <size_t... Ns>
bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
std::get<Ns>(other.iterators)...},
identity<bool>{});
}
public:
using Base = zip_common<zip_shortest<Iters...>, Iters...>;
zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
bool operator==(const zip_shortest<Iters...> &other) const {
return !test(other, index_sequence_for<Iters...>{});
}
};
template <template <typename...> class ItType, typename... Args> class zippy {
public:
using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
using iterator_category = typename iterator::iterator_category;
using value_type = typename iterator::value_type;
using difference_type = typename iterator::difference_type;
using pointer = typename iterator::pointer;
using reference = typename iterator::reference;
private:
std::tuple<Args...> ts;
template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
return iterator(std::begin(std::get<Ns>(ts))...);
}
template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
return iterator(std::end(std::get<Ns>(ts))...);
}
public:
zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
};
} // end namespace detail
/// zip iterator for two or more iteratable types.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
Args &&... args) {
return detail::zippy<detail::zip_shortest, T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
/// be the shortest.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
Args &&... args) {
return detail::zippy<detail::zip_first, T, U, Args...>(
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}
/// Iterator wrapper that concatenates sequences together.
///
/// This can concatenate different iterators, even with different types, into
/// a single iterator provided the value types of all the concatenated
/// iterators expose `reference` and `pointer` types that can be converted to
/// `ValueT &` and `ValueT *` respectively. It doesn't support more
/// interesting/customized pointer or reference types.
///
/// Currently this only supports forward or higher iterator categories as
/// inputs and always exposes a forward iterator interface.
template <typename ValueT, typename... IterTs>
class concat_iterator
: public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
std::forward_iterator_tag, ValueT> {
using BaseT = typename concat_iterator::iterator_facade_base;
/// We store both the current and end iterators for each concatenated
/// sequence in a tuple of pairs.
///
/// Note that something like iterator_range seems nice at first here, but the
/// range properties are of little benefit and end up getting in the way
/// because we need to do mutation on the current iterators.
std::tuple<std::pair<IterTs, IterTs>...> IterPairs;
/// Attempts to increment a specific iterator.
///
/// Returns true if it was able to increment the iterator. Returns false if
/// the iterator is already at the end iterator.
template <size_t Index> bool incrementHelper() {
auto &IterPair = std::get<Index>(IterPairs);
if (IterPair.first == IterPair.second)
return false;
++IterPair.first;
return true;
}
/// Increments the first non-end iterator.
///
/// It is an error to call this with all iterators at the end.
template <size_t... Ns> void increment(index_sequence<Ns...>) {
// Build a sequence of functions to increment each iterator if possible.
bool (concat_iterator::*IncrementHelperFns[])() = {
&concat_iterator::incrementHelper<Ns>...};
// Loop over them, and stop as soon as we succeed at incrementing one.
for (auto &IncrementHelperFn : IncrementHelperFns)
if ((this->*IncrementHelperFn)())
return;
llvm_unreachable("Attempted to increment an end concat iterator!");
}
/// Returns null if the specified iterator is at the end. Otherwise,
/// dereferences the iterator and returns the address of the resulting
/// reference.
template <size_t Index> ValueT *getHelper() const {
auto &IterPair = std::get<Index>(IterPairs);
if (IterPair.first == IterPair.second)
return nullptr;
return &*IterPair.first;
}
/// Finds the first non-end iterator, dereferences, and returns the resulting
/// reference.
///
/// It is an error to call this with all iterators at the end.
template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
// Build a sequence of functions to get from iterator if possible.
ValueT *(concat_iterator::*GetHelperFns[])() const = {
&concat_iterator::getHelper<Ns>...};
// Loop over them, and return the first result we find.
for (auto &GetHelperFn : GetHelperFns)
if (ValueT *P = (this->*GetHelperFn)())
return *P;
llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
}
public:
/// Constructs an iterator from a squence of ranges.
