1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
//===-- LaneBasedExecutionQueue.cpp ---------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "llbuild/Basic/ExecutionQueue.h"
#include "llbuild/Basic/PlatformUtility.h"
#include "llbuild/Basic/Tracing.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include <atomic>
#include <future>
#include <queue>
#include <random>
#include <unordered_map>
#include <vector>
#include <signal.h>
#ifdef __APPLE__
#include <pthread/spawn.h>
#endif
using namespace llbuild;
using namespace llbuild::basic;
struct QueueJobLess {
bool operator()(const llbuild::basic::QueueJob &__x,
const llbuild::basic::QueueJob &__y) const {
return __x.getDescriptor()->getOrdinalName() <
__y.getDescriptor()->getOrdinalName();
}
};
namespace {
struct LaneBasedExecutionQueueJobContext : public QueueJobContext {
uint64_t jobID;
uint64_t laneNumber;
QueueJob& job;
LaneBasedExecutionQueueJobContext(
uint64_t jobID, uint64_t laneNumber, QueueJob& job)
: jobID(jobID), laneNumber(laneNumber), job(job) {}
unsigned laneID() const override { return laneNumber; }
};
class Scheduler {
public:
virtual ~Scheduler() { }
virtual void addJob(QueueJob job) = 0;
virtual QueueJob getNextJob() = 0;
virtual bool empty() const = 0;
virtual uint64_t size() const = 0;
static std::unique_ptr<Scheduler> make(SchedulerAlgorithm alg);
};
class PriorityQueueScheduler : public Scheduler {
private:
std::priority_queue<QueueJob, std::vector<QueueJob>, QueueJobLess> jobs;
public:
void addJob(QueueJob job) override {
jobs.push(job);
}
QueueJob getNextJob() override {
QueueJob job = jobs.top();
jobs.pop();
return job;
}
bool empty() const override {
return jobs.empty();
}
uint64_t size() const override {
return jobs.size();
}
};
class FifoScheduler : public Scheduler {
private:
std::deque<QueueJob> jobs;
public:
void addJob(QueueJob job) override {
jobs.push_back(job);
}
QueueJob getNextJob() override {
QueueJob job = jobs.front();
jobs.pop_front();
return job;
}
bool empty() const override {
return jobs.empty();
}
uint64_t size() const override {
return jobs.size();
}
};
/// Build execution queue.
//
// FIXME: Consider trying to share this with the Ninja implementation.
class LaneBasedExecutionQueue : public ExecutionQueue {
/// (Random) build identifier
uint32_t buildID;
/// The number of lanes the queue was configured with.
unsigned numLanes;
/// A thread for each lane.
std::vector<std::unique_ptr<std::thread>> lanes;
/// The Quality of Service class to use for this queue.
QualityOfService qos;
/// The ready queue of jobs to execute.
std::unique_ptr<Scheduler> readyJobs;
FifoScheduler readyPriorityJobs;
std::mutex readyJobsMutex;
std::condition_variable readyJobsCondition;
bool cancelled { false };
bool shutdown { false };
ProcessGroup spawnedProcesses;
/// Management of cancellation and SIGKILL escalation
std::mutex killAfterTimeoutThreadMutex;
std::unique_ptr<std::thread> killAfterTimeoutThread = nullptr;
std::condition_variable queueCompleteCondition;
std::mutex queueCompleteMutex;
bool queueComplete { false };
/// Background (lane released) task management
unsigned backgroundTaskMax = 0;
std::atomic<unsigned> backgroundTaskCount{0};
/// The base environment.
const char* const* environment;
void executeLane(uint32_t buildID, uint32_t laneNumber) {
// Set the thread name, if available.
#if defined(__APPLE__)
pthread_setname_np(
(llvm::Twine("org.swift.llbuild Lane-") +
llvm::Twine(laneNumber)).str().c_str());
#elif defined(__linux__)
pthread_setname_np(
pthread_self(),
(llvm::Twine("org.swift.llbuild Lane-") +
llvm::Twine(laneNumber)).str().c_str());
#endif
// Set the QoS class, if available.
setCurrentThreadQualityOfService(qos);
// Lane ID, used in creating reasonably unique task IDs, stores the buildID
// in the top 32 bits. The laneID is stored in bits 16:31, and the job
// count is placed in the lower order 16 bits. These are not strictly
// guaranteed to be unique, but should be close enough for common use cases.
uint32_t jobCount = 0;
uint64_t laneID = (((uint64_t)buildID & 0xFFFF) << 32) + (((uint64_t)laneNumber & 0xFFFF) << 16);
// Execute items from the queue until shutdown.
while (true) {
// Take a job from the ready queue.