///
/// We need the full range to know how to switch between each of the
/// iterators.
template <typename... RangeTs>
explicit concat_iterator(RangeTs &&... Ranges)
: IterPairs({std::begin(Ranges), std::end(Ranges)}...) {}
using BaseT::operator++;
concat_iterator &operator++() {
increment(index_sequence_for<IterTs...>());
return *this;
}
ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
bool operator==(const concat_iterator &RHS) const {
return IterPairs == RHS.IterPairs;
}
};
namespace detail {
/// Helper to store a sequence of ranges being concatenated and access them.
///
/// This is designed to facilitate providing actual storage when temporaries
/// are passed into the constructor such that we can use it as part of range
/// based for loops.
template <typename ValueT, typename... RangeTs> class concat_range {
public:
using iterator =
concat_iterator<ValueT,
decltype(std::begin(std::declval<RangeTs &>()))...>;
private:
std::tuple<RangeTs...> Ranges;
template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
return iterator(std::get<Ns>(Ranges)...);
}
template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
return iterator(make_range(std::end(std::get<Ns>(Ranges)),
std::end(std::get<Ns>(Ranges)))...);
}
public:
concat_range(RangeTs &&... Ranges)
: Ranges(std::forward<RangeTs>(Ranges)...) {}
iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
};
} // end namespace detail
/// Concatenated range across two or more ranges.
///
/// The desired value type must be explicitly specified.
template <typename ValueT, typename... RangeTs>
detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
static_assert(sizeof...(RangeTs) > 1,
"Need more than one range to concatenate!");
return detail::concat_range<ValueT, RangeTs...>(
std::forward<RangeTs>(Ranges)...);
}
//===----------------------------------------------------------------------===//
// Extra additions to <utility>
//===----------------------------------------------------------------------===//
/// Function object to check whether the first component of a std::pair
/// compares less than the first component of another std::pair.
struct less_first {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.first < rhs.first;
}
};
/// Function object to check whether the second component of a std::pair
/// compares less than the second component of another std::pair.
struct less_second {
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
return lhs.second < rhs.second;
}
};
// A subset of N3658. More stuff can be added as-needed.
/// Represents a compile-time sequence of integers.
template <class T, T... I> struct integer_sequence {
using value_type = T;
static constexpr size_t size() { return sizeof...(I); }
};
/// Alias for the common case of a sequence of size_ts.
template <size_t... I>
struct index_sequence : integer_sequence<std::size_t, I...> {};
template <std::size_t N, std::size_t... I>
struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
template <std::size_t... I>
struct build_index_impl<0, I...> : index_sequence<I...> {};
/// Creates a compile-time integer sequence for a parameter pack.
template <class... Ts>
struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
/// Utility type to build an inheritance chain that makes it easy to rank
/// overload candidates.
template <int N> struct rank : rank<N - 1> {};
template <> struct rank<0> {};
/// traits class for checking whether type T is one of any of the given
/// types in the variadic list.
template <typename T, typename... Ts> struct is_one_of {
static const bool value = false;
};
template <typename T, typename U, typename... Ts>
struct is_one_of<T, U, Ts...> {
static const bool value =
std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
};
/// traits class for checking whether type T is a base class for all
/// the given types in the variadic list.
template <typename T, typename... Ts> struct are_base_of {
static const bool value = true;
};
template <typename T, typename U, typename... Ts>
struct are_base_of<T, U, Ts...> {
static const bool value =
std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
};
//===----------------------------------------------------------------------===//
// Extra additions for arrays
//===----------------------------------------------------------------------===//
/// Find the length of an array.
template <class T, std::size_t N>
constexpr inline size_t array_lengthof(T (&)[N]) {
return N;
}
/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
if (std::less<T>()(*reinterpret_cast<const T*>(P1),
*reinterpret_cast<const T*>(P2)))
return -1;
if (std::less<T>()(*reinterpret_cast<const T*>(P2),
*reinterpret_cast<const T*>(P1)))
return 1;
return 0;
}
/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
(const void*, const void*) {
return array_pod_sort_comparator<T>;
}
/// array_pod_sort - This sorts an array with the specified start and end
/// extent. This is just like std::sort, except that it calls qsort instead of
/// using an inlined template. qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat. This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy. If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
// Don't inefficiently call qsort with one element or trigger undefined
// behavior with an empty sequence.
auto NElts = End - Start;
if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
std::mt19937 Generator(std::random_device{}());
std::shuffle(Start, End, Generator);
#endif
qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
}
template <class IteratorTy>
inline void array_pod_sort(
IteratorTy Start, IteratorTy End,
int (*Compare)(
const typename std::iterator_traits<IteratorTy>::value_type *,
const typename std::iterator_traits<IteratorTy>::value_type *)) {
// Don't inefficiently call qsort with one element or trigger undefined
// behavior with an empty sequence.
auto NElts = End - Start;
if (NElts <= 1) return;
#ifdef EXPENSIVE_CHECKS
std::mt19937 Generator(std::random_device{}());
std::shuffle(Start, End, Generator);
#endif
qsort(&*Start, NElts, sizeof(*Start),
reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}
// Provide wrappers to std::sort which shuffle the elements before sorting
// to help uncover non-deterministic behavior (PR35135).
template <typename IteratorTy>
inline void sort(IteratorTy Start, IteratorTy End) {
#ifdef EXPENSIVE_CHECKS
std::mt19937 Generator(std::random_device{}());
std::shuffle(Start, End, Generator);
#endif
std::sort(Start, End);
}
template <typename Container> inline void sort(Container &&C) {
llvm::sort(adl_begin(C), adl_end(C));
}
template <typename IteratorTy, typename Compare>
inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
#ifdef EXPENSIVE_CHECKS
std::mt19937 Generator(std::random_device{}());
std::shuffle(Start, End, Generator);
#endif
std::sort(Start, End, Comp);
}
template <typename Container, typename Compare>
inline void sort(Container &&C, Compare Comp) {
llvm::sort(adl_begin(C), adl_end(C), Comp);
}
//===----------------------------------------------------------------------===//
// Extra additions to <algorithm>
//===----------------------------------------------------------------------===//
/// For a container of pointers, deletes the pointers and then clears the
/// container.
template<typename Container>
void DeleteContainerPointers(Container &C) {
for (auto V : C)
delete V;
C.clear();
}
/// In a container of pairs (usually a map) whose second element is a pointer,
/// deletes the second elements and then clears the container.
template<typename Container>
void DeleteContainerSeconds(Container &C) {
for (auto &V : C)
delete V.second;
C.clear();
}
/// Provide wrappers to std::for_each which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
return std::for_each(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::all_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool all_of(R &&Range, UnaryPredicate P) {
return std::all_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::any_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool any_of(R &&Range, UnaryPredicate P) {
return std::any_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::none_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool none_of(R &&Range, UnaryPredicate P) {
return std::none_of(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::find which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename T>
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
return std::find(adl_begin(Range), adl_end(Range), Val);
}
/// Provide wrappers to std::find_if which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
return std::find_if(adl_begin(Range), adl_end(Range), P);
}
template <typename R, typename UnaryPredicate>
auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
return std::find_if_not(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::remove_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
return std::remove_if(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::copy_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt, typename UnaryPredicate>
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
}
template <typename R, typename OutputIt>
OutputIt copy(R &&Range, OutputIt Out) {
return std::copy(adl_begin(Range), adl_end(Range), Out);
}
/// Wrapper function around std::find to detect if an element exists
/// in a container.
template <typename R, typename E>
bool is_contained(R &&Range, const E &Element) {
return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
}
/// Wrapper function around std::count to count the number of times an element
/// \p Element occurs in the given range \p Range.
template <typename R, typename E>
auto count(R &&Range, const E &Element) ->
typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
return std::count(adl_begin(Range), adl_end(Range), Element);
}
/// Wrapper function around std::count_if to count the number of times an
/// element satisfying a given predicate occurs in a range.
template <typename R, typename UnaryPredicate>
auto count_if(R &&Range, UnaryPredicate P) ->
typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
return std::count_if(adl_begin(Range), adl_end(Range), P);
}
/// Wrapper function around std::transform to apply a function to a range and
/// store the result elsewhere.