QueueJob job{};
uint64_t readyJobsCount;
{
std::unique_lock<std::mutex> lock(readyJobsMutex);
// While the queue is empty, wait for an item.
while (!shutdown && readyJobs->empty() && readyPriorityJobs.empty()) {
readyJobsCondition.wait(lock);
}
if (shutdown && readyJobs->empty() && readyPriorityJobs.empty())
return;
// Take an item according to the chosen policy, preferentially running
// priority jobs.
if (!readyPriorityJobs.empty()) {
job = readyPriorityJobs.getNextJob();
} else {
job = readyJobs->getNextJob();
}
readyJobsCount = readyJobs->size();
}
// If we got an empty job, the queue is shutting down.
if (!job.getDescriptor())
break;
// Process the job.
jobCount++;
uint64_t jobID = laneID + jobCount;
LaneBasedExecutionQueueJobContext context{ jobID, laneNumber, job };
{
TracingExecutionQueueDepth(readyJobsCount);
llvm::SmallString<64> description;
job.getDescriptor()->getShortDescription(description);
TracingExecutionQueueJob t(context.laneNumber, description.str());
getDelegate().queueJobStarted(job.getDescriptor());
job.execute(reinterpret_cast<QueueJobContext*>(&context));
getDelegate().queueJobFinished(job.getDescriptor());
}
}
}
void killAfterTimeout() {
std::unique_lock<std::mutex> lock(queueCompleteMutex);
if (!queueComplete) {
// Shorten timeout if in testing context
if (getenv("LLBUILD_TEST") != nullptr) {
queueCompleteCondition.wait_for(lock, std::chrono::milliseconds(1000));
} else {
queueCompleteCondition.wait_for(lock, std::chrono::seconds(10));
}
#if _WIN32
spawnedProcesses.signalAll(SIGTERM);
#else
spawnedProcesses.signalAll(SIGKILL);
#endif
}
}
public:
LaneBasedExecutionQueue(ExecutionQueueDelegate& delegate,
unsigned numLanesSuggestion, SchedulerAlgorithm alg,
QualityOfService qos, const char* const* environment)
: ExecutionQueue(delegate), buildID(std::random_device()()), qos(qos),
readyJobs(Scheduler::make(alg)), environment(environment)
{
auto taskLimits = estimateTaskLimits(numLanesSuggestion);
numLanes = taskLimits.first;
backgroundTaskMax = taskLimits.second;
for (unsigned i = 0; i != numLanes; ++i) {
lanes.push_back(std::unique_ptr<std::thread>(
new std::thread(
&LaneBasedExecutionQueue::executeLane, this, buildID, i)));
}
}
virtual ~LaneBasedExecutionQueue() {
// Shut down the lanes.
{
std::unique_lock<std::mutex> lock(readyJobsMutex);
shutdown = true;
readyJobsCondition.notify_all();
}
for (unsigned i = 0; i != numLanes; ++i) {
lanes[i]->join();
}
{
std::lock_guard<std::mutex> guard(killAfterTimeoutThreadMutex);
if (killAfterTimeoutThread) {
{
std::unique_lock<std::mutex> lock(queueCompleteMutex);
queueComplete = true;
queueCompleteCondition.notify_all();
}
killAfterTimeoutThread->join();
}
}
}
/// Returns the number of allowed foreground and background tasks.
static auto estimateTaskLimits(unsigned numLanes) -> std::pair<unsigned, unsigned> {
llbuild_rlim_t curOpenFileLimit = llbuild::basic::sys::getOpenFileLimit();
const unsigned reservedFileCount = 3 /* stdin, stdout, stderr */
+ 2 /* Database */
+ 1 /* Logging */
+ 2 /* Additional fds during spawn */
+ 2 /* Fudge factor */;
if (curOpenFileLimit < reservedFileCount) {
assert(curOpenFileLimit < reservedFileCount);
// Certainly can't afford background tasks.
// Maybe even can't afford building altogether, but let's risk it.
return std::make_pair(1, 0);
}
unsigned allowedFilesForTasks = static_cast<unsigned>(std::min(curOpenFileLimit, static_cast<llbuild_rlim_t>(INT_MAX))) - reservedFileCount;
unsigned filesPerTask = 2; // A task has output [and control] file descriptors.
unsigned maxConcurrentTasks = allowedFilesForTasks / filesPerTask;
if (numLanes > maxConcurrentTasks) {
// Can't afford background tasks, and maybe won't even support
// the full extent of requested concurrency.
numLanes = std::max(1u, maxConcurrentTasks);
return std::make_pair(numLanes, 0);
}
// Number of tasks that can be run, according to open file limits.
unsigned extraTasksMax = maxConcurrentTasks - numLanes;
// Configure the background task maximum. We currently support an
// environmental override for experimentation purposes, but otherwise
// limit to a modest multiple of the core count, since we currently burn
// one thread per background task.
unsigned backgroundTaskMax = 0;
char *p = getenv("LLBUILD_BACKGROUND_TASK_MAX");
if (p && !StringRef(p).getAsInteger(10, backgroundTaskMax)) {
// Parsed.
} else {
backgroundTaskMax = std::min(1024U, numLanes * 64U);
}
// The number of background can't exceed available concurrency.
backgroundTaskMax = std::min(backgroundTaskMax, extraTasksMax);
return std::make_pair(numLanes, backgroundTaskMax);
}
virtual void addJob(QueueJob job, QueueJobPriority priority) override {
uint64_t readyJobsCount;
{
std::lock_guard<std::mutex> guard(readyJobsMutex);
if (priority == QueueJobPriority::High) {
readyPriorityJobs.addJob(job);
} else {
readyJobs->addJob(job);
}
readyJobsCondition.notify_one();
readyJobsCount = readyJobs->size();
}
TracingExecutionQueueDepth(readyJobsCount);
}
virtual void cancelAllJobs() override {
{
std::lock_guard<std::mutex> lock(readyJobsMutex);
std::lock_guard<std::mutex> guard(spawnedProcesses.mutex);
if (cancelled) return;
cancelled = true;
spawnedProcesses.close();
readyJobsCondition.notify_all();
}
spawnedProcesses.signalAll(SIGINT);
{
std::lock_guard<std::mutex> guard(killAfterTimeoutThreadMutex);
killAfterTimeoutThread = llvm::make_unique<std::thread>(
&LaneBasedExecutionQueue::killAfterTimeout, this);
}
}
virtual void executeProcess(
QueueJobContext* opaqueContext,
ArrayRef<StringRef> commandLine,
ArrayRef<std::pair<StringRef, StringRef>> environment,
ProcessAttributes attributes,
llvm::Optional<ProcessCompletionFn> completionFn,
ProcessDelegate* delegate
) override {
LaneBasedExecutionQueueJobContext& context =
*reinterpret_cast<LaneBasedExecutionQueueJobContext*>(opaqueContext);
llvm::SmallString<64> description;
context.job.getDescriptor()->getShortDescription(description);
TracingExecutionQueueSubprocessStart(context.laneNumber, description.str());
{
std::unique_lock<std::mutex> lock(readyJobsMutex);
// Do not execute new processes anymore after cancellation.
if (cancelled) {
if (completionFn.hasValue())
completionFn.getValue()(ProcessResult::makeCancelled());
return;
}
}
// Form the complete environment.
//
// NOTE: We construct the environment in order of precedence, so
// overridden keys should be defined first.
POSIXEnvironment posixEnv;
// Export lane ID to subprocesses.
posixEnv.setIfMissing("LLBUILD_BUILD_ID", Twine(buildID).str());
posixEnv.setIfMissing("LLBUILD_LANE_ID", Twine(context.laneNumber).str());
// Add the requested environment.
for (const auto& entry: environment) {
posixEnv.setIfMissing(entry.first, entry.second);
}
// Inherit the base environment, if desired.
//
// FIXME: This involves a lot of redundant allocation, currently. We could
// cache this for the common case of a directly inherited environment.
if (attributes.inheritEnvironment) {
for (const char* const* p = this->environment; *p != nullptr; ++p) {
auto pair = StringRef(*p).split('=');
posixEnv.setIfMissing(pair.first, pair.second);
}
}
// Assign a process handle, which just needs to be unique for as long as we
// are communicating with the delegate.
ProcessHandle handle;
handle.id = context.jobID;
ProcessReleaseFn releaseFn = [this](std::function<void()>&& processWait) {
auto previousTaskCount = backgroundTaskCount.fetch_add(1);
if (previousTaskCount < backgroundTaskMax) {
// Launch the process wait on a detached thread
std::thread([this, processWait=std::move(processWait)]() mutable {
processWait();
backgroundTaskCount--;
}).detach();
} else {
backgroundTaskCount--;
// not allowed to release, call wait directly
processWait();
}
};
ProcessCompletionFn laneCompletionFn{
[completionFn, lane=context.laneNumber](ProcessResult result) mutable {
TracingExecutionQueueSubprocessResult(lane, result.pid, result.utime,
result.stime, result.maxrss);
if (completionFn.hasValue())
completionFn.getValue()(result);
}
};
spawnProcess(
delegate ? *delegate : getDelegate(),
reinterpret_cast<ProcessContext*>(context.job.getDescriptor()),
spawnedProcesses,
handle,
commandLine,
posixEnv,
attributes,
std::move(releaseFn),
std::move(laneCompletionFn)
);
}
};
std::unique_ptr<Scheduler> Scheduler::make(SchedulerAlgorithm alg) {
switch (alg) {
case SchedulerAlgorithm::NamePriority:
return std::unique_ptr<Scheduler>(new PriorityQueueScheduler);
case SchedulerAlgorithm::FIFO:
return std::unique_ptr<Scheduler>(new FifoScheduler);
default:
assert(0 && "unknown scheduler algorithm");
return std::unique_ptr<Scheduler>(nullptr);
}
}
} // anonymous namespace
#if !defined(_WIN32)
extern "C" {
extern char **environ;
}
#endif
ExecutionQueue* llbuild::basic::createLaneBasedExecutionQueue(
ExecutionQueueDelegate& delegate, int numLanes, SchedulerAlgorithm alg,
QualityOfService qos, const char* const* environment
) {
if (!environment) {
environment = const_cast<const char* const*>(environ);
}
return new LaneBasedExecutionQueue(delegate, numLanes, alg, qos, environment);
}
|