template <typename R, typename OutputIt, typename UnaryPredicate>
OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
}
/// Provide wrappers to std::partition which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
return std::partition(adl_begin(Range), adl_end(Range), P);
}
/// Provide wrappers to std::lower_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename ForwardIt>
auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
return std::lower_bound(adl_begin(Range), adl_end(Range), I);
}
/// Provide wrappers to std::upper_bound which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename ForwardIt>
auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
return std::upper_bound(adl_begin(Range), adl_end(Range), I);
}
template <typename R, typename ForwardIt, typename Compare>
auto upper_bound(R &&Range, ForwardIt I, Compare C)
-> decltype(adl_begin(Range)) {
return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
}
/// Wrapper function around std::equal to detect if all elements
/// in a container are same.
template <typename R>
bool is_splat(R &&Range) {
size_t range_size = size(Range);
return range_size != 0 && (range_size == 1 ||
std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
}
/// Given a range of type R, iterate the entire range and return a
/// SmallVector with elements of the vector. This is useful, for example,
/// when you want to iterate a range and then sort the results.
template <unsigned Size, typename R>
SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
to_vector(R &&Range) {
return {adl_begin(Range), adl_end(Range)};
}
/// Provide a container algorithm similar to C++ Library Fundamentals v2's
/// `erase_if` which is equivalent to:
///
/// C.erase(remove_if(C, pred), C.end());
///
/// This version works for any container with an erase method call accepting
/// two iterators.
template <typename Container, typename UnaryPredicate>
void erase_if(Container &C, UnaryPredicate P) {
C.erase(remove_if(C, P), C.end());
}
/// Get the size of a range. This is a wrapper function around std::distance
/// which is only enabled when the operation is O(1).
template <typename R>
auto size(R &&Range, typename std::enable_if<
std::is_same<typename std::iterator_traits<decltype(
Range.begin())>::iterator_category,
std::random_access_iterator_tag>::value,
void>::type * = nullptr)
-> decltype(std::distance(Range.begin(), Range.end())) {
return std::distance(Range.begin(), Range.end());
}
//===----------------------------------------------------------------------===//
// Extra additions to <memory>
//===----------------------------------------------------------------------===//
// Implement make_unique according to N3656.
/// Constructs a `new T()` with the given args and returns a
/// `unique_ptr<T>` which owns the object.
///
/// Example:
///
/// auto p = make_unique<int>();
/// auto p = make_unique<std::tuple<int, int>>(0, 1);
template <class T, class... Args>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args &&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
/// Constructs a `new T[n]` with the given args and returns a
/// `unique_ptr<T[]>` which owns the object.
///
/// \param n size of the new array.
///
/// Example:
///
/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
template <class T>
typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
std::unique_ptr<T>>::type
make_unique(size_t n) {
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}
/// This function isn't used and is only here to provide better compile errors.
template <class T, class... Args>
typename std::enable_if<std::extent<T>::value != 0>::type
make_unique(Args &&...) = delete;
struct FreeDeleter {
void operator()(void* v) {
::free(v);
}
};
template<typename First, typename Second>
struct pair_hash {
size_t operator()(const std::pair<First, Second> &P) const {
return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
}
};
/// A functor like C++14's std::less<void> in its absence.
struct less {
template <typename A, typename B> bool operator()(A &&a, B &&b) const {
return std::forward<A>(a) < std::forward<B>(b);
}
};
/// A functor like C++14's std::equal<void> in its absence.
struct equal {
template <typename A, typename B> bool operator()(A &&a, B &&b) const {
return std::forward<A>(a) == std::forward<B>(b);
}
};
/// Binary functor that adapts to any other binary functor after dereferencing
/// operands.
template <typename T> struct deref {
T func;
// Could be further improved to cope with non-derivable functors and
// non-binary functors (should be a variadic template member function
// operator()).
template <typename A, typename B>
auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
assert(lhs);
assert(rhs);
return func(*lhs, *rhs);
}
};
namespace detail {
template <typename R> class enumerator_iter;
template <typename R> struct result_pair {
friend class enumerator_iter<R>;
result_pair() = default;
result_pair(std::size_t Index, IterOfRange<R> Iter)
: Index(Index), Iter(Iter) {}
result_pair<R> &operator=(const result_pair<R> &Other) {
Index = Other.Index;
Iter = Other.Iter;
return *this;
}
std::size_t index() const { return Index; }
const ValueOfRange<R> &value() const { return *Iter; }
ValueOfRange<R> &value() { return *Iter; }
private:
std::size_t Index = std::numeric_limits<std::size_t>::max();
IterOfRange<R> Iter;
};
template <typename R>
class enumerator_iter
: public iterator_facade_base<
enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
typename std::iterator_traits<IterOfRange<R>>::difference_type,
typename std::iterator_traits<IterOfRange<R>>::pointer,
typename std::iterator_traits<IterOfRange<R>>::reference> {
using result_type = result_pair<R>;
public:
explicit enumerator_iter(IterOfRange<R> EndIter)
: Result(std::numeric_limits<size_t>::max(), EndIter) {}
enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
: Result(Index, Iter) {}
result_type &operator*() { return Result; }
const result_type &operator*() const { return Result; }
enumerator_iter<R> &operator++() {
assert(Result.Index != std::numeric_limits<size_t>::max());
++Result.Iter;
++Result.Index;
return *this;
}
bool operator==(const enumerator_iter<R> &RHS) const {
// Don't compare indices here, only iterators. It's possible for an end
// iterator to have different indices depending on whether it was created
// by calling std::end() versus incrementing a valid iterator.
return Result.Iter == RHS.Result.Iter;
}
enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
Result = Other.Result;
return *this;
}
private:
result_type Result;
};
template <typename R> class enumerator {
public:
explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
enumerator_iter<R> begin() {
return enumerator_iter<R>(0, std::begin(TheRange));
}
enumerator_iter<R> end() {
return enumerator_iter<R>(std::end(TheRange));
}
private:
R TheRange;
};
} // end namespace detail
/// Given an input range, returns a new range whose values are are pair (A,B)
/// such that A is the 0-based index of the item in the sequence, and B is
/// the value from the original sequence. Example:
///
/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
/// for (auto X : enumerate(Items)) {
/// printf("Item %d - %c\n", X.index(), X.value());
/// }
///
/// Output:
/// Item 0 - A
/// Item 1 - B
/// Item 2 - C
/// Item 3 - D
///
template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
return detail::enumerator<R>(std::forward<R>(TheRange));
}
namespace detail {
template <typename F, typename Tuple, std::size_t... I>
auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
-> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
} // end namespace detail
/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
/// return the result.
template <typename F, typename Tuple>
auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
std::forward<F>(f), std::forward<Tuple>(t),
build_index_impl<
std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
using Indices = build_index_impl<
std::tuple_size<typename std::decay<Tuple>::type>::value>;
return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
Indices{});
}
/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
/// time. Not meant for use with random-access iterators.
template <typename IterTy>
bool hasNItems(
IterTy &&Begin, IterTy &&End, unsigned N,
typename std::enable_if<
!std::is_same<
typename std::iterator_traits<typename std::remove_reference<
decltype(Begin)>::type>::iterator_category,
std::random_access_iterator_tag>::value,
void>::type * = nullptr) {
for (; N; --N, ++Begin)
if (Begin == End)
return false; // Too few.
return Begin == End;
}
/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
/// time. Not meant for use with random-access iterators.
template <typename IterTy>
bool hasNItemsOrMore(
IterTy &&Begin, IterTy &&End, unsigned N,
typename std::enable_if<
!std::is_same<
typename std::iterator_traits<typename std::remove_reference<
decltype(Begin)>::type>::iterator_category,
std::random_access_iterator_tag>::value,
void>::type * = nullptr) {
for (; N; --N, ++Begin)
if (Begin == End)
return false; // Too few.
return true;
}
} // end namespace llvm
#endif // LLVM_ADT_STLEXTRAS_H
